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Abstract:  This paper offers a new and robust model of the emergence and persistence of 

cooperation.  In the model, interactions are anonymous, the population is well-mixed, and the 

evolutionary process selects strategies according to material payoffs.  The cooperation problem 

is modelled as a game similar to Prisoner’s Dilemma, but there is an outside option of non-

participation and the payoff to mutual cooperation is stochastic; with positive probability, this 

payoff exceeds that from cheating against a cooperator.  Under mild conditions, mutually 

beneficial cooperation occurs in equilibrium.  This is possible because the non-participation 

option holds down the equilibrium frequency of cheating.  
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1. Introduction 

Studies of animal behaviour have found many practices which create collective benefits at 

some apparent cost or risk to individual participants.  Examples include alarm calls, food-

sharing, grooming, and participation in inter-group warfare.  One of the most fundamental 

problems in evolutionary biology since Darwin (1859) has been to explain how such forms of 

cooperation evolve by natural selection.   An analogous problem in economics has been to 

explain how cooperative human practices, such as the fulfilment of market obligations, the 

provision of public goods and the management of common property resources, are consistent 

with the traditional assumption of individual self-interest.  Many different theories have been 

proposed by biologists and economists as possible solutions.  Among the mechanisms that 

have been modelled are direct and indirect reciprocity, reputation, third-party punishment, kin 

selection, group selection, and the ‘green beard’ mechanism.1 

However, a recent trend in biology has been to question whether such sophisticated 

explanations are always necessary.  Many forms of apparently cooperative behaviour have 

been found to be forms of mutualism: the ‘cooperating’ individual derives sufficient direct 

fitness benefit to make the behaviour worthwhile, and any effect on the fitness of others is 

incidental (e.g. Clutton-Brock, 2002, 2009; Sachs et al., 2004).  The Snowdrift game (Sugden, 

1986), in which equilibrium involves cooperation by one player and free-riding by the other, is 

increasingly used in biology as a model of such behaviour.  In this paper, we present a new 

model of the evolution of cooperation which fits with this trend of thought. 

 The idea that the biological and economic problems of cooperation are isomorphic can 

be developed in at least two different ways.  One approach is to hypothesise that human 

cooperation in the modern world  is a product of genetically hard-wired traits which evolved to 

equip homo sapiens for life in hunter-gatherer societies (e.g. Binmore 1994, 1998).  An 

alternative approach, and the one we will take, is to hypothesise that the emergence and 

reproduction of human cooperative practices are governed by evolutionary mechanisms that 

are isomorphic to, but distinct from, those of natural selection.  Candidate mechanisms include 

                                                 
1  For an overview of these mechanisms, see Nowak (2006). 
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trial-and-error learning by individuals, imitation of successful neighbours, and cultural 

selection through inter-group competition.  Analyses which use this approach may be both 

informed by and informative to theoretical biology.  For example, Sugden’s (1986) analysis of 

the emergence of social norms was inspired by the earlier work of theoretical biologists, but it 

developed new models (in particular, the Snowdrift and Mutual Aid games) which have since 

been widely used in biology (e.g. Leimar and Hammerstein, 2001; Nowak and Sigmund, 

2005).  The model that we present in this paper can be interpreted as a representation either of 

natural selection or of trial-and-error human learning. 

 Our modelling strategy is distinctive in that it uses three assumptions which in 

combination rule out most of the mechanisms that feature in existing theories of cooperation.  

Specifically, we assume that interactions are anonymous, that evolution takes place in a large, 

well-mixed population, and that the evolutionary process selects strategies according to their 

material payoffs.  The assumption of anonymity excludes mechanisms based on reputation, 

reciprocity or third-party punishment.  The assumption of well-mixedness excludes 

mechanisms of group or kin selection.  The assumption that selection is for material payoffs 

excludes mechanisms which postulate non-selfish preferences as an explanatory primitive.  

Working within the constraints imposed by these assumptions, we are able to generate a simple 

and robust model of cooperation. 

