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Surface seiches in lakes of complex geometry

Fig. 1. Geographic setting and map of Clear Lake, Northern
California. Contours shown in the bathymetric map are every 2 m.
Also shown in the upper right corner are the location of measure-
ment stations in the Oaks arm of Clear Lake during the field ex-
periments of 1997 and 1999. Stations measuring pressure are iden-
tified with the letter P; those sampling water currents are identified
with a V.

Abstract—In lakes of small to medium size, the character-
istic frequencies of free oscillations of the water surface
(seiches) depend only on the basin geometry. In irregularly
shaped basins, such as dendritic reservoirs and multibasin
lakes, these characteristic frequencies are not easily deter-
mined with simple formulas. Clear Lake, a multibasin lake in
Northern California, is presented here as a case in point. The
signature of the seiches in Clear Lake were only revealed after
solving the eigenvalue problem governing the structure and
frequency of seiches derived from the linear and frictionless
depth-averaged shallow water equations in a nonrotating
frame.

Many systems in nature have a built-in restoring force for
re-establishing an equilibrium position following a pertur-
bation. If the system possesses sufficient inertia, it will over-
shoot its equilibrium position and display free oscillations
until friction damps out all motion. The free oscillations are
characteristic of the system and are independent of the ex-
citing force, except for the initial magnitude. A seiche is
such an oscillation of the free surface in bodies of fluid en-
closed wholly or partially by boundaries (Wilson 1972). The
restoring force is provided by gravity, which returns the fluid
surface to its horizontal equilibrium position after it is dis-
placed by wind or pressure variations.

Seiches form by reflection of long progressive surface
gravity waves by the boundaries. The free surface oscillates
up and down with frequency v, with the velocity being 908
out of phase. The amplitude of the oscillations varies in
space but is fixed in time: lines of zero surface displace-
ment are called nodes, whereas lines of maximum ampli-
tude are called antinodes. Only certain discrete values of
wavelengths and frequencies occur (see p. 208 in Kundu
1990), which, in the case of lakes of small to medium size
where rotational effects are negligible, are strictly deter-
mined by the geometry of the containing basin. In the sim-
plest case of a rectangular basin of length L and uniform
depth H, the allowable wavelengths l and periods T (52p/
v) of the seiches are

2L
l 5 N 5 1, 2, . . . (1)

N

2L
T 5 N 5 1, 2, . . . (2)
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Here, g is the acceleration of gravity and N indicates the
number of nodes. For the largest wavelength seiche (l 5
2L), Eq. 2, known as Merian’s formula, describes the fun-
damental or first mode of oscillation. The oscillations would
be binodal if l 5 L, and trinodal if l 5 2L/3. Many of these
higher modes of oscillation coexist with the fundamental
mode in lakes.

Merian’s formula can be used to estimate the periods of
the dominant seiches in lakes of irregular depth and, if the

geometry of the basin is relatively simple, using the mean
depth and the length along the prevailing wind direction as
characteristic scales. Unfortunately, its applicability to lakes
and reservoirs with multiple basins or complex shape is very
limited because a unique length scale is not easily defined.
Furthermore, that simplified model does not provide a real-
istic description of the spatial structure of the seiches, which
can have a strong influence on the erosion and transport of
suspended sediments (Mei et al. 1997).

Clear Lake, in the Central Coastal Range of Northern Cal-
ifornia, is an example of a lake where Eq. 2 fails because
of the complexity of the basin (Fig. 1). There are three dis-
tinct subbasins or arms: the Upper arm, the Lower arm, and
the Oaks arm. At the east end of the Upper arm, a narrow
passage (the Narrows) connects with the two other arms,
which are considerably narrower and deeper. A summary of
the lake’s physical parameters is provided in Table 1. Wind
is the main forcing mechanism of lake motions and has a
very characteristic diurnal periodicity. On a typical winter
day, the wind is from the northwest at 1–4 m s21, shifting
to the east at 1–2 m s21 in the afternoon. On a typical sum-
mer day, the winds are primarily from the northwest, mini-
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Table 1. Clear Lake physical parameters.

