文章编号: 0254-5357(2009)01-0075-02

酒石酸异构体对 EDTA 间接滴定法测定矿石中三氧化二铝的影响

杨载明, 唐晓玲

(遵义市矿产品质量监督检验站,贵州 遵义 563000)

摘要:应用 EDTA 间接滴定法测定铝土矿、高岭土、黏土等矿石中的三氧化二铝,试验了不同种类的酒石酸掩蔽钛对三氧化二铝测定结果的影响。建议选择左旋体或右旋体酒石酸作掩蔽剂,尽量不要选择内消旋体酒石酸,更不能选择外消旋体酒石酸。采用酒石酸钾钠作掩蔽剂,三氧化二铝的测定结果良好,方法快速、简便。

关键词:酒石酸; 异构体; 酒石酸钾钠; 三氧化二铝; EDTA 间接滴定法; 矿石

中图分类号: 0655.2; 0614.31 文献标识码: B

Effect of Tartaric Acid Isomers on EDTA-Indirect Titrimetric Determination of Aluminum Oxide in Ore

YANG Zai-ming, TANG Xiao-ling

(Zunyi Mineral Quality Monitoring and Inspection Station, Zunyi 563000, China)

Abstract: A method for the determination of Al_2O_3 in bauxite, kaoline and clay minerals by EDTA-indirect titrimetry is proposed. The effect of different kinds of tartaric acids as masking agents on determination of Al_2O_3 was tested. From the experimental results, it suggested that the dextro-isomer and laevo-isomer tartaric acids can be used as masking agents instead of mesomeride tartaric acid and especially raceme tartaric acid. The analytical results of Al_2O_3 were satisfactory when seignette salt was used as masking agent. The method provides the advantages of more efficiency and simple operation.

Key words: tartaric acid; isomer; seignette salt; aluminum oxide; EDTA-indirect titrimetry; ore

在铝土矿、高岭土、黏土的日常分析中、Al₂O₃的 EDTA 滴定方法有两种,即间接滴定法和氟化钠(钾)取代法。间接滴定法^[1]是在含 Al 的溶液中加入过量的 EDTA,调节 pH 为5.9,将溶液煮沸使 Al 完全络合,选用适宜的指示剂,然后用其他金属盐回滴过量的 EDTA,从而得出 Al₂O₃量;氟化钠(钾)取代法^[2-5]即在测定 Al 的溶液中,先加 EDTA 与溶液中金属离子络合,再加氟化钠(钾)取代 Al – EDTA 络合物中的 EDTA,然后用锌盐(或铜盐或铅盐)滴定释出的 EDTA,以求得Al₂O₃的含量,这种方法选择性较高,但流程较长。

在间接滴定法中,溶液中的 Fe、Ti 干扰测定。对于 Fe 的 干扰,通常不采用分离的方法,而是先滴定 Al、Fe 合量,再另取 溶液测定 Fe 量,然后相减得 Al 量;对于 Ti 的干扰,常采用直接掩蔽的方法。目前用来掩蔽 Ti 的掩蔽剂有苯四酰苯胲(组试剂)、磷酸盐、乳酸以及酒石酸^[6]等。相比于氟盐取代法,酒石酸掩蔽法具有快速、简便的特点。酒石酸存在 3 种异构体,即右旋体酒石酸、左旋体酒石酸和内消旋酒石酸^[7-8]。本文考察了不同种类的酒石酸对 EDTA 间接滴定法测定 Al₂O₃的影响,试验了酒石酸钾钠作为掩蔽剂测定 Al₂O₃的可行性。

1 酒石酸的物理性质

酒石酸能与多种金属离子形成络合物。酒石酸分子中有两个手性碳原子,存在右旋体酒石酸、左旋体酒石酸和内

消旋体酒石酸3种立体异构体。工业产品中还存在一种酒石酸,即外消旋体酒石酸^[9],实际为左旋体酒石酸和右旋体酒石酸的化合物或混合物(结晶时温度高于27℃,得到外消旋化合物;温度低于27℃时,得到外消旋混合物^[7]),并不是另一种酒石酸异构体形式。

4 种酒石酸的一般物理性质见表 1。左旋体酒石酸、右旋体酒石酸的溶解度最大且相当,内消旋体酒石酸次之,外消旋体酒石酸最小。

表 1 酒石酸的物理性质[7]