 Our model adapts the familiar framework of a Prisoner’s Dilemma that is played 

recurrently in a large population.  We introduce two additional features, which we suggest can 

be found in many real-world cases of potentially cooperative interaction, both for humans and 

for other animals. 

 The first additional feature is that participation in the game is voluntary.  One of the 

restrictive properties of the Prisoner’s Dilemma is that, in any given interaction, an individual 

must act either pro-socially (the strategy of cooperation) or anti-socially (the strategy of 

defection or cheating, which allows a cheater to benefit at the expense of a cooperator).  There 

is no opportunity to be simply asocial.  We add an asocial strategy, that of opting out of the 

interaction altogether. 
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 The second additional feature is that the payoff that each player receives if they both 

cooperate is subject to random variation.  Before choosing his (or her, or its) strategy, each 

player knows his own cooperative payoff, but not the other player’s.  With non-zero 

probability, the payoff from mutual cooperation is greater than that from cheating against a 

cooperator.  Thus, there are circumstances in which it would be profitable for a player to 

cooperate if he were sufficiently confident that the other player would cooperate too.  

 As an illustration of the kind of interaction that our model represents, we offer the 

following variant of Rousseau’s (1755/ 1988, p. 36) story of hunting in a state of nature.  Two 

individuals jointly have the opportunity to invest time and energy to hunt a deer.  The hunters 

can succeed only by acting on a concerted plan out of sight of one another.  A hunt begins only 

if both individuals agree to take part.  Each can then cheat by unilaterally pursuing a smaller 

prey, which the other’s deer-hunting tends to flush out and make easier to catch.  The 

anticipated benefit of deer-hunting to an individual, conditional on the other’s not cheating, can 

be different for different individuals and on different occasions.  Sometimes, but not always, 

this benefit is sufficiently low that unilateral cheating pays off. 

 As a more modern illustration, consider two individuals who make contact through the 

internet.  One of them is offering to sell some good which has to be customised to meet the 

specific requirements of the buyer; the other is looking to  buy such a good.  If they agree to 

trade, each individual invests resources in the transaction (exchanging information, producing 

and dispatching the good, sending payment).  Each may have opportunities to gain by 

deviating from the terms of the agreement.  Sometimes, but not always, the benefit of 

completing the transaction is sufficiently low that unilateral cheating pays off. 

 We will show how the interaction of voluntary participation and stochastic payoffs can 

induce cooperation.  Of course, it is well known that voluntary participation can facilitate 

cooperation when players can distinguish between more and less cooperative opponents.  If 

such distinctions are possible, voluntary participation can allow cooperators to avoid 

interacting with cheats.  This can sustain cooperation without the need for informationally and 

cognitively more demanding strategies of reciprocity or punishment – an idea that can be 

traced back to Adam Smith’s (1763/ 1978, pp. 538–539) analysis of trustworthiness among 
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traders in commercial societies.  But such mechanisms are ruled out by our anonymity 

assumption.  

 In our model, voluntary participation facilitates cooperation by a different route.  

Because would-be cheats have the alternative option of non-participation, and because non-

participation is the best response to cheating, the equilibrium frequency of cheating is subject 

to an upper limit.  If cheating occurs at all, the expected payoff from cheating cannot be less 

than that from non-participation.  Thus, for any given frequency of cooperation, the frequency 

of cheating is self- limiting.  The underlying mechanism is similar to that of the Lotka–Volterra  

model of interaction between predators and prey: the size of the predator population (the 

frequency of cheating) is limited by the size of the prey population (the frequency of 

cooperation). 

  Clearly, however, this mechanism can support cooperation only if, when the frequency 

of cheating is sufficiently low, some players choose to cooperate.  This could not be the case if, 

as in the Prisoner’s Dilemma, cooperation was always a weakly dominated strategy.  In our 

model, random variation in the payoff from mutual cooperation ensures that players sometimes 

find it worthwhile to cooperate, despite the risk of meeting a cheat.  The players who cooperate 

are those for whom the benefit of mutual cooperation is sufficient to compensate for this risk.  

