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Abstract

EisenEx—the second in situ iron enrichment experiment in the Southern Ocean—was performed in the Atlantic
sector over 3 weeks in November 2000 with the overarching goal to test the hypothesis that primary productivity
in the Southern Ocean is limited by iron availability in the austral spring. Underwater irradiance, chlorophyll a
(Chl a), photochemical efficiency, and primary productivity were measured inside and outside of an iron-enriched
patch in order to quantify the response of phytoplankton to iron fertilization. Chl a concentration and photosynthetic
rate (**C uptake in simulated in situ incubations) were measured in pico-, nano-, and microphytoplankton. Photo-
chemical efficiency was studied with fast repetition rate fluorometry and xenon—pulse amplitude modulated fluo-
rometry. The high-nutrient low-chlorophyll waters outside the Fe-enriched patch were characterized by deep eu-
photic zones (63-72 m), low Chl a (48-56 mg m~2), low photosynthetic efficiency (F,/F,, = 0.3), and low daily
primary productivity (130—-220 mg C m=2 d-%). Between 70 and 90% of Chl a was found in pico- and nanophy-
toplankton. During the induced bloom, F,/F,, increased up to ~0.55, primary productivity and Chl a reached the
maximum values of 790 mg C m-2 d-* and 231 mg Chl a m2, respectively. As a consegquence, the euphotic depth
decreased to ~41 m. Picophytoplankton biomass hardly changed. Nano- and microphytoplankton biomass increased.
In the first 2 weeks of the experiment, when the depth of the upper mixed layer was mostly <40 m, primary
productivity was highly correlated with Chl a. In the third week, productivity was much lower than predicted from
Chl a, probably because of a reduction in photosynthetic capacity as a consequence of increased physical variability
in the upper water column. These results provide uneguivocal evidence that iron supply is the central factor con-

trolling phytoplankton primary productivity in the Southern Ocean, even if the mixing depth is >80 m.

The Antarctic circumpolar current (ACC) is characterized
by low phytoplankton biomass and productivity despite high
nutrient availability (Tréguer and Jacques 1992; de Baar and
Boyd 2000). In situ observations and shipboard mesocosm
incubations suggested that besides light and grazing, iron is
an important factor controlling phytoplankton productivity
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in the ACC (de Baar and Boyd 2000). The first in situ iron-
release experiment in the Pacific sector of the Southern
Ocean, SOIREE, was conducted in the late austral summer
(February 1999) and produced a phytoplankton bloom (Boyd
et a. 2000). This experiment followed two in situ iron en-
richment experiments (IronEx | and Il) performed in another
high-nutrient low-chlorophyll (HNLC) region, namely the
equatorial Pacific (Martin et al. 1994; Coale et al. 1996).

Iron containing enzymes plays a central role in plant me-
tabolism (Geider and La Roche 1994). The reduction of phy-
toplankton photosynthesis under low iron supply is due to a
combination of different physiological responses, including
a reduction in cellular chlorophyll content and a decline in
the efficiency of photosynthetic electron transfer (Geider and
La Roche 1994; Hutchins 1995). The photosynthetic re-
sponse of algae to iron limitation is dependent on light con-
ditions (Sunda and Huntsman 1997) and is connected to ni-
trogen metabolism (Hutchins 1995).

Iron availability influences phytoplankton species com-
position. As algal iron uptake varies with cell surface area,
small algae (mostly picophytoplankton) are favored when
ambient iron concentrations are low (Sunda and Huntsman
1997). These algae are controlled by fast-growing microzoo-
plankton grazers (Price et a. 1994). Upon iron enrichment,
larger algae (mostly diatoms) become dominant because they
cannot be controlled by microzooplankton and have higher
growth rates than their crustacean grazers (Geider and La
Roche 1994; de Baar and Boyd 2000).
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Here, we report the dynamics of light climate, chlorophyll
a (Chl a) concentration, and primary productivity during the
in situ iron enrichment experiment, EisenEx, that was con-
ducted in the Atlantic sector of the Southern Ocean in No-
vember 2000 (Smetacek 2001). EisenEx has the overarching
goal to test the hypothesis that primary productivity in the
Southern Ocean is limited by iron availability in the austral
spring. The previous experiment, SOIREE, was performed
south of the Antarctic Polar Front in the Pacific sector in
late austral summer (Boyd et al. 2000). Thus, EisenEx dif-
fered from SOIREE not only in the season, but in the place.
Another fundamental distinction of EisenEx was the great
abundance of grazing copepods (Bathmann et al. 2001),
which was about one order of magnitude higher than that in
the SOIREE area (Zeldis 2001).

The aim of the present study is to quantify the iron-in-
duced response of primary productivity of different phyto-
plankton size classes in a water body from the Polar Frontal
Zone in austral spring. We measured Chl a concentration
and *C uptake in samples taken throughout the water col-
umn inside the Fe-enriched water body over a period of 3
weeks. The integral amount of Chl a and the areal daily
primary productivity were calculated and compared with ref-
erence measurements in nonfertilized waters. By determin-
ing Chl a and photosynthetic parameters (P% and «*) in dif-
ferent size fractions, we were able to analyze the specific
performances of pico-, nano-, and microphytoplankton
throughout the induced phytoplankton bloom. Asin previous
Fe enrichment experiments (Kolber et al. 1994; Behrenfeld
et al. 1996; Boyd and Abraham 2001), an iron-induced in-
crease in the photochemical quantum efficiency of phyto-
plankton was recorded by using fast repetition rate fluorom-
etry (FRRF; Kolber et al. 1998). In addition, this parameter
was assessed using a different method, xenon—pulse ampli-
tude modulated (Xe-PAM) fluorometry.