Table 1 Physical characteristics of tartaric acids^[7]

酒石酸	熔点/℃	比旋光度 (25%水溶液)	溶解度/ (g/100 g 水)	密度/ (g·cm-3)	pKa ₁	pKa ₂
右旋体酒石酸	170	+12°	139	1.760	2, 93	4. 23
左旋体酒石酸	170	-12°	139	1. 760	2 93	4 23
					2.,,,	25
内消旋体酒石酸	140	不旋光	125	1.667	3.11	4.80
外消旋体酒石酸	206	不旋光	20.6	1.680	2.96	4.24

2 实验部分

2.1 酒石酸溶解度试验

各种酒石酸的溶解度不同。从天津、上海、成都等地厂家订购了3种不同异构体的酒石酸产品,并与酒石酸钾钠一起进行溶解度试验。从表2看出,在室温较低(15℃)的情况下,外消旋体酒石酸和内消旋体酒石酸的溶解度并不

收稿日期: 2008-06-04; 修订日期: 2008-08-02

作者简介: 杨载明(1972 -), 男, 贵州遵义市人, 工程师, 从事化学分析及仪器分析工作。E-mail: yzm1972@163. com。

理想,即使是在常温 $(25 \, ^{\circ})$ 下,外消旋体酒石酸的溶解度也达不到理想数值。

表 2 酒石酸和酒石酸钾钠溶解度试验

Table 2 Solubility tests of tartaric acid and potassium sodium tartrate

酒石酸	配制浓度	3 天后晶体析出情况				
自有政	$ ho_{\mathrm{B}}/(\mathrm{g}\cdot\mathrm{L}^{-1})$	室温 25℃	室温 15℃			
左旋体酒石酸	200	无晶体析出	无晶体析出			
内消旋体酒石酸	200	无晶体析出	少量晶体析出			
外消旋体酒石酸	200	少量晶体析出	大量晶体析出			
酒石酸钾钠	200	无晶体析出	无晶体析出			

2.2 不同酒石酸对铝测定的影响

取分离 SiO₂后的滤液,分别加入不同的酒石酸溶液(浓度均为 200 g/L)10 mL 掩蔽 Ti(2 g酒石酸可掩蔽 10 mg以下 TiO₂;因外消旋体酒石酸在冷却后会有大量晶体析出,

因此使用时将其加热溶解后使用),再加入定量过量的 EDTA 标准溶液同时络合 Fe、Al。然后在 pH = 5.9 的乙酸 - 乙酸钠缓冲溶液中,以二甲酚橙为指示剂,铅标准溶液滴定过剩的 EDTA,求出 Fe、Al 合量,再减去 Fe 量,以此求得 Al₂O₃量。从表 3 看出,加入左旋体酒石酸和右旋体酒石酸均能获得满意的测定结果;但加入内消旋体酒石酸和外消旋体酒石酸,测定结果严重偏低(依据 DZ/T 0130.3—2006 [10])。

2.3 酒石酸对不同铝量测定的影响

考察了酒石酸对不同 Al 量测定的影响,方法同 2.2 节。从表 3 结果看出,左旋体酒石酸和右旋体酒石酸对测定低含量 Al 的结果较好,但随着 Al 量的增高,测定结果偏低越来越严重;内消旋体酒石酸尚可达到质量要求,但存在系统偏低的情况;对于外消旋体酒石酸,当 Al₂O₃量>50%时,依据 DZ/T 0130.3—2006^[10].测定质量已达不到要求。