Basin
Area
(ha)

Depth (m)

Mean Maximum
Shoreline

(km)

Fetch

Length (km) Axis
Width
(km)

Volume
(3106 m3)

Upper arm
Lower arm
Oaks arm
Overall

12,700
3,270
1,250

17,760

7.1
10.3
11.1

8.1

12.2
18.4
18.4
18.4

56
39
19

114

16.4
13.4

8.5
—

SE–NW
SE–NW

E–W
—

12.2
4.3
2.6
—

904
384
138

1,426

Fig. 2. Total energy in the power spectrum density of velocity
at the Narrows. Velocity observations were gathered between 2
and 3 m below the surface at station V1 (Fig. 1) during 4 d in
1997.

Fig. 3. Time series of wind speed (top) and band-pass–filtered
velocity profiles at the Narrows in Clear Lake (bottom) during 4 d
in August 1997. The magnitude of the filtered velocity component
is normalized and is represented by the gray scale.

mal between midnight and dawn, and reach a maximum of
6 m s21 at about dusk. A more complete description of the
lake is available in Rueda (2001).

The problem of identifying the characteristic frequency of
the modes of oscillations and their spatial structure was ini-
tially motivated by the need to interpret velocity observa-
tions gathered with an Acoustic Doppler Current Profiler in
1995 and 1997 in Clear Lake (Lynch 1996; Rueda 2001).
Spectral analysis revealed a strong peak at about 3 h (0.3–
0.4 cycles per hour (cph)) (Fig. 2). Under nonstratified con-
ditions in November 1995, the magnitudes of the 3-h veloc-
ity oscillations were of the same order as the mean currents
at the Narrows (approximately equal to 5 cm s21, Lynch
1996). The bottom boundary layer associated with such an
oscillatory motion can potentially provide a significant mix-
ing mechanism. The thickness (d) of the oscillatory bottom
boundary layer close to the Narrows estimated from the ob-
served amplitude and the period of the oscillations (see p.
186 in Fischer et al. 1979) is approximately 0.5–1 m, which
is a significant fraction (10%) of the water depth. A careful
analysis of the 3-h band-pass–filtered signal in the velocity
records of 1997 showed that it was in phase for all depths

(Fig. 3), revealing its barotropic nature. The estimated damp-
ing time for these oscillations is approximately 24–48 h (see
p. 186 in Fischer et al. 1979), and this suggests that seiches
are effective mechanisms for extending the effects of the
wind forcing in time.

None of the fundamental seiches for each of the arms,
estimated with Merian’s formula and their mean geometric
characteristics, was near the 3-h periodicity observed in the
data. Given that in most lakes and reservoirs water moves
slower than gravity waves, the seiche signal (surface gravity
waves) will be able to travel freely through the Narrows.
Using Merian’s formula to estimate the period of the first
mode based on the combined length of the Upper and Lower
Arms (18 km, which is the surface area of each divided by
their mean width) and their overall mean depth (8.4 m),
gives a period of 1.1 h, far from that observed. Clearly, a
more sophisticated method is required. One such method,
incorporating the effects of arbitrary shape and bathymetric
variations and the Earth’s rotation (Coriolis effects), was pro-
posed by Rao and Schwab 1976 (see also Hamblin 1982)
and applied successfully to Lakes Ontario and Superior. Al-
though that method is the most general, the problem can be
considerably simplified in basins of small to medium size,
such as Clear Lake, where the effects of the Earth’s rotation
can be neglected (Wilson 1972). For Clear Lake, located at
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408N and with a mean depth of 8 m, the Rossby radius of
deformation (which defines a characteristic length scale for
rotational effects) is approximately 100 km, much larger
than its size. If one restricts the search to oscillations of
small amplitude and neglects friction, it can be shown (Wil-
son 1972) that the spatial structure and periodicity of seiches
in lakes of arbitrary geometry is governed by the following
mathematical problem.