Material and methods

Work at sea—The experiment was performed in the At-
lantic sector of the Southern Ocean (~21°E, 48°S) in austral
spring (6-29 Nov 2000) during the cruise ANT XVI1I1/2 of
RV Polarstern. To ensure reasonably stable hydrographic
conditions, a mesoscale eddy (diameter ~100-150 km) that
originated from the southern Polar Front and had drifted
about 400 km northward was chosen as the experimental
location (Strass et al. 2001). In the center of the eddy
(marked with a drifting buoy), an area of about 50 km? was
enriched with acidified iron sulfate solution containing the
tracer SF; (Strass et al. 2001). Iron enrichment was repeated
twice, with intervals of 8 d. The overall strategy of the iron
fertilization procedure was similar to that employed during
IronEx and SOIREE and ensured an increase in iron con-
centration from the background values (<0.1 nM) up to lev-
els above the saturation of phytoplankton growth (Croot et
al. 2001). Sampling and in situ measurements were per-
formed inside and outside of the Fe-enriched water body
(“‘the patch’™) throughout the experiment. The position of the
sampling stations was selected based on horizontal surveys
of the surface SF; concentration (Watson et al. 2001). “‘In-
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stations” were situated at the highest SF, concentrations ob-
served, whereas “‘out-stations” were within waters of the
eddy that showed background SF4 concentrations (Watson et
al. 2001). Two of the in-station sampling casts were, in fact,
situated at the edge of the Fe-enriched patch because the
ship had drifted out of the center of the patch when the
respective casts were performed. This was revealed by sub-
sequent analysis of on-line measurements of Sk, concentra-
tion and photochemical efficiency. Samples were collected
by a multibottle water sampler (Sea-Bird SBE 32) equipped
with 24 bottles (12 liters each), conductivity—temperature—
depth (CTD) probes (Sea-Bird Electronics SBE 911plus),
and a Haardt fluorometer. Usually samples were taken at 12
different depths between 5 and 200 m.

Irradiance, attenuation coefficient, euphotic depth, mixed
layer depth, critical depth—Global radiation was recorded
every minute with a Cm11 pyranometer. Downwelling ir-
radiance in air (E,; PAR, 400—700 nm; see Table 1 for all
symbols and abbreviations) was measured every minute with
a LI-COR 192SA cosine quantum sensor placed on the
ship’s helicopter deck (van Oijen pers. comm.). The vertical
profiles of underwater downward irradiance (E;; PAR, 400—
700 nm) were measured with a QCD-900L Quantum Cosine
Deep Profiling Sensor (Biospherical Instruments) that was
installed on the rosette sampler. The vertical attenuation co-
efficient (k,) was calculated from the plots of In E, versus
depth and averaged for four different water layers (10—40,
40-60, 60—80, 80—100 m). Because k, changed with depth,
the euphotic depth (z,,) could not be simply calculated from
k.. Therefore, we calculated subsurface irradiance [E,(0)]
from the linear regression of In E,y, 4, Versus depth and
read z,, [the depth where E; = 1% E,(0)] from the measured
data. The depth of the upper mixed layer (z,,,) was estimated
by visual inspection of all plots of temperature, salinity, and
o, as the depth of the first clear change in one of these
variables. However, there was no universal criterion that
could be applied to determine z,,,. The critical depth (z)—
the mixing depth that would result in no net phytoplankton
growth—was calculated according to Nelson and Smith
(1991) as z. = 2E,/(3.78k,), where S E, is the daily sum of
E..
Chl a, phaeopigments, nutrients—Immediately after sam-
pling, separate 1,000-ml aliquots were filtered on a Whatman
GF/F filter (yielding total pigment concentration), a 2.0-um
polycarbonate membrane, and a 20-um net filter (vacuum
differential <300 mbar). The 2.0- and 20-um filtrates were
again filtered through GF/F filters. The filters were ground
in 10-ml 90% acetone, extracted at 4°C for 2 h, and centri-
fuged. The extract fluorescence was measured before and
after acidification with 1 N HCl using a Turner Design Mod-
el 10-AU digital fluorometer. The concentrations of Chl a
and phaeopigments were calculated according to Arar and
Collins (1992). The size classes were derived from the fol-
lowing samples/calculations. <2 um, 2-um filtrate; >20
pm, 20-um filter; 2—20 wm, total concentration minus 20-
pm filter minus 2-um filtrate.

The concentrations of nitrate, phosphate, and silicate were
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Table 1. List of symbols and abbreviations used.
Symbol Meaning Units
a  Maximum light utilization coefficient pg C L=t h=t (umol photons m—2 s4)-*
a* a normalized to Chl a ng C (ng Chl @)t h=t (wmol photons m—2 s71)-*
ADP  Areal daily primary productivity between O and 100 m mg C m2d*
B Photoinhibition parameter pg C L=t h=t (umol photons m—2 s4)-*
Chl a  Chlorophyll a
Chl a,,,  Integral amount of Chl a between 0 and 100 m mg m—2
Chl a,,, Integral amount of Chl a between 0 and z, mg m-2
E lIrradiance pmol photons m—2 st
E. Downwelling irradiance in air pmol photons m—2 st
E, Underwater downwelling irradiance pmol photons m-2 s-*
E,(0) Downwelling irradiance in subsurface water pmol photons m—2 st
E, Light saturation parameter (P./a?) umol photons m—2 s1
F,  Minimum fluorescence level in the dark-adapted state
F.  Maximum fluorescence level in the dark-adapted state
F, Maximum variable fluorescence (F, = F,, — F,)
F,/F,  Potential photochemical efficiency of photosystem II
ky  Vertica attenuation coefficient of downwelling irradiance m-1*
P Photosynthetic rate pgCLth?
P,  Maximum photosynthetic rate pg CLtht?
P, P, normalized to Chl a ng C (ng Chl @)t ht
P,  Maximum, potential, light-saturated photosynthetic rate ug CLtht?
PAR  Photosynthetically active radiation pmol photons m-2 s—*
SIS incubation  Simulated in situ incubation

z,  Critical depth
z,,  Euphotic depth
Zm Upper mixed layer depth

m
m
m

determined on board using a Technicon I Autoanalyzer fol-
lowing standard methods.