表 3 不同酒石酸对不同铝量测定的影响①

Table 3 Effect of tartaric acids on different content of Al determination

 $w(\operatorname{Al}_2\operatorname{O}_3)/\%$

标准物质 标准值	左旋体酒石酸		右旋体酒石酸		内消旋体酒石酸		外消旋体酒石酸						
编号	小作11	测定值	Yc/%	RD/%	测定值	Yc/%	RD/%	测定值	Yc/%	RD/%	测定值	Yc/%	RD/%
GBW 07182	75. 13	75.43	0.67	-0.20	75.49	0.67	-0.24	74.41	0.67	0.48	73.59	0.68	1.04
GBW 07177	71.06	71.33	0.73	-0.19	71.36	0.73	-0.21	70.56	0.73	0.35	69.51	0.74	1.10
GBW(E) 070036	69.74	69.51	0.75	0.17	69.45	0.75	0.21	69.01	0.75	0.53	68.02	0.76	1.25
GBW 07179	63.17	62.95	0.86	0.17	62.97	0.86	0.16	62.54	0.86	0.50	61.77	0.87	1.12
GBW 07178	54.94	54.80	1.01	0.13	54.78	1.01	0.15	54.46	1.01	0.44	53.83	1.02	1.02
GBW 07180	42.97	43.15	1.28	-0.21	43.17	5/1.28	0.23	42.64	1.28	0.39	42.54	1.28	0.50
GBW(E) 070025	38.21	38.46	1.41	-0.33	38. 40	1.41	-0.25	37.94	1.42	0.35	37.99	1.41	0.29

① Yc—分析试样中某组分的相对偏差允许限,依据 DZ/T 0130.3 ~ 2006 [10]; RD—相对偏差。以下表格表注同。

2.4 酒石酸钾钠对铝测定的影响

在以往的方法中,未见采用酒石酸钾钠作掩蔽剂。酒石酸钾钠的溶解度很大,为获得相近浓度的酒石酸根,本文将酒石酸钾钠配制成浓度为 400 g/L 的溶液,其余按 2.2 节方法操作。从表 4 结果看出,采用酒石酸钾钠作掩蔽剂, Al₂O₃的测定结果良好。

表 4 酒石酸钾钠对铝测定的影响

Table 4 Effect of potassium sodium tartrate on Al determination

标准物质 编号	V (6)	w(Al ₂	DD /0/	
	Yc/%	标准值	测定值	RD/%
GBW 07182	0.67	75. 13	75.41	-0.19
GBW 07177	0.73	71.06	71.23	-0.12
GBW(E) 070036	0.75	69.74	69.60	0.10
GBW 07179	0.86	63.17	62.95	0.17

3 结语

在用酒石酸掩蔽钛的方法测定铝土矿、高岭土、黏土矿中的 Al₂O₃时,不同的酒石酸类型将对测定结果产生不同的影响。为保证测定质量,应该选择左旋体或右旋体酒石酸,尽量不要选择内消旋体酒石酸,更不能选择外消旋体酒石酸。采用酒石酸钾钠作掩蔽剂,测定同样快速简便。

目前市面上酒石酸生产厂家多,品种全,产品标签上也未标识为何种类型的酒石酸,实验室应如何选择适宜的产

品呢?这可以根据酒石酸的溶解度性质,分别配制成200g/L的溶液,放置数天后,如果有晶体析出的,则不能选用;反之则可放心使用。

4 参考文献

- [1] 地质矿产部科学技术司实验管理处. 岩石和矿石分析规程 (第三分册)[S]. 西安:陕西科学技术出版社,1993;320-328.
- [2] GB/T 3257.1—1999,铝土矿石化学分析方法 EDTA 滴定法 测定氧化铝量[S].
- [3] 周尚元,肖伟. 铝镁碳砖中三氧化二铝的测定[J]. 湖南冶金,2003,31(1):15,44-45.
- [4] 北京矿冶研究总院分析室. 矿石及有色金属分析手册[M]. 北京:冶金工业出版社,1990;119.
- [5] 王肇中,冯先进. 硅铁中三氧化二铝的滴定法测定[J]. 冶金分析,2001,21(1):51-52.
- [6] 岩石矿物分析编写组. 岩石矿物分析[M]. 3 版. 北京: 地质出版社,1991:73.
- [7] 陈光旭. 有机化学(二)[M]. 北京:北京师范大学出版社, 1999:2-4.
- [8] [美] Sheila R Buxton, Stanley M Roberts. 有机立体化学导论 [M]. 宋毛平,译. 北京:化学工业出版社,2006;19 34.
- [9] 周公度,段连运.结构化学基础[M].2 版.北京:北京大学出版社,1995;203-206.
- [10] DZ/T 0130.3—2006,地质矿产实验室测试质量管理规范; 岩石矿物样品化学成分分析[S].