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ABSTRACT: 
 
Advances in real-time data collection, data storage and computational systems have led to development of algorithms for transport 
administrators and engineers that improve traffic safety and reduce cost of road operations. Despite these advances, problems in 
effectively integrating real-time data acquisition, processing, modelling and road-use strategies at complex intersections and 
motorways remain. These are related to increasing system performance in identification, analysis, detection and prediction of traffic 
state in real time. This research develops dynamic models to estimate the probability of road incidents, such as crashes and conflicts, 
and incident-prone conditions based on real-time data.  The models support integration of anticipatory information and fee-based 
road use strategies in traveller information and management. Development includes macroscopic/microscopic probabilistic models, 
neural networks, and vector autoregressions tested via machine vision at EU and US sites.1 
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1. INTRODUCTION 

Transportation and traffic safety has been identified by 
academics, local authorities and professionals as a critical 
problem in urban and regional environments.  Substantial work 
has focused in prediction, detection and response to road 
incidents.  However, a generic problem lies in the rarity of these 
events.  Sensors need to monitor large networks around the 
clock to collect and manage data to be filtered for reduction to 
potentially useful data sets.  Addressing this need, researchers 
have defined a modelling framework in which crashes and 
conflicts appear as subsets of a population of events.  They then 
derive relationships between the two subsets, focusing on 
identifying conditions where data on non-crash events carry 
information about crashes (Davis, 2003). 
 
Our dynamic models estimate the probability of occurrence of 
road incidents, such as crashes and conflicts, and incident-prone 
traffic conditions based on real time data.  The models estimate 
the effect of an additional driver entering the road, on the 
probability that (a) a capacity-reducing incident or (b) incident-
prone traffic conditions will occur.  Estimation is based on road 
geometrics, and dynamic environmental and traffic 
characteristics.  The models are based on results from our 
research at the EU, NSF, and USDOT, and detailed dynamic 
data available from EU and US localities.  
 
 

2. BACKGROUND 

Advances in real-time data collection systems, data storage, and 
computational systems have led to algorithms and integrated 
systems that can be applied in transportation administration and 
traffic engineering to improve traffic safety and reduce internal 
and external cost of transport and traffic operations (Maibach et 
al, 2008; McDonald and Stephanedes, 2002). Certain problems 

in the effective integration of real-time data acquisition, data 
processing, dynamic modelling, and road use strategies still 
remain.  These are related to increasing system performance in 
the identification, analysis, detection and prediction of the 
traffic state in real time (Abdel-Aty and Keller, 2005; 
Stephanedes, 2004; Banks, 2003). 
 
This research develops dynamic models, including macroscopic 
and microscopic probabilistic models, neural networks, and 
vector autoregressive patterns tested by simulation and real 
data.  It supports methods for integrating anticipatory real-time, 
information and fee-based road use strategies in traveler 
information and management (Stephanedes et al, 2009).  Our 
macroscopic models are classical high-order models based on 
continuum mechanics and finite element analysis.  Microscopic 
models are based on theories of driver behaviour, human factors 
and cellular automata and take advantage of the evolution in 
computational mechanisms that make the high computational 
effort in microscopic models achievable. 
 
A substantial portion of the data, especially in microscopic 
models, is from video recordings. These include raw data 
collected through surveillance and sensor networks, on specific 
parts of urban roads and motorways, where unusual traffic 
conditions are likely to occur.  Programmes are developed to 
filter the raw data through machine vision, and protect and 
deliver the enhanced data to our models.  During this process a 
number of problems have been identified.  Our models are 
further assisted by data mining processes that support the search 
for appropriate data patterns prior to application of pattern 
recognition, vector autoregression or neural networks. 
Additional data sets are acquired and filtered for evaluating 
results through machine vision. 
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3. DATA ENVIRONMENT 

Using machine-vision hardware we collect data on several 
aspects of traffic flow, including traffic state, vehicle speed, 
vehicle length, average flow rate, traffic volume, arithmetic 
mean speed, vehicle class, vehicle count per class, average time 
headway, average time occupancy, level of service, space mean 
speed, space occupancy, density, stopped vehicle alarm. 
For a typical motorway section we examine 3-4 lanes for each 
camera. We place 4 detectors on each lane, two at the beginning 
and two at the end of the camera frame, detecting presence and 
speed.  
 