Primary productivity—Experiments: To analyze the rela-
tionship between photosynthetic rate (P) and irradiance (E),
we exposed the samples in an incubator designed according
to Babin et al. (1994). It consists of incubation chambers
placed radialy around a strong light source (Osram HQI-T
250 W/D). Up to 19 polystyrene culture flasks (25 cm?, 60
ml volume; Corning) can be placed in each chamber. The
light gradient in this set of flasks is due to the increasing
distance to the light source and to the neutral-density filters
placed between some of the flasks. Irradiance was measured
inside the culture flasks with a spherical PAR sensor of 6
mm diameter (Zemoko). The temperature of the samplesin
the flasks was maintained by flushing the incubation cham-
bers with seawater from a depth of 8 m and the addition of
ice. The incubator was located in a temperature-controlled
(3°C) room.

We applied two different approaches to measure the P
versus E relationship. In both approaches, 60 uCi NaH*CO,
(Hartmann Analytic) were added per 60-ml sample of water,
and the samples were incubated for 4 h in the flasks of the
Babin incubator. To keep algae in suspension, the flasks were
gently mixed after 2 h incubation.

In the first P versus E approach, 12 aliquots (60-ml) of a
near-surface sample (usually 20 m depth) were incubated at
12 different light intensities (between 1.6 and 1,400 wmol
photons m=2 s7%), and three aliquots (60-ml) were kept in
darkness. After the incubation, three 20-ml subsamples of
each flask were filtered on a 0.45-um cellulose nitrate filter

(Sartorius), a 2.0-um polycarbonate filter (Nuclepore), and
a 20.0-um polycarbonate filter (Poretics), respectively. Fil-
tration through the 20-um filter was by gravity, whereas vac-
uum pressures <200 mbar were applied for the other filter
sizes.

The second approach was a simulated in situ incubation
(S1S). We used samples from 9-10 depths of the upper 100
m of the water column. For each depth, one 60-ml subsample
was incubated at the approximate irradiance that prevailed
at sampling depth when a subsurface irradiance of 500 wmol
photons m=2 s-* was assumed. Additional dark bottles were
incubated from four depths. After the incubation, three 20-
ml paralel samples of each flask were filtered on 0.45-um
cellulose nitrate filters (Sartorius; vacuum differential <200
mbar).

In both approaches, the filters were washed two times with
1 ml filtered seawater and were then placed on afilter paper
soaked with 0.1 N HCI to release unassimilated “CO,. After
adding scintillation cocktail (3.5 ml Packard Filter Count per
filter), the activity on the filters was counted at sea in a
Packard Tricarb1900 TR scintillation counter. Quench cor-
rection was done using internal standard additions. The pho-
tosynthetic rate (P) was calculated according to standard pro-
cedures (Strickland and Parsons 1968) on the basis of
simultaneously measured concentrations of TCO, (de Baar
pers. comm.).

Calculations: To describe the P versus E relationship, we
followed the recommendations of Frenette et al. (1993). We
employed the exponential function of Webb et al. (1974)
(Eg. 1) to describe the P versus E curves without photo-
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inhibition and the exponential function of Platt et al. (1980)
(Egs. 2a,b) when photosynthesis was inhibited at higher ir-
radiance levels.

P=P,[1— exp(—a-E/P,)] 1)
P = P;[1 - exp(—a-E/PR)]-[exp(—B-E/R)] (23)
Pn = Po[al(a + B)]-[Bl(a + B)#* (2b)

These models were also applied to the results of simulated
in situ incubations. It should be noted that this approach
yields a P versus E relationship that is a composite of the
photosynthetic performances of algae having different irra-
diance histories (Henley 1993). The models were fit to the
experimental data with the use of the software Origin
(OriginLab Corporation), which calculates the fitting curve
and standard errors for parameter estimates in an iterative
process based on the Marquardt—Leevenberg nonlinear |east
squares fitting algorithm. The results of the first P versus E
approach gave a good fit to the model chosen (mostly Eq.
1) with amean r2 = 0.980 and a minimum r2 = 0.918. The
SIS data were described with Eqg. 2, with amean r2 = 0.985
and a minimum r2 = 0.948.

To estimate areal daily primary productivity (ADP), we
first calculated subsurface irradiance [E4(0)] from down-
welling irradiance in air (E,) in 5-min intervals on each sam-
pling day [E4(0) = 0.75621E,, Bracher et a. (1999)]. From
E,(0) and the vertical attenuation coefficients (k;) (see
above), we calculated PAR at 15 depths between 0 and 100
m. Photosynthetic rate was calculated with Eq. 1 from the
resulting PAR and from the parameter estimates of the Webb
model (Eqg. 1) fitted to the results of the respective SIS in-
cubations. To derive ADP, we integrated photosynthetic rate
over depth (15 depths) and time (5-min intervals) for each
day. To quantify the mean daily irradiance available for phy-
toplankton photosynthesis (mean E,), we averaged PAR over
depth (from O m to z,, or from O m to z,, if z,, > z,) and
time (between sunrise and sunset).