Because cooperators are self-selecting in this way, the average payoff in the game is greater 

than the payoff to non-participation.  In other words, despite the presence of cheats, beneficial 

cooperation occurs. 

 In Section 2 we present the model and identify its Nash equilibria.  We show that, 

provided the upper bound of the distribution of cooperative benefit is not too low, the game has 

at least one equilibrium in which beneficial cooperation occurs.  In Section 3 we investigate 

some comparative-static properties of the model.  We show that as the distribution of 

cooperative benefit becomes more favourable, the maximum frequency of cooperation that is 

sustainable in equilibrium increases.  In Section 4 we examine the dynamics of the model.  We 

show that, in the neighbourhood of equilibria in which some but not all players choose to 

participate, the dynamics induce cycles similar to those of predator–prey models.  In Section 5, 

we discuss the contribution that our model can make to the explanation of cooperative 
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behaviour.  We show that, despite sharing some features of existing biological models of 

mutualism and voluntary participation, it isolates a distinct causal mechanism.    

 

2.  The model: equilibrium properties 

We consider a setting with a large number of individuals, interacting anonymously in an 

indefinitely long sequence of periods.  In each period, individuals are randomly matched to 

play a two-player game. In a representative game between players i and j, the benefits from 

cooperation x i and x j are independent realizations of a random variable X whose distribution f(.) 

is continuous with support [xmin, xmax].  Each player knows his own benefit but not that of the 

other player.  Given this knowledge, he chooses one of three options – to cooperate (C), to 

cheat (D), or not to participate (N).  The payoff matrix is shown in Table 1.  

 

Table 1: Payoff matrix for the game 

     player j 

   N  C  D     

  _____________________________________  

  N 0, 0  0, 0  0, 0 

player i C 0, 0  x i, xj  –b, a  

  D 0, 0  a, –b   –c, –c 

  _____________________________________ 

 
 xmax > a > xmin ≥ 0; b > a > c > 0. 

 

The essential features of the game are contained in the structure of best responses.  The 

condition xmax > a > xmin imposes the assumption that either C or D may be the better response 

to C, depending on the relevant player’s realization of X.   The condition b > c implies that, as 

in the Prisoner’s Dilemma, D is better than C as a response to D.  Given that the payoff to N is 

normalized to zero, a > 0 implies that cheating gives a higher payoff than non-participation if 
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the opponent cooperates; c > 0 implies that the opposite is the case if the opponent cheats; b > 

a implies that the benefit from cheating a cooperating co-player is less than the cost inflicted 

on the latter.  The condition xmin ≥ 0 (which is not essential for our main results) implies that 

players are never worse off from mutual cooperation than from non-participation. 2 

We assume that, in any given period, for any given player i, there is some critical value 

of X such that i plays C if and only if x i is greater than or equal to this value.  Given this 

assumption, which attributes a minimal degree of rational consistency to players’ behaviour, 

we can represent a strategy for playing the game by two variables – the critical value of X, 

denoted by β , and the probability π that D is played, conditional on X being below that critical 

value.  To simplify the exposition, we impose the harmless condition that xmin  ≤ β  ≤ xmax .  A 

strategy (β, π) is an equilibrium if it is a best reply to itself. 

 Some significant properties of equilibrium hold for all parameter values.  First,                 

(β , π) = (xmax, 0) is an equilibrium.  In this non-participation equilibrium, N is always chosen; 

players’ payoffs are zero, and unilateral deviations lead to neither gain nor loss.  Second, there 

is no equilibrium in which C is played with nonzero probability but D is not played:  against an 

opponent who might play C but will not play D, the best reply chooses D when x i < a.  Third, 

there is no equilibrium in which D is played but not C:  against an opponent who might play D 

but will not play C, N is the unique best reply.  Thus, only two types of equilibrium 

participation are possible.  Depending on the parameter values, there may be an interior 

equilibrium with xmin < β < xmax and 0 < π  < 1, characterized by N, D and C being played with 

nonzero probability; and there may be a boundary equilibrium  with xmin < β < xmax and π = 1: 

in this case, D and C are played but not N.  