3.1 Data Collection 

This section of Data Management contains several difficulties 
deriving from the individual needs of each type of surveillance 
network; these vary between microscopic and macroscopic 
models. In macroscopic analysis a common type of processing 
is through machine vision software.  Once a road scene is 
defined, multiple cameras are installed such that the total input 
from their images fulfils detection requirements, and 
appropriate windows are placed on the road scene such that 
image artefacts and resulting errors are minimized. Effects from 
artefacts include, e.g., effects from shadows, sun glare, angle of 
vehicle movement, distance between vehicles, and unusual 
vehicle size.  Any of the effects can substantially increase 
identification error. 
 
Addressing this problem, the visual input to machine-vision 
based systems is transformed, so that higher-level image 
analysis is facilitated, leading to increased efficiency and cost-
effectiveness. Two transformations and methods have been 
developed, homography-based transformation and panoramic 
image reprojection (Tzamali et al, 2006; Zelnik-Manor and 
Irani, 2002; Lourakis et al, 2002).  Supported by these methods, 
the data are collected, processed, filtered and stored for 
algorithm execution in real-time. 
 
Microscopic analysis requires higher data detail in focusing on 
the interactions between vehicles in a platoon (Davis and 
Swenson, 2006; Chandler et al, 2005; Davis, 2003). High 
resolution of video capture is very important to get quality 
results, and selection of location for camera placement involves 
many trial receptions before installing the permanent network. 
Trial receptions could be extracted with portable trailers on 
locations of potential interest. Considering the high cost of a 
permanent surveillance network, there is a need for low-error, 
high-performance design of deterministic or stochastic data 
networks. Portable trailers play an important role in the design 
process, offering a cost-efficient solution to data network 
location design. In addition the trailers can be used for 
recording periodic phenomena if there is no need for installing a 
permanent surveillance network. Alternative data collection 
methods such as GPS and floating car applications, despite 
measurement error, promise to provide increased efficiency in 
data management.  
 
3.2 Data Filtering 

We use signal filtering to eliminate unwanted frequencies from 
the received traffic signal. While the correct filter settings can 
significantly improve signal quality, incorrect settings can 
severely distort the signal. In what follows, traffic signal filters 
we commonly use are briefly described. 

3.2.1 Exponential Filtering: The exponential filter 
(equation 1) is the simplest linear recursive filter: 
 
 
 ( ) ( ) ( ) ( )tx*α+1-ty*a-1=ty     (1)  

 

where  y(t) is the output of the filter at time t,  
 y(t-1) is the output of the filter at time (t-1),  

x(t) is the input of the filter,  
a is the filter parameter (0≤ a≤1). 

 
3.2.2   Moving Window Filtering: The moving window 
(average) filter is most common in traffic signal processing. In 
spite of its simplicity, this filter is excellent for reducing random 
noise while retaining a sharp step response. Nevertheless, it is 
not capable of processing frequency domain encoded signals, 
because of its reduced ability to separate bands of frequencies. 
Relatives of the moving average filter include Gaussian, 
Blackman and multiple pass moving average. The moving 
average filter operates by averaging data from the input signal 
to produce output signal and, consequently, introduces an 
intrinsic time delay in the detection/prediction process. The 
filter is presented in equation 2: 
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where  x is the input signal,  
          y is the output signal,  
         M is the number of points in computing the average. 
 