2] ]z ] ]z v
H 1 H 1 z 5 0 (3)1 2 1 2 1 2]x ]x ]y ]y g

Here, H is the spatially varying basin depth, z represents the
free surface displacement from an equilibrium position, and
x and y are the coordinate directions in the horizontal plane.
This equation is subject to the boundary condition

]z/]n 5 0 (4)

where n denotes the normal direction and states that there
can be no flow across the boundary surrounding the basin.

The differential eigenvalue problem in Eqs. 3 and 4 was
discretized using the Galerkin weighted residual formulation
of the finite element method (FEM; Fletcher 1991). This
approach allows for (1) a more accurate representation of
complex domains with fewer computational nodes than with
finite difference methods and (2) a natural and straightfor-
ward implementation of the boundary conditions in Eq. 4.
In the FEM the computational domain (V) is represented as
a collection of simple domains called elements. Over each
element, an approximate solution to the problem is con-
structed in the form

n

ẑ(x, y, t) 5 z (t)N (x, y) (5)O j j
j51

where Nj(x, y) are basis functions and zj(t) are the approxi-
mate values of variable z at n points called nodes. The basis
functions are linear, and the elements are triangles, with the
computational nodes located at the vertices. The elements
are defined using isoparametric approximations; that is, the
basis or interpolation functions are used to map an irregular
element in the physical domain into a ‘‘master’’ element of
fixed and regular shape (Reddy 1993). When substituted, the
approximate solution Eq. 5 for z in Eq. 3 it will give a
residual of the following form.

2] ]ẑ ] ]ẑ v
R(x, y) 5 H 1 H 1 ẑ (6)1 2 1 2 1 2]x ]x ]y ]y g

The residual in the Galerkin method is made orthogonal to
all the interpolation functions Ni(x, y).

2] ]ẑ ] ]ẑ v
H 1 H 1 ẑ N (x, y) dx dy 5 0E i1 2 1 2 1 2[ ]]x ]x ]y ]y g

V

i 5 1, . . . , M (7)

M represents the number of nodes in the computational do-

main. Integrating by parts, the above expression can be sim-
plified to the following form.

R(x, y)N (x, y) dx dyE i

V

2]ẑ ]N ]ẑ ]N vi i5 2H 1 1 ẑN dx dyE i1 2[ ]]x ]x ]y ]y g
V

]ẑ ]ẑ
1 H n 1 n N ds 5 0E x y i[ ]]x ]y

dV

i 5 1, . . . , M (8)

Here, dV is the boundary of the domain where normal flux
boundary conditions are specified, s is a generalized variable
representing distance along the boundary in a counterclock-
wise sense, and nx and ny are the components of a unit vector
outwardly normal to dV. For enclosed basins, the boundary
condition that has to be satisfied along the whole boundary
of the solution domain is zero normal flux; hence, the second
integral term is identically zero.

As a result of discretizing Eqs. 3 and 4 with a finite ele-
ment mesh of M nodes, an algebraic eigenvalue problem of
the form

Av 5 BvD (9)

is produced. Here A is referred to as the stiffness matrix and
B is the mass matrix. Their elements obey the expressions

]N ]N]N ]Nj ji iA 5 2 H 1 dx dyij E [ ]]x ]x ]y ]y
V

B 5 2 H[N N ] dx dy (10)ij E i j

dV

Such an algebraic problem is only satisfied for M values of
v2 /g (the eigenvalues) and M vectors v (eigenvectors). D
in Eq. 9 is a diagonal matrix with the eigenvalues along its
main diagonal. They determine the characteristic periods
for the different modes of barotropic oscillations in the en-
closed basin. The components of the eigenvectors represent
the unknown amplitudes of the water surface elevation dis-
placements at the nodes of the finite element grid (z j). A
MATLAB routine and an example application are presented
in Web Appendix 1 (http://www.aslo.org/lo/toc/volp47/
issuep3/0906a1.pdf). Once the spatial structure of the water
surface oscillations is determined by solving Eqs. 3 and 4,
the linear frictionless depth-averaged shallow water equa-
tions (Lamb 1945) can be used to give the structure of the
oscillation in the velocity field. In general, the nodes in the
water surface oscillations correspond to the antinodes of
the velocity.