To determine the photosynthetic parameters of the P ver-
sus E relationships of the different phytoplankton size clas-
ses (total phytoplankton, >0.45 um; picophytoplankton,
0.45-2 wm; nanophytoplankton, 2—20 um; microphyto-
plankton, >20 um), we first estimated the model parameter
estimates from the photosynthetic rate data of the three fil-
tered size fractions (>0.45, >2, >20 um). Based on these
parameters, we subsequently computed the modeled P versus
E curves of the three size fractions and calculated the P
versus E curves of the phytoplankton size classes from these
curves. Finadly, we normalized these curves to the Chl a
concentration and calculated the respective model parame-
ters.

Photochemical efficiency—The potential photochemical
efficiency of photosystem Il (F,/F.,) of phytoplankton was
assessed by using a xenon—pulse amplitude modulated (Xe-
PAM) fluorometer (Walz) (Schreiber et al. 1993) and a fast
repetition rate (FRR) fluorometer. In the first case, samples
were dark adapted at ambient temperature for 60 min. Un-
concentrated subsamples were transferred to a cuvette in the
center of the fluorometer optical unit ED-101 US/M (Walz)
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and again dark adapted for 5 min. For the measurement of
F, and F,,, one measuring flash (Xe-MF, Walz) was triggered
right before and one right after the saturation pulse (Xe-AL,
Walz). Fluorescence was detected with the photodiode de-
tector (Xe-PD, Walz) and processed with specially designed
software. In each subsample, these measurements were re-
peated 10 times at 30-s intervals and averaged. The results
were corrected by subtracting the background fluorescence
of 0.2-um filtered subsamples. The Xe-PAM fluorometer
was placed in atemperature-controlled (3°C) room. The cus-
tom-built FRR fluorometer and measurement protocols are
described by Kolber et al. (1998).

Results

Temperature, light, vertical mixing, and nutrient condi-
tions—During the period of investigation (6—29 Nov 2000),
water temperature increased from 3.5 to 4.2°C near the sur-
face and from 2.0 to 3.5°C at 100 m depth. Day length in-
creased from 15 to 16 h. Daily global radiation varied be-
tween 4.9 and 27.1 MJ m~2 d-%, with values below 10 MJ
m-2 d-* for only 7 of the 24 d.

The vertical attenuation coefficient of downward irradi-
ance (Kq10_40m) Was between 0.070 and 0.083 m~* outside the
Fe-enriched patch, but gradually increased to 0.114 m~* in-
side the patch (Fig. 1A). Ky 10_40m Was linearly correlated with
the sum of concentrations of Chl a and phaeopigments
(Phaeo) in the upper 40 m (Kyi040m = 0.0176[Chl a +
Phaeo] + 0.0633; r = 0.877, n = 52, p < 0.0001). The
euphotic depth (z,,) remained roughly constant (67 = 3.5 m)
outside the patch but steadily decreased to 41 m inside the
patch (Fig. 1B).

The depth of the upper mixed layer (z,,,) was highly var-
iable during the experiment. z,,, was mostly <40 m during
the first 2 weeks and increased to >80 m during the last
week of the experiment. This increase in mixing depth and
light attenuation resulted in a distinct increase in the ratio
of z,, to z, (Fig. 1C).

On six sampling days with low daily sums of downwelling
irradiance (mean XE, = 20.5 = 7.2 mol photons m-2 d-1),
the critical depth (z) was <100 m (Fig. 1D). On most other
sampling days, SE, was much higher (mean XE, = 45.5 =+
6.9 mol photons m—2 d-*) and z. exceeded 100 m (Fig. 1D).
During the third week of the experiment, z. was larger out-
side than inside the patch (Fig. 1D) because of higher un-
derwater light attenuation in the patch (Fig. 1A). Except for
day 9, z significantly exceeded z,.,.

The depth-averaged daily mean irradiance (mean E,) was
between 100 and 150 umol m=2 s~* on most sampling days
(inside and outside the patch; data not shown). Only on the
6 d with z. < 100 m (Fig. 1D) and on the last in-station, the
mean E, was between 38 and 80 umol m~2 s % On the last
day of our observations (day 21: z,, = 80 m, 3E, = 45.7
mol photons m-2 d-) mean E, was 66 umol m-2 s ! inside
the patch and 100 umol m=2 s~* outside.

The lowest nutrient concentrations measured at any depth
between 0 and 100 m outside the patch were 22 uM nitrate,
1.6 uM phosphate, and 10 uM silicate. Inside the patch,
major nutrients were still abundant on day 21 of the exper-
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Fig. 1. Temporal evolution of (A) the vertical attenuation co-
efficient of downward irradiance (Ky4_40m), (B) euphotic depth (z,),
(C) the ratio of the depth of the upper mixed layer (z,,,) to euphotic
depth, and (D) the critical depth (z) inside and outside of the Fe-
enriched water body during the experiment. Two stations were at
the edge of the Fe-enriched patch.
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iment (>20 uM nitrate, >1.5 uM phosphate, >10 uM sil-
icate; mean values of the upper 100 m).