3.2.2 High Pass/ Band Pass/ Low Pass Filters: The High 
Pass filter allows high frequencies to pass, and filters out the 
low frequencies thus filtering out changes in the signal that 
occur over a significant period of time. The Band Pass filter 
only allows the desired band of frequencies to pass, and filters 
out all others. The Low Pass filter allows low frequencies to 
pass and filters out the high frequencies, i.e., all portions of the 
signal that change rapidly, such as electronic noise.  A filter 
commonly used in traffic signal analysis is the low pass 
Butterworth filter. This filter was implemented on the datasets 
including vehicle trajectories from a short section of I-680 
freeway in California (Hourdos, 2005). Equations 3-5 describe 
the relationship between input and output in this example. 
 
 

( ) ( ) ( ) ( )kv in1210.01-kx3474.01-k0.4320x=kx 211 +− (3) 

( ) ( ) ( ) ( )kv in0294.01-kx9157.01-k0.3474x=kx 212 +− (4) 

( ) ( ) ( ) ( )kv in0421.0kx7482.2k0.4984x=kv 21out +−   (5) 

 
 
where  x1, x2 are the filter state variables,  
 vin  is the input speed signal,   
 vout is the output filtered speed 
 
3.3 Data Processing 

In the data pre-processing stage, prefiltering supports defining 
the parts of datasets that are worth storing, an important 
consideration since video data require substantial space. Even in 
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microscopic analysis, this pre-processing step uses macroscopic 
variables to define useful data. Macroscopic traffic variables are 
often extracted through machine vision.  A strategy for filtering 
video data is through use of the Fundamental Traffic Diagram 
(FTD). Most accidents in our data sets occur just prior to the 
extremum in the FTD. 
 
The algorithm we propose supports reduction of space 
requirements for data storing. It seeks to achieve such reduction 
through differentiating amongst data by flow state in the FTD. 
Using the state of flow, data are classified into free-flow, 
transition-flow or saturated-flow.  
 
3.4 Data Storage 

Owing to space limitations data storage is a demanding part of 
Data Management. Storing data later found to be of little 
relevance decreases available space and limits the amount of 
relevant data that are stored.  Storage challenges depend on the 
type of analysis. In macroscopic analysis, using machine vision 
software, we collect data from all detectors at time interval of 1 
millisecond. The space required is proportional to the number 
of detectors placed on each camera, and the number of cameras.  
In a simple example that follows, a description of the typical 
space required per second is presented. 
 
After the results deriving from the algorithm are harvested and 
categorized we define the data with storing value. In this 
research the data corresponding to the High Risk part of the 
fundamental diagram were stored. Finally these datasets are 
stored in external hard drives, and each drive is labeled 
according to its content. 
 
 

4. ALGORITHM DEVELOPMENT 

The algorithm proposed in this paper is developed to estimate, 
in real time, future probabilities of incidents, near-incidents and 
incident-prone conditions based on the flow state, while 
maintaining efficient data storage. The basic measurements to 
distinguish the data through machine vision are q (traffic 
volume) and k (traffic density). Each point of the FTD is 
represented on a q-k coordinate system. Most incidents tend to 
occur at the part of the fundamental diagram that describes the 
transition from free flow to saturated flow. In our work the part 
describing that transition will be called “High-Risk” part. 
 
Initially the algorithm goes through a learning process to define 
the bounds of High-Risk in the FTD. Using an incident 
detection process, information regarding actual incidents is 
collected and stored. According to previous work in freeway 
incident detection through filtering (Stephanedes and 
Chassiakos, 1993) the measurements used to determine the 
existence of an incident are smoothed values for occupancy at 
two consequent time periods gathered from two stations. Two 
tests are performed. 
 
The first test, described in expression 6 examines current spatial 
occupancy difference to detect congestion between stations i 
and i+1. The difference is normalized by the difference in 
occupancy between the two stations during the past period to 
reflect changes relative to previous traffic conditions, and 
compared to congestion test threshold, T1. 
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Af ter congestion is detected, the second test, described in 
expression 7 employs the temporal change of the spatial 
occupancy difference to decide whether the congestion is of 
recurrent type or has resulted from an incident. The variable 
used for the incident test is normalized and compared to 
incident test threshold, T2. 
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Every time an incident is detected a pair of values (q, k) is 
stored. When a certain number of incidents are completed the 
minimum and maximum values for traffic volume and density, 
given the incidents, are calculated and the bounds of the High-
Risk partition are determined. 
 