We now analyse these equilibria.  Consider any player i facing an opponent whose 

strategy is (β , π), in an interaction in which x i = β .  Let VN, VD, VC and VM be the expected 

payoffs to player i from playing N, D, C and M respectively, where M is the mix of D with 

                                                 
2 Provided that this best response structure is maintained, the main implications of the model are 
preserved.  It is not essential that the payoff from playing C against C is stochastic and that all other 
payoffs are not; but there must be some random variation in the payoffs, such that the best reply to C is 
sometimes C and sometimes D. 
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probability π  and N with probability (1–π).  Let g(x) ≡ F(x)/[1–F(x)], where F(.) is the 

cumulative of f(.).  It is straightforward to derive the following expressions:  

VN = 0                                                                                                                  (1) 

VD = [1–F(β)]a – F(β)πc                                                                                    (2) 

VC = [1–F(β)]β  – F(β)πb                                                                                    (3) 

VM = πVD.                                                                                                            (4) 

In analysing equilibrium, it is convenient to work in a (β , π) space defined by xmin ≤ β  ≤ 

xmax and π ≥ 0.  Notice that this space includes points at which π  > 1.  Although such points 

have no interpretation within our model, equations (1)–(4) above define VN, VD, VC, and VM for 

all values of π .  This allows us to define the loci of points in this (β, π) space at which the 

mathematical equations VN = VD and VC = VM are satisfied, and then to characterise equilibria 

in terms of these loci, imposing the inequality π  ≤ 1 as an additional constraint.  This method 

of analysis is useful in simplifying the proofs of our results. 

First, consider the locus of points in the (β , π) space at which VN = VD.  Any interior 

equilibrium must be a point on this ND locus, with 0 < π < 1; any boundary equilibrium must 

be a point at which VN ≤ VD and π  = 1.  By (1) and (2), this locus is determined by: 

VD = (or <) VN   ⇔   a/πc = (or <)  g(β).                                                              (5) 

This is a continuous and downward-sloping curve which includes the point (x max, 0) and is 

asymptotic to β = xmin.  It divides the (β, π) space into three regions: the set of points on the 

locus, at which VN = VD; the set of points inside the locus (that is, below and to the left), at 

which VN < VD; and the set of points outside the locus (that is, above and to the right), at which 

VN > VD. 

Now consider the locus of points at which VC = VM.  Every equilibrium must be a point 

on this CM locus, with either π = 0 (the non-participation equilibrium), 0 < π  < 1 (an interior 

equilibrium), or π  = 1 (a boundary equilibrium).  Combining equations (2)–(4), this locus is 

determined by: 

VC = (or <)  VM   ⇔  (β–πa)/[π(b–πc)]  = (or <) g(β).                                       (6) 
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This is a continuous curve  which includes the points (xmin, xmin/a) and (xmax, 0).  It divides the 

(β , π) space into three regions: the set of points on the locus, at which VC = VM; the set of 

points inside  the locus, at which VC > VM; and the set of points outside the locus, at which VM > 

VC. 

 Propostions (5) and (6) together imply the following result about the relative positions 

of the two loci: 

 if  ED = EN and β  < xmax, then EC = (or <) EM   ⇔  β  = (or <)  ab/c.                  (7) 

The loci intersect at the non-participation equilibrium (xmax, 0).  If xmax ≤ ab/c, there is no other 

intersection and hence no other equilibrium.  This case is illustrated in Figure 1a. (The loci are 

shown by the curves ND and CM; N is the non-participation equilibrium.  The arrows refer to 

the dynamic analysis, which will be presented in Section 4.)  If instead xmax > ab/c, there is 

exactly one other intersection, at β  = ab/c.  There are now three alternative cases. 