Chl a—The areal amount of Chl a (Chl a,,) remained
between 48 and 56 mg m~2 outside the Fe-enriched patch
(Fig. 2A). The maximum Chl a concentration observed at
any depth of the upper 100 m remained constant (~0.60 mg
m~-3) outside the patch. Inside the patch, Chl a,,, started to
increase from the background level 4 d after the first iron
infusion and reached the maximum value of 231 mg m=2 on
day 21 (Fig. 2A). Outside the Fe-enriched patch, the per-
centage of Chl a in picophytoplankton (<2 um) was 28—
39% (Fig. 2B). The percentage of Chl a in nanophytoplank-
ton was 42-52% (2—20 pm) and in microphytoplankton was
9-30% (>20 wm; i.e, 0.05-0.17 mg Chl a m=3) (Fig. 2B).
Inside the patch, the percentage of Chl a in nanophytoplank-
ton decreased dlightly—from about 50 to 44%—and that in
picophytoplankton more drastically—from 42 to 13%. In
contrast, Chl a in microphytoplankton increased from 10 to
43% in the course of the experiment (Fig. 2C). In absolute
numbers, Chl a in picophytoplankton slightly increased from
0.2 to 0.3 mg m=2 in the first week and remained roughly
constant thereafter, whereas Chl a in nano- and microphy-
toplankton increased from 0.25 to 1.1 mg m—2 and from 0.05
to 1.1 mg m-3, respectively (Fig. 2D).

The in-station increase in Chl a concentration was restrict-
ed to the upper 50-60 m in the first 2 weeks. Because of
the deepening of the upper mixed layer, however, the algal
bloom extended to more than 80 m in the third week (Fig.
3). The relative contribution of different size classes to total
Chl a showed only minor variations with depth (not shown).

Areal daily primary productivity—The integrated primary
productivity was between 130 and 220 mg C m-2 d-* outside
the Fe-enriched patch (Fig. 4A). Inside the patch, primary
productivity started to increase on day 2, reached the max-
imum of 790 mg C m~2 d-* on day 16, and decreased there-
after (Fig. 4A). The low values of primary productivity at
the out-station and the edge-station on days 9 and 10 (Fig.
4A) were due to the unusually low global radiation on these
days (31 and 37% of the mean daily radiation during the
experiment (i.e., 4.9 and 5.9 MJ m~2 d—%). Nanophytoplank-
ton contributed between 13 and 34% to primary productivity
both inside and outside the Fe-enriched patch (Fig. 4B,C).
Picophytoplankton was always the most important primary
producer outside the patch (Fig. 4B) and at least for the first
2 weeks inside the patch (Fig. 4C). The percentage of pri-
mary productivity by microphytoplankton varied between 10
and 38% outside (Fig. 4B). Inside the patch, microphyto-
plankton became the dominant producer (>50%) at the end
of the observation period (Fig. 4C).

The assimilation rate (ADP normalized to Chl a,y) in-
creased from 4 to 7 mg C (mg Chl a,,,)~* d* inside the
patch during the first and second week of the experiment
(Fig. 5A). In the third week—when the ratio z,,,/z,, had in-
creased (Fig. 1D) and the amount of Chl a below the eu-
photic zone increased (see next paragraph)—the in-station
assimilation rate decreased even below the level of the out-
stations (Fig. 5A). When ADP was normalized to chloro-
phyll in the euphotic zone (Fig. 5B), the in-station assimi-
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Fig. 2. (A) Areal amount of Chl a inside and outside of the Fe-

enriched patch during the experiment (integral between 0 and 100
m depth). (B, C) Temporal development of the relative contribution
of three different phytoplankton size classes to the total Chl a con-
centration (means of al measurements between 0 and 80 m) outside
(B) and inside (C) the Fe-enriched patch. (D) Chl a concentration
of three different phytoplankton size classes (mean between 0 and
80 m depth). The arrows at the bottom of panel (A) mark the times
of the three iron infusions. The half-filled symbols (in A, C) refer
to the stations located at the edge of the patch.

1329
Chlorophyll @ (mg m”)
00 05 1.0 15 20 25 30
50 -
&
gloo-
A —&—day 0
—{+—day 4
150+ —m—day 11
—u—day 19
200 —i—day 21

Fig. 3. Vertical distribution of the Chl a concentration inside
the Fe-enriched patch on five exemplary days.

lation rate increased in the first week, reached maximum
values of around 9-10 mg C (mg Chl a,,)~* d-* in the sec-
ond week and decreased below the initial values in the last
week. The low assimilation rates on days 9 and 10 (Fig.
5A,B) were due to the low global radiation on these days
(see above).

Predicting ADP inside the patch—ADP inside the patch
correlated best with the areal amount of Chl a,,, during the
first 12 d of the experiment (linear correlation: ADP = 9.36
Chl a,,, — 238.0; n = 7; r2 = 0.984; p < 0.0001). On days
16, 19, and 21, a large percentage of Chl a,,, was found
below z,, (39, 50, and 53%, respectively). ADP during the
first 16 d could be predicted with the highest significance
when correlated with Chl a,, (Fig. 5C). ADP measurements
made on days 19 and 21 could not, however, be sensibly
included in regression analysis either versus Chl a,,, (not
shown) or versus Chl a,,, (marked with *“1” in Fig. 5C).
When al in-station ADP measurements were considered,
correlation analysis revealed much lower levels of signifi-
cance (ADP vs. Chl a,: r2 = 0.299, n = 10, p = 0.102;
ADP vs. Chl a,,; r2 = 0581, n = 10, p = 0.010). The
inclusion of incoming irradiance in regression analysis (by
plotting ADP of al in-stations vs. Chl a-3E,) did not result
in a higher significance. Four of the ADP versus Chl a,,
measurements made outside and at the edge of the patch also
came close to the regression line for the in-station data (Fig.
5C). The out- and edge-station measurements on days 9 and
10 (marked with 2" in Fig. 5C) revealed very low ADPin
comparison to Chl a,,, because these days had the lowest
global radiation (see preceding paragraph). The results of
the last out-station (marked ““3” in Fig. 5C) also did not fit
into the in-station trend.