The second part of the algorithm is responsible for separating 
the values gathered through machine vision. A comparison 
between High-Risk bounds and (qi, ki) pair is made at every ith 
second. Depending on the result of this comparison an updated 
partition label is placed on every set of values. This labelling 
process supports the selection of subspaces in which to form 
future patterns.  Depending on pattern recognition objective, we 
modify the emphasis on the types of clustering on which the 
patterns are based.  The label placed on each set of values 
includes the flow state of the N-1 previous values, where N is 
the number of consecutive values that are grouped and stored 
together; N is user-defined.  Inclusion of this historical element 
differentiates amongst data orbits allowing, e.g., transition data 
that migrate from free flow to saturated flow to have different 
meaning from data deriving from free flow only. 
 
At the final part of the algorithm a pre-storing process takes 
part. In this stage values are grouped and stored in sets of N. 
Entropy for each set is calculated and stored together with the 
set. The natural definition of entropy (also referred to as sample 
entropy) in this setting is defined in Equation 8. 
 
 

 ∑ 














−=
3

1

log*
M

C

M

C
H ii    (8) 

 
 
where, i =1 to 3,  
        Ci is the number of times that flow state i is included 
        in N consecutive values  
     M=ΣCi. 
 
Entropy is a measure of the diversity or uncertainty in the data 
stream.  Entropy attains its minimum value of zero when all 
data items are the same, and its maximum value of log M when 
all items are distinct. It is useful to normalize H to compare 
entropy estimates across measurement epochs. For this purpose 
we store standardized entropy, H / log M.  For improving pre-
storing efficiency, data compression and compressed feature 
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extraction is used.  Given the increasing size of traffic data in 
real time, the method supports estimation of predictive patterns 
by efficient pre-selection of the most relevant data.  Such 
methods are, e.g. Karhunen-Loeve (Watanabe, 1967); minimax 
entropy (Christensen, 1981).  With minimax entropy, this is 
achieved in two steps, (a) the conditional outcome global 
entropy defined for the desired events is minimised with respect 
to characteristics of class boundaries such as q and k, and 
updates the relevant FTD class boundaries for which this 
entropy is minimum; (b) entropy maximisation supports 
assignment of value to each event probability by maximising the 
unconditional local entropy of the subset of events while 
minimising bias. 
 
In applying minimax entropy, data storage is a key element for 
two reasons.  First, the maximum entropy probabilities for the 
defined class events approach data frequencies in the limit of 
large sample sizes.  Second, event classification via entropy 
minimisation is relative to the data on past events.  With a large 
number of real-time traffic variables upon which event 
estimation may depend, where the interrelations amongst these 
variables may be insufficiently understood or are too complex, 
the required data storage can be large.  This requirement could 
still be preferable when compared to other alternatives such as 
exhaustive use of sample averages. For example, under Poisson 
statistics, holding uncertainty I in an outcome probability of 
events down to I = (N)-1/2, for all possible range combinations, 
by exhaustive use of sample average estimates, requires sample 
size N = GK I-2 with K the number of independent variables, G 
the number of significant ranges of value for each, and events 
evenly distributed over these ranges; for large G, K, attaining 
the required sample size might not be realistic. 
  
Storage efficiency can be improved through Kalman filtering in 
the learning process. Kalman filtering allows the boundaries of 
High Risk partition of the fundamental diagram to respond to 
changes in entropy. Entropy can be calculated a priori for the 3 
different traffic states, and then be calculated anew when a 
certain number of new pairs of (q,k) are added to each category. 
Implementing the Kalman filter can be activated by two tests, 
described in expressions 9 and 10. 
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where,  xi=Ci/M,  
         ki are the added values to each traffic state,  
            i represents the 3 traffic states in FTD, i.e., 1:Free 
    Flow, 2:High Risk, 3:Saturated Flow. 
 