In the first case, illustrated in Figure 1b, this intersection is at π < 1.  This intersection, 

denoted I, is an interior equilibrium, defined by β  = ab/c, π  = a/g(ab/c).3  These values of β and 

π imply that the probability with which C is played, conditional on participation in the game 

(i.e. conditional on N not being played) is c/(a + c), ensuring that VD = 0.  (Equivalently, the 

frequencies with which C and D are played are in the ratio c: a.)  In this case, there may also be 

boundary equilibria; these occur if the CM locus intersects the line π  = 1 to the left of the ND 

locus. 

In the second case, the loci intersect at π  > 1.  Because the CM locus is continuous, and 

because xmin/a < 1, there must be at least one point to the left of the  ND locus at which the CM 

locus intersects the line π  = 1.  Any such point is a boundary equilibrium.  This case is 

illustrated in Figure 1c; B is a boundary equilibrium.  In the third case (not illustrated), the loci 

intersect exactly at π = 1.  Then this intersection is a boundary equilibrium.  In this case, there 

may be other boundary equilibria.  

                                                 
3 The equilibrium value of π can be derived from (2) by using the fact that, in an interior equilibrium, 
VD = 0. 
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 The foregoing argument establishes: 

Result 1.  If xmax > ab/c, there is at least one (interior or boundary) equilibrium with 0 < 

π  ≤ 1 and xmin < β < xmax. 

In other words, provided the upper tail of the distribution of cooperative benefit is not too 

short, there is at least one equilibrium in which both C and D are played with positive 

probability.  

 We now consider players’ payoffs in such equilibria.  Let V*(β , π) be the ex ante 

expected payoff to any player i, prior to the realisations of random variable X, given that i and 

his opponent play according to β and π .  We will call V*(β, π) the value of the game 

conditional on (β , π). 

 The following results are derived in the Appendix:   

Result 2.  In every interior and boundary equilibruium, the value of the game is strictly 

positive. 

Result 3.  Suppose there are two equilibria, (β , π), (β′, π′), such that β  < β′.  Then V*(β , 

π) > V*(β′, π′). 

 

Result 2 establishes that in every interior and boundary equilibrium, cooperative activity 

creates positive net benefits relative to the benchmark of non-participation, despite the 

presence of cheats.  If there are multiple equilibria, one of these is distinguished by its having 

the lowest value of β .  (Since there can be no more than one interior equilibrium, no two 

equilibria have the same value of β.)  Result 3 establishes that this is the equilibrium at which 

the value of the game is greatest.  We will call this the highest -value equilibrium.    

 

3.  The model: comparative statics 

The frequency of cooperative behaviour that can be sustained in equilibrium depends on the 

distribution of cooperative benefit X.  To keep the exposition simple, we analyse the effect of a 
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rightward shift from one distribution F to an unambiguously superior distribution G when 

there is no change in the support [xmin, xmax].  That is, for all xmin < z < xmax , G(z) < F(z).  The 

values of all other parameters are held constant. 

 Using (5) it can be shown that if some point (β, π) is on the ND locus for the 

distribution F, it is inside the corresponding locus for G.  Similarly, using (6), if some point (β , 

π) is on the CM locus for the distribution F, it is inside the corresponding locus for G.  Thus, 

an improvement in the distribution of cooperative benefit moves both loci outwards.  Figure 2 

illustrates the effects of a shift in the distribution from F (inducing the loci ND(F) and CM(F)) 

to G (inducing the loci ND(G) and CM(G)). 

As this diagram shows, if the game has interior equilibria for both distributions, those 

equilibria have the same value of β, namely ab/c, but the G equilibrirum has a higher value of 

π.  Since G(ab/c) < F(ab/c), and since the frequencies with which C and D are played are in the 

fixed ratio c: a, both C and D are played with higher frequency in the G equilibrium than in the 

F equilibrium.  More intuitively, the relationship between cooperation and cheating is 

analogous to that between prey and predator.  If the distribution of cooperative benefit becomes 

more favourable, a higher frequency of cooperation is induced; but the more cooperation there 

is, the more cheating can be sustained. 