A total of 418 computational nodes were employed to
define the geometry of the Clear Lake basin. The frequencies
of the first six modes are defined in Table 2. The spatial
structure of the first and fifth modes is plotted along with
the finite element mesh in Fig. 4. The inverse gray intensity

http://aslo.org/lo/toc/vol_47/issue_3/0906a1.html
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Table 2. Period of the first modes of barotropic oscillations in
Clear Lake, given by the finite element code described in this ap-
pendix.

Mode Period (h)

I
II
III
IV
V
VI

2.49
1.09
0.84
0.78
0.61
0.52

Fig. 4. Spatial distribution of the amplitude of the first modes
of oscillations of the free surface, as calculated by the finite element
model. (a) Fundamental seiche; (b) sixth barotropic mode.

represents, in logarithmic scale, the normalized amplitude of
the free surface oscillations (normalized against the maxi-
mum calculated amplitude). Primary interest is in the rela-
tive magnitude of the oscillations. The dark areas denote
areas where the water surface is subject to low- or even zero-
amplitude oscillations and depict the nodes of the seiches.
The clear areas define areas of pronounced free surface os-
cillations or antinodes. It is clear from these figures that the
results are far more complex than would be predicted from
application of Merian’s formula. Of particular note is the
rapid variation in elevation in the vicinity of the Narrows,
as seen for example in the mode I result. This is mainly the
result of the abrupt change in lake geometry in that region,
and it marks a region of significant velocity oscillations. It
is in this area that the signature of the first mode seiche in
the velocity signal is the strongest and even becomes the
dominant feature in the hydrodynamic observations (Lynch
1996).

Four autonomously recording 9311 pressure loggers
from Oregon Environmental Instruments were deployed in
the Oaks Arm during 2 weeks in May 1999 to provide
direct measurements of the oscillations of the free surface.
The locations of the instruments are shown in Fig. 1, and
they are denoted as P1–P4. The Alpha-Omega pressure
sensors have an accuracy of 70 Pa and a resolution of 7
Pa in a range of water depths from 0 to 15 m, sampled at
1/60 Hz (i.e., 1 min between consecutive records). Unlike
temperature or velocity sensors, which record changes due
to a range of hydrodynamic processes, pressure sensors
respond primarily to the changes in the surface elevation
caused by surface seiches. Figure 5 shows the power spec-
trum density of the water surface elevation records col-
lected at the four stations (P1–P4). The vertical bars at the
top of the figures are the frequencies of the seiches cal-
culated with the model and agree with the peaks in the
spectra. In all of the pressure records there exist two peaks
at periods of 24 and about 2.5–3 h. The 24-h peak is due
to the diurnal wind events, mostly from the northwest,
which push water downwind, causing the surface to rise
at the eastern end of the Oaks arm. This peak is therefore
especially strong at the downwind end of the lake (station
P3). The 3-h peak corresponds to the first barotropic mode
or fundamental seiche. Figure 4a shows that a node for
water surface oscillations is located in the vicinity of the
Narrows, and accordingly, the power of the 3-h peak at
station P4 (Fig. 5) is the lowest of the four stations. Other
peaks can be similarly identified in the spectrum, which

correspond to higher modes of oscillations. The surface
mode of oscillation at the 0.52-h period (Fig. 4b) provides
an excellent example of the spatial variation of the mag-
nitude of the oscillations captured by an array of pressure
sensors. A node of this mode is located across the Oaks
Arm at its center, close to stations P1 and P2, and accord-
ingly, the peak at 2 cph does not appear in the spectra of
the water surface elevations at stations P1 and P2, al-
though it is quite conspicuous in the spectra from stations
P3 and P4.

This work illustrates the difficulties encountered when try-
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Fig. 5. Power spectrum of the free surface elevation signal at stations P1, P2, P3, and P4. The
location of these stations is shown in Fig. 1.

ing to identify the signature of free oscillations of the water
surface in lakes and reservoirs of complex geometry. Oc-
casionally the purpose of making such an analysis is to re-
move unwanted frequencies to identify an underlying signal
of interest from a time series. The results can also be used
to select instrument locations in order to minimize or max-
imize the contribution of the seiche signal.
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