P versus E relationships—The parameters characterizing
the P versus E relationship of total phytoplankton in the
near-surface samples were rather variable (Fig. 6). Both P¥
and o* showed an overall decrease, especialy at the end of
the observation period (Fig. 6A,B). P% was between 0.7 and
2.1 ug C (ug Chl @)~ h~* and did not show distinct differ-
ences inside and outside the Fe-enriched patch (Fig. 6A). o*
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Fig. 4. (A) Areal daily primary productivity inside and outside
of the Fe-enriched patch during the experiment. (B, C) Temporal
development of the relative contribution of three different phyto-
plankton size classes to total primary productivity in a near-surface
sample (usualy from 20 m depth) outside (B) and inside (C) the
Fe-enriched patch. The arrows at the bottom of panel A mark the
times of the three iron infusions. The half-filled symbols (in A, C)
refer to the stations located at the edge of the patch.

was between 0.006 and 0.016 ug C (ug Chl @)~ h=* (umol
photons m-2 s-)-* (Fig. 6B). Outside the patch, o* was at
the lower edge of this range, never exceeding values of 0.013
(Fig. 6B). Except at four dates, E, ranged between 103 and
128 pumol photons m=2 s (Fig. 6C).

P* and o* of pico-, nano-, and microphytoplankton inside
the patch were clearly different (Fig. 7A,B), whereas the E,
ranges of the three size classes overlapped between 32 and
190 pmol photons m=2 s (not shown). P* and o* were
lowest in nanophytoplankton, intermediate in microphyto-
plankton, and highest in picophytoplankton (Fig. 7A,B). P*
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and o* of nano- and microphytoplankton varied in rather
narrow ranges, whereas the P versus E parameters of pico-
phytoplankton scattered over a larger range and partly over-
lapped with the microphytoplankton parameter range (Fig.
7A,B).

Photochemical efficiency—While measured with the Xe-
PAM fluorometer, the potential photochemical efficiency of
photosystem Il (F,/F,) in phytoplankton outside the Fe-en-
riched patch was in the range of 0.23-0.28 (Fig. 8A). Inside
the patch, F,/F,, was around 0.30 during the first days of the
experiment and increased to 0.45 on day 21 (Fig. 8A).

The FRRF-derived values of F,/F, showed similar pat-
terns both outside and inside the patch (Fig. 8B) but were
aways ~25% higher than the Xe-PAM—derived numbers. In
the near-surface phytoplankton, the FRRF-derived F,/F,, re-
mained constant in nonfertilized waters (~0.30), but in-
creased dramatically inside the patch (Fig. 8B). At depth
(>40 m), F,/F, values were usually ~20-30% higher than
at the surface (data not shown), suggesting the reduction in
the extent of nutrient limitation with depth. Deconvolution
analysis of the high-resolution pattern of F,/F, (Fig. 8B)
revealed three waves in the iron-mediated increase of F,/F,
that were driven by the iron infusions (arrows in Fig. 8B).
The maximum values of F,/F,, measured by FRRF in the
iron-enriched patch were as high as 0.55 to 0.56 during the
last week of EisenEx.

Discussion

EisenEx—the second mesoscale in situ iron-enrichment
experiment in the Southern Ocean—was successful in in-
ducing a marked phytoplankton bloom in the austral spring
and was able to follow the development of the bloom over
a period of 3 weeks. We observed a maximum primary pro-
ductivity of 790 mg C m=2 d* inside the patch compared to
~200 mg C m=2 d-* outside. At the end of the observation
period (day 21), phytoplankton biomass in the center of the
Fe-enriched patch had increased considerably, as was evi-
dent by a more than fourfold rise in Chl a concentration.

The development of the algal bloom was strongly influ-
enced by physical processes. Wind speeds during the first
and second weeks of our experiment were distinctly lower
than the seasonal average values in this region (Dentler
2001). As a consequence, z,, seldom exceeded 40 m. A
storm on days 13 and 14 resulted in complete mixing of the
upper 80 m of the water column. With alternate periods of
medium and strong wind (Dentler 2001), the mixing con-
ditions during the third week of the experiment were typical
for the ACC (Mitchell et al. 1991). Because of horizontal
dispersion, the patch of elevated Chl a concentration had
enlarged to an area of about 500 km? on day 17/18 of the
experiment (Riebesell unpubl. data). Despite the heavy
storms encountered, the very center of the patch probably
was only dlightly diluted by horizontal dispersion as was
indicated by steadily increasing values of F,/F, at the in-
stations. Very likely, changes in the extent of vertical mixing
were the dominant physical factor influencing the develop-
ment of the phytoplankton in the center of the patch.

The EisenEXx in situ experiment was comparable to a nat-
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Fig. 5. (A, B) Assimilation rate inside and outside of the Fe-
enriched patch during the experiment. (A) ADP was normalized to
Chl a,,,. (B) ADP was normalized to Chl a,,,. (C) ADP versus Chl
&, Theline and parametersin panel B result from linear regression
analysis of the in-station results (excluding the two data points from
days 19 and 21 marked with “1"). The data in panel C marked
with “2"" were measured on days with very low globa radiation
(days 9 + 10); the data point marked with *“3” represents the out-
station measurement on day 21.

ural iron fertilization event investigated in the Polar Frontal
region in the austral spring of 1992 (Smetacek et a. 1997).
The exceptionally high iron concentrations encountered in
the Polar Frontal Zone (de Baar et al. 1995) are suggested
to be due to the iron release from abundant icebergs present
in the area in spring 1992 (Smetacek et al. in press). Under
conditions of shallow mixed layers, distinct phytoplankton

blooms with maximum primary productivity between 1,000
and 3,000 mg C m=2 d-* (Jochem et al. 1995) were present
in the iron-enriched waters.