If the game has boundary equilibria for both distributions, the highest-value G 

equilibrium must be to the left of the highest-value F equilibrium.  (This can be seen by 

considering the effect of an outward shift of the CM locus in Figure 1c.)  Thus, the former 

equilibrium induces a higher frequency of cooperation than the latter.   

The following general result is proved in the Appendix: 

Result 4:  Suppose xmax > ab/c and let F, G be two distributions of X such that G is 

rightward of F.  Then in the highest-value G equilibrium, the frequency of cooperation 

and the value of the game are both strictly greater than in the highest-value F 

equilibrium. 
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Thus, as the distribution of cooperative benefit becomes progressively more favourable, the 

maximum sustainable frequency of cooperation increases. 4  Increases in cooperation are 

associated with increases in cheating until the frequency of non-participation falls to zero.  

 

4.  The model: dynamics 

We now consider the dynamics of the model, under the simple assumption that β and π  evolve 

independently.  (In a biological application, this is equivalent to assuming that β  and π are 

determined by distinct genes.)  It is sufficient to assume that, in the population as a whole, the 

value of β  tends to increase (respectively: decrease) if VM > VC  (VM  < VC), and that the value 

of π  tends to increase (decrease) if VD > VN (VD < VN).  This gives the dynamics shown in 

phase-diagram form in Figure 1.   

We begin by considering evolutionary stability.  It is immediately obvious that the non-

participation equilibrium is not evolutionarily stable: for example, it can be invaded by any 

strategy that sometimes cooperates and never defects.  In contrast, all interior and boundary 

equilibria are evolutionarily stable.  In any such equilibrium, the value of β is uniquely optimal 

for each player, given the behaviour of the others.  Thus, in analysing evolutionary stability, it 

is sufficient to consider the vertical arrows in the phase diagrams.  It is easy to see that all 

interior and boundary equilibria are stable with respect to vertical movements. 

Considering the dynamics more explicitly, Figures 1a, 1b and 1c all show that the non-

participation equilibrium N is not locally stable.  There are evolutionary paths leading to this 

equilibrium (from outside the CM locus) but also paths leading away from it (from inside that 

locus). 

Figure 1b shows that in the neighbourhood of an interior equilibrium (I), the dynamics 

exhibit cycles.  Described in terms of the evolution of the frequencies of the three strategies N, 

C and D, these cycles are similar to those of the Rock–Scissors–Paper game.  (The frequency 

                                                 
4 This comparative -static property is compatible with evidence that in both human and non-human 
interaction, the level of cooperation is greater, the higher the payoffs to cooperation (Heinrich et al., 
2001; Clutton-Brock, 2002).  
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of cooperation is greatest towards the left of the diagram, where the value of β is low.  From 

there, evolutionary paths lead towards the top right, where the values of β  and π are both high, 

and the frequency of cheating is greatest.  From there, paths lead towards the bottom right, 

where β  is high and π  is low, and the frequency of non-participation is greatest.  And from 

there, paths lead back towards the left.)  These paths resemble predator–prey cycles, cheats 

acting as predators and cooperators as prey.   

If the CM locus cuts the line π  = 1 at a point where β  < ab/c, this point is a boundary 

equilibrium.  If (as in the case shown in Figure 1c) points to the left of this equilibrium are 

outside the locus, the equilibrium is locally stable.  Not all boundary equilibria have this 

property, but whenever the ND and CM loci intersect at π > 1, there must be at least one 

locally stable boundary equilibrium. 

 

5.  Discussion 

We do not intend to claim that our model represents the mechanism that underlies human and 

animal cooperation.  There is no good reason to suppose that cooperation is a single 

phenomenon with a unified causal explanation.  We find it more plausible to view cooperation 

as a family of loosely-related phenomena which may have  multiple causes.  We offer our 

model as a stylised representation of one mechanism by which cooperation might emerge and 

persist. 