 

5. APPLICATION 

The proposed algorithm was implemented on processed video 
datasets from two motorway sections, (a) 2.7-km, 3-lane urban 
section of interstate I-94 in Minneapolis, Minnesota (Fig. 1) and 

(b) 5.4-km, 4-lane urban section of national road E-75 in 
Athens, Greece (Fig. 2).   
 
 

 
 

Figure 1. I-94 freeway, Minnesota 
 
The section of I-94 includes 2 entrance ramps and 3 exit ramps.  
It exhibits traffic volume of 80,000 vehicles each way, traffic 
congestion for 5 hours daily and 4.8 crashes/M veh-mile, 
practically one every other day. This site provides a large 
number of rear end collisions and other unusual traffic 
phenomena. Major cause is the geometry, i.e., an exit ramp 
shortly after an entrance ramp, and an unlawful early merging at 
the following entrance ramp.  This geometric-demand 
environment produces severe shockwaves on the right lane. 
 
 

 
 

Figure 2.  E-75 motorway, Athens 
 
The E-75 section includes 3 entrance ramps and 3 exit ramps, 
and exhibits severe congestion during 7 hours daily.  The road 
geometrics include closely spaced exit and entrance ramps, and 
a two-lane reduction at a horizontal curve prior to a high-
demand exit/ entrance ramp combination. This geometric-
demand environment produces several traffic phenomena daily, 
including several shock waves. 
 
We first select detectors and place them at the environment of 
machine vision software so that the raw data can be extracted. 
We implement appropriate filtering, e.g. exponential smoothing 
and moving average, and continue with the learning process so 
that the algorithm can initiate defining the criteria for 
categorizing the data. The extracted datasets are the input of our 
algorithm and we store the part of the output that corresponds to 
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the High Risk partition of the fundamental diagram. Our 
datasets are stored in a storage array of hard drives placed on 
DroboPro hardware, and this allows total storing space of 
approximately 16 terrabytes. Each time a hard drive reaches its 
capacity, it is labeled and stored, and a new, empty drive is 
placed in DroboPro. 
 
Experimental setup is similar at each of the two research sites, I-
94 and E-75 sections.  At each section, we place 4 detectors per 
lane per camera, two at the beginning and two at the end of 
camera frame, detecting vehicle presence and vehicle speed, for 
a total of 12 detectors per frame. At both sites, presence 
detectors are updated every second saving values for all traffic 
variables at the output, and speed detectors are activated at the 
time (millisecond) that a vehicle crosses and activates the 
detection point, for a total update of at least 15 variables every 
second for each detector.  If three characters are saved, for every 
variable derived from presence detectors we store 2 Kb per 
second on average. To this requirement, we add 1 kb deriving 
from speed detectors and 400 bytes for file information and 
information regarding time characteristics, totalling 3.4 kb per 
second for each camera. The network harvests information for 8 
hours per day leading to 100 Mb of storage space required per 
day, per camera. On the 2.7-km I-94 section, 4 cameras are 
operating and this produces the need for 400 Mb storage per 
day. On the 5.4-km E-75 section, with 6 cameras operating the 
need per day is increased to 600 Mb. 
 
In microscopic analysis we focus on the details of the 
interactions amongst interacting vehicles, primarily during a 
shock wave, that end with a near miss or rear end collision. 
Time interval is usually 0.1 second. For each time interval, a 
pair of Cartesian coordinates referring to the trajectory of each 
vehicle in a platoon is saved. Considering that an average near 
miss includes a 240-s trajectory, and a typical platoon may 
consist of 6 vehicles, 4 Mb are needed for each platoon in a 
near miss. With approximately 1-5 platoons involved per near 
miss, 4-20 Mb per near miss are required.  Several (e.g., 10-20) 
near misses are produced daily resulting in a data storage need 
of up to 400 Mb per day. 
 