Photochemical efficiency—Our results show that, similar
to FRR fluorometry (Falkowski and Kolber 1995; Kolber et
al. 1998), Xe-PAM fluorometry (Schreiber et al. 1993) is
sufficiently sensitive to characterize phytoplankton photo-
chemistry in oligotrophic ocean regions. During EisenEx,
both techniques revealed the iron-stimulated increase in F,/
F.. The underestimation of F,/F, by the Xe-PAM fluorom-
eter requires further investigation.

F,/F,, responded to the iron addition with a slight but dis-
tinct increase within a day. This is because the Fe-dependent
synthesis of key components of photosystem 1l is very rapid
(Falkowski and Kolber 1995). Such a fast increase was ob-
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rameters of the microphytoplankton are missing on the first three
sampling days because they could be reliably normalized only when
the Chl a concentration of this size fraction was >0.08 ug L.

served in al prior Fe enrichment experiments and has been
interpreted as unequivocal evidence for a physiological stim-
ulation of the phytoplankton by Fe addition (Kolber et al.
1994; Behrenfeld et al. 1996; Boyd and Abraham 2001).
The quantitative assessment of the extent of nutrient lim-
itation requires the accurate knowledge of reference param-
eters for nutrient-replete phytoplankton communities in the
area. The values of F,/F,, for nutrient-replete phytoplankton
in the area of EisenEx were precisely determined in the ship-
board nutrient enrichment incubation experiments (not
shown) and were 0.57 = 0.01 for the single turnover FRR
protocol and 0.68 + 0.02 for the multiple turnover protocol
(analogous to PAM). The values of F,/F,, measured in the
iron-fertilized patch during the last week of EisenEx were
only ~5% lower than these reference numbers, clearly sug-
gesting that the iron infusions have fully eliminated the iron
stress and that iron was the major limiting nutrient in the
area. A suboptimal iron supply cannot be excluded, however,
because under deteriorating iron conditions, different com-
pensatory mechanisms are applied before F,/F,, will even-
tually be reduced (McKay et a. 1997; Boyd et al. 2000).
Maldonado et al. (2001) reveded a set of physiological ad-
aptations that alow phytoplankton in Southern Ocean HNLC
waters to adapt to shifts in iron speciation, explaining the
long-lasting maintenance of iron-induced blooms.

efficiency of photosystem Il (F,/F.)) measured by the Xe-PAM fluo-
rometer at the stations inside, outside, and at the edge of the Fe-
enriched patch. The graph shows the mean = 1 SD of five samples
taken between 20 and 60 m depth. (B) Dynamics of F,/F,, recorded
by the FRR fluorometer in near-surface phytoplankton inside and
outside the patch. The arrows at the bottom of panel B mark the
times of the three iron infusions.

P versus E parameters—During IronEx I, phytoplankton
inside the Fe-enriched patch showed an increase in P* and
o* (Kolber et a. 1994). P* in Fe-replete cultures of Phaeo-
dactylum tricornutum doubled in comparison with Fe-defi-
cient cultures, whereas o* was dlightly lower (Greene et al.
1991). During EisenEx, we observed no genera inside/out-
side difference in P%, whereas o* was dlightly higher inside
the Fe-enriched patch. These deviating trends might be due
to the different phytoplankton species involved. In general,
the results indicate an iron-induced rise in photosynthetic
performance that is in accordance with the observed increase
in photochemical efficiency.

The values of P, «*, and E, measured in the present
study are well within the wide range found in Southern
Ocean phytoplankton (Sakshaug and Slagstad 1990; Bracher
et al. 1999). Because the stations were made at different
times of the day, part of the variability observed might be
due to diel cycles in photosynthetic parameters (Prézelin
1992). The low values of P at the end of the observation
period might have been a response to the large changes in
Z,, because phytoplankton communities have been shown to
exhibit reduced P* in a physically variable environment
(Harris et a. 1980). The decreasing percentage of picophy-
toplankton biomass, which was characterized by arelatively
high P%, could aso have contributed to a decreasing bulk
phytoplankton P%.

The obvious differences in P% and o* between pico-,
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nano-, and microphytoplankton (Fig. 7) can be attributed to
differences in alga cellular size and surface/volume ratio,
respectively. The effectiveness of a pigment molecule in ab-
sorbing photons is generally larger for smaller cells because
of the reduced package effect (Raven 1999). This leads to a
larger o* in picophytoplankton because this parameter is a
measure of the efficiency of light use (Joint and Pomroy
1986; Geider and Osborne 1992). Higher P% in picophyto-
plankton cells might have been a consequence of their su-
perior performance in terms of resource acquisition and use
(Raven 1999). P* and o* should decrease with increasing
cell size as long as the concentration of pigment in the cell
is independent of cell size. Accordingly, P% and o* were
distinctly lower in nanophytoplankton than in picophyto-
plankton. The P versus E parameters of the largest size
class—the microphytoplankton—were, however, intermedi-
ate. This might be explained by the observation that species
of the pennate diatom genus Pseudo-nitzschia, characterized
by a rather favorable surface/volume ratio, were codominat-
ing the microphytoplankton inside the patch (Assmy and
Henjes unpubl. data).