 Our model is unusually robust in that it assumes only materially self-interested 

motivations and applies to anonymous, well-mixed populations.  In claiming this as a merit of 

the model, we do not deny that individuals sometimes act on pro-social motivations, nor that 

many recurrent cooperative interactions are between individuals who are known to one 

another, nor that populatio ns of potential cooperators are often structured into clusters of 

individuals who interact mainly with their ‘neighbours’.  Each of these factors can contribute to 

the explanation of cooperation in particular environments.  Nevertheless, theories that depend 

on non-anonymity, or on population structures taking particular forms, have restricted domains 

of application.  And it is hardly controversial to claim that self- interest is a particularly 

common and reliable motivation. 
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 As an illustration of how theories with less robust assumptions can be restricted in their 

application, we consider the currently much-discussed hypothesis of altruistic punishment 

(Fehr and Gächter, 2000; Gintis et al, 2005).  The key insight is that multilateral cooperation 

can be sustained in equilibrium if individuals have low-cost options of punishing one another, 

and if even a relatively small proportion of individuals have relatively weak preferences for 

punishing non-cooperators.  However, the general effectiveness of this mechanism depends on 

the cost of punishing being low relative to the harm inflicted, and on the absence of 

opportunities for punishees to retaliate (Herrmann et al, 2008; Nikiforakis, 2008); and it 

requires that at least some individuals have non-selfish preferences for punishing.  Such 

preferences might be sustained by cultural group selection in hunter-gatherer economies, 

where groups are small and inter-group warfare is frequent, but these conditions are not typical 

of the modern world; even among hunter-gatherers, biological group selection of altruistic 

punishment would be frustrated by inter-group gene flow (Boyd et al, 2005).  Altruistic 

punishment should be understood as a mechanism that can sustain cooperation in specific types 

of environment, not as the solution to the problem of explaining cooperation.  We claim no 

more than this for our own model. 

 We have said that our model is in the same spirit as some recent work by biologists, 

which finds apparently cooperative behaviour to be directly beneficial to the individual 

cooperator (see Section 1 above).  But, as we now explain, the explanatory principles used by 

these biologists are not the same as those exhibited in our model. 

 One of the fundamental features of our model is that the cooperative behaviour it 

describes is reciprocally beneficial.  By this, we mean the following.  Such cooperation is not 

simply a unilateral action by one individual which, intentionally or unintentionally, confers 

benefits on another; it is the composition of cooperative actions by two or more individuals, the 

combined effect of which is to benefit each of them.  In other words, each cooperator benefits 

from his action only if this action is reciprocated by one or more other individuals.  In the 

absence of enforceable promises, reciprocally beneficial cooperation requires at least one 

individual to choose a cooperative action without assurance that others will reciprocate.  In our 

model, any player who chooses to cooperate incurs a risk of loss, which is realised if his 

oppone nt cheats.  One might think (as we are inclined to do) that reciprocal benefit is a 
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hallmark of genuine, as opposed to apparent, cooperation (see also Sachs et al., 2004; West et 

al. 2007).  In biological models of mutualism, cooperation is not reciprocally beneficial, in the 

sense we have defined. 

 In the Snowdrift game, which is often used to model apparently cooperative animal 

behaviour, cooperation and cheating are best responses to one another.  In the original story, 

two drivers are stuck in the same snowdrift.  Both drivers have shovels, and so each can choose 

whether or not to dig.  If either driver digs a way out for his own car, the other can drive out 

too.  Each would rather be the only one to dig than remain stuck.  This defines a game with 

Chicken payoffs; in a pure-strategy Nash equilibrium, one driver digs and the other free-rides 

(Sugden, 1986).  Such an equilibrium is not a case of reciprocally beneficial behaviour.  

 Clutton-Brock (2009) offers the Soldier’s Dilemma as a model of mutualism in biology.  

In this game, a patrol of soldiers is ambushed by the enemy.  Soldiers who fire back attract 

incoming fire and increase their chance of being killed.  By firing back, however, each 

individual reduces the probability that the patrol will be overrun.  The gain from this may be 

such that from an individual’s perspective there is no dilemma at all: firing back may give the 

best chance of individual survival, irrespective of what the others do.  A biological equivalent 

to this game (or perhaps to Snowdrift) can be found in the behaviour of certain birds and 

mammals, such as Arabian babblers and meerkat, which feed in predator-rich environments.  