In addition we consider, especially in microscopic analysis, the 
video data that are bonded with the graphs and trajectories of 
each near miss and need to be stored as well. The calculation for 
microscopic analysis is applicable to off-line analysis of stored 
data, in which the near misses have already been identified.  
Real-time data requirements equivalent to macroscopic analysis 
collection procedures would lead to 2.4 Gb per 8-hr weekday 
for the locations of interest in the 2.7-km I-94 section. Owing to 
increased resolution requirements, installation of additional 
cameras is required leading to increases in storage needs. 
Estimated required storage space for microscopic and 
macroscopic analysis at this site is summarised in Table 1. 
 
______________________________________________ 
Type of Analysis  Daily storage requirements 
__________________________________________________ 
Macroscopic          400 Megabytes 
 
Microscopic         2.4 Gigabytes 
 
Total         2.8 Gigabytes  
__________________________________________________ 

 
Table 1. Storage space requirements at I-94 section 

 

Algorithm performance in detection of incidents and near-
incidents varies with type of pre-processing and filtering.  A 
typical performance curve indicating range of performance for 
filtering parameter ranges in I-94 is presented in Figure 3. From 
the figure, moving averages of larger numbers of vehicles 
improve Detection Rate of a crash for the range of exponential 
smoothing parameter, 30 s before the crash. Dynamic analysis 
of performance measures can support real-time selection and 
updating of values for data filtering but requires additional 
storage. 
 
 

 
 

Figure 3. At 30s before crash, Detection Rate is compared 
across values of moving average of vehicles (base case=5veh) 

 
 

6. SUMMARY 

This research develops dynamic methods for incident 
prediction, including macroscopic and microscopic probabilistic 
models, neural networks, and vector autoregressive patterns that 
are tested by simulation and real data.  The methods support 
integration of anticipatory real-time, information and fee-based 
road-use strategies in traveller information and management 
systems. Raw data are collected through road surveillance 
systems and sensor networks, and filtered through machine 
vision. 
 
An algorithm is developed for estimating, in real time, future 
probabilities of incidents, near-incidents and incident-prone 
conditions based on the flow state, while maintaining efficient 
data storage.  The algorithm is based on traffic volume and 
traffic density, and other variables derived from these. It is 
supported by the fact that most incidents tend to occur at the 
transition of the fundamental diagram from free flow to 
saturated flow, a transition we call High-Risk. A learning 
process defines the bounds of the High-Risk partition using an 
incident detection process, information on actual incidents, and 
two tests against congestion and incident thresholds. An update 
of the High-Risk partition and every set of new data is made at 
every second. 
 
Inclusion of the historical element enriches the data and 
supports differentiation amongst data orbits allowing, e.g., 
transition data that travel from free flow to saturated flow to 
differ from data deriving from free flow only.  However, storage 
requirements of enriched clustered data in the pre-storing 
process increase.  For improving efficiency of the process, data 
compression and preliminary compressed feature extraction are 
used.  Further, the method supports estimation of predictive 
data patterns by efficient pre-selection of the most relevant data 
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using minimax entropy. Storage efficiency can be improved 
through Kalman filtering. 
 

Algorithm performance in the detection of incidents and near-
incidents is tested at two urban motorway sites in I-94, 
Minneapolis, Minnesota; and E-75, Athens, Greece. 
Performance varies with type of pre-processing and filtering.  
For example, at I-94 moving averages of larger numbers of 
vehicles improve Detection Rate of a crash for the range of 
exponential smoothing parameter, 30 s before the crash.  Real-
time data requirements for macroscopic and microscopic 
analysis at the 2.7-km, 3-lane I-94 site lead to 2.4 Gb per 8-hr 
weekday.  Dynamic analysis of performance measures can 
support improved real-time selection and updating of values for 
data filtering but requires additional storage.   
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