Chl a and primary productivity in the surrounding HNLC
waters—Outside the patch, typical HNLC conditions pre-
vailed. Mgjor nutrients were always abundant, but the mean
Chl a concentration was constrained between 0.48 and 0.56
mg m-2 in the upper 100 m. In the Atlantic sector of the
Southern Ocean, primary productivity in the range of 130—
220 mg C m~2 d1, as observed during our study, has aso
been measured by Jochem et al. (1995) in the ACC in Oc-
tober/November 1992 and by Bracher et al. (1999) between
the southern Polar Front and the northern ACC in December/
January 1995/1996. Froneman et al. (2001) reported an ADP
between 60 and 266 mg C m~2 d-* south of and within the
Antarctic Polar Front (Atlantic sector) in January/February
1993. Parallel to the investigations of Jochem et al. (1995),
Detmer and Bathmann (1997) observed that pico- and nan-
ophytoplankton contributed more than 70—80% to total Chl
a when Chl a concentration was <0.6 mg m~3. The same
was obviously true during EisenEx. An HNLC region in the
western Pacific sector of the Southern Ocean is aso domi-
nated by pico- and nanophytoplankton and exhibits the same
range of ADP as that observed in the present study (Chiba
et a. 2000; Strutton et al. 2000). The results of our obser-
vations qualify the out-stations as appropriate reference sites
for the in situ Fe-enrichment experiment.

Chl a and primary productivity during the induced
bloom—Nelson and Smith (1991) predicted from critical
depth—mixing depth relationships that a maximum Chl a
concentration of only ~1 mg m~3 can be realized in South-
ern Ocean surface waters even if all (macro- and micro-)
nutrients are sufficient. Observations and modeling of the
Antarctic phytoplankton crop in relation to mixed layer
depth led Mitchell et al. (1991) to the conclusion that a sub-
stantial increase in phytoplankton biomass is only possible
when z,,, < 40-50 m. These hypothesis could not be tested
by SOIREE because the mixing depth declined from an ini-
tial 65 m to 20—40 m in the course of that experiment (Boyd
et al. 2000). The present study revealed, however, that iron
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fertilization is able to produce higher Chl a levels (mixed
layer mean 2.6 mg m-2) even if z,, > 80 m. This was
mainly because of the favorable incident PAR (mean 3E, =
34.2 = 13.7 mol photons m~2 d-*). Severe light limitation
due to heavy cloud cover played a role only on a few days
throughout the whole period of observation.

Nevertheless, the increase in z,,, observed in the course
of the present study did influence the underwater light cli-
mate and the photosynthetic performance of phytoplankton.
Inside the patch, the substantial reduction of the euphotic
depth due to the increased algal biomass and the increase in
Z,n during the third week of the experiment reduced the
distance between the critical depth and z,,, to about 30 m at
favorable global radiation conditions. The varying wind con-
ditions in the third week of our observations very likely
induced frequent short-term changes in z,,. This had the
consequence that periods when a considerable portion of the
phytoplankton was trapped below the euphotic zone alter-
nated with periods when phytoplankton was exposed to high
ratios of mixed layer depth to euphotic depth. This physi-
cally variable environment was probably the most important
factor responsible for the observed reduction in P, (Fig.
6A; cf. Harris et al. 1980) and for the distinct decrease in
the assimilation rate (Fig. 5B) outside and especially inside
the Fe-fertilized patch. Notwithstanding, receiving a daily
mean E, of 66 wmol photons m-2 st inside the patch, the
Fe-induced phytoplankton bloom was still growing on day
21 when the ship was scheduled to leave the experimental
area.

In the course of SOIREE, primary productivity showed a
stronger increase (from ~100 to ~1,400 mg C m~2 d-* with-
in 13 d; Gall et al. 2001b) compared to the present study
(from ~200 to ~700 mg C m~2 d-* within 13 d) despite
lower Chl a concentrations. The assimilation rates therefore
were clearly higher during SOIREE (Gall et al. 2001b). The
assimilation rates measured during SOIREE and EisenEx
were, however, within the wide range observed in the South-
ern Ocean (Jochem et al. 1995), and future studies should
address the question of whether the observed differences
were due to differences in phytoplankton species composi-
tion or different degrees of iron limitation.

Following an increase in F,/F,, on day 1 and an increase
in primary productivity on day 2, Chl a in pico-, nano-, and
microphytoplankton started to rise 4 d after the EisenEx iron
infusion. Whereas picophytoplankton showed no further
buildup in biomass (in terms of Chl a), nano- and micro-
phytoplankton biomass increased continuously at almost
equal rates until day 16. In the following days, microphy-
toplankton showed the strongest increase, subsequently
catching up with nanophytoplankton. This change in phy-
toplankton community structure agrees well with the ex-
pected response to the relaxation of iron limitation. Com-
parable trends have been observed in all Fe-related in situ
observations, shipboard mesocosm experiments, and in situ
experiments (Cavender-Bares et a. 1999; de Baar and Boyd
2000; Chiba et al. 2000; Gall et a. 2001a). These trends are
in accordance with the **ecumenical’ iron hypothesis (Cul-
len 1995), which assumes the control of picoplankton by
fast-growing microzooplankton and iron-stimulated growth
of larger phytoplankton that is unchecked by slowly growing
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mesozooplankton. The observations made during IronEx |1
and SOIREE, however, reveded that the underlying food
web interactions are much more complicated (Landry et al.
2000; Rollwagen Bollens and Landry 2000; Hall and Sefi
2001). Moreover, it is important to recognize that the re-
sponse in phytoplankton structure and productivity observed
in the beginning of an iron-induced bloom might only be
transient and that the response to prolonged iron supply re-
mains to be elucidated.
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