Individuals of these species go on sentinel duty once they have fed for long enough to be close 

to satiatio n (Clutton Brock et al., 1999).  In these games, cooperation is chosen either as a 

dominant strategy or as a best response to other players’ non-cooperation; it is not reciprocally 

beneficial. 

 In the story of the Soldier’s Dilemma, it would be natural to assume that cooperation 

would be a dominant strategy only if the number of soldiers in the patrol was relatively small, 

so that each of them received a significant share of the total benefit created by his own 

cooperative action.  Hauert et al (2002) present a model which can be understood as a version 

of the Soldier’s Dilemma in which the size of the patrol is endogenous.  This is an n-player 

model of voluntary contributions to a public good, but with an outside option of non-

participation.  A player who takes the outside option receives a small positive payoff σ with 
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certainty, but forgoes any share in the benefits of the public good.  Players who participate can 

either cooperate (contribute to the public good) or cheat (not contribute).  Each cooperator 

incurs a cost of 1 and creates a benefit of r (where 1 < r < n and r > σ + 1), which is divided 

equally between all participants.  This game has no pure-strategy Nash equilibrium.  (If all 

one’s opponents take the outside option, the best response is to cooperate; if they all cooperate, 

the best response is to cheat; if they all cheat, the best response is the outside option.)  There is 

a unique symmetrical mixed-strategy Nash equilibrium in which the expected payoff to all 

three strategies is σ.  More intuitively, in equilibrium the expected number of participants in 

each game is sufficiently small that cooperation and cheating are equally profitable.  Replicator 

dynamics have the Rock-Scissors-Paper cyclical pattern.   

 There are some similarities between Hauert et al’s model and ours: both models include 

a non-participation option, and both induce mixed-strategy equilibria with predator–prey 

characteristics.  However, Hauert et al’s model differs from ours in two significant ways.  First, 

the mechanism that induces cooperation works through variation in the number of participants 

in the cooperative activity.  For this reason, the model cannot represent cooperative activities 

which require a fixed number of participants.  In particular, it cannot represent ac tivities which 

inherently involve just two individuals – as, for example, most forms of market exchange do.  

Second, because the costs and benefits of contributing to the public good are non-stochastic, 

the expected payoffs to cooperation, cheating and non-participation are equal in equilibrium.  

Thus, although some cooperative activity takes place in equilibrium, this activity generates no 

net benefit relative to non-participation: it is not reciprocally beneficial. 

We suggest that our analysis provides a stylized but essentially realistic account of a 

mechanism by which reciprocally beneficial cooperation can emerge and persist in anonymous, 

well-mixed populations in which strategies are selected according to their material payoffs.  

Using two simple components – voluntary participation and stochastic payoffs – that have not 

previously been put together, we have constructed a robust general-purpose model of 

cooperation. 

We are conscious that, for some theoretically-oriented economists, the mechanism we 

have described may seem rather prosaic.  For decades, the Prisoner’s Dilemma has been used 
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as the paradigm model of cooperation problems , and the problem of explaining cooperation in 

that game has been treated as a supreme theoretical challenge.  Viewed in tha t perspective, a 

modelling strategy which relaxes the assumption that cooperation is always a dominated 

strategy may seem too easy.  But we share the view of Worden and Levin (2007) that many 

real-world cooperation problems are less intractable than the Prisoner’s Dilemma.  Neglecting 

these cases results in an incomplete body of theory and fosters unwarranted pessimism about 

the possibility of spontaneous cooperation. 
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Appendix: Proofs of results 

Proof of Result 2:  Let (β, π) be any interior or boundary equilibrium, and consider any player 

i.  With probability F(β), x i < β and i plays N or D.  In an interior equilibrium, VD = VN = 0.  In 

a boundary equilibrium, VD ≥ VN = 0 and N is not played.  In either case, i’s expected payoff is 

equal to VD and is non-negative.  With probability 1 – F(β), x i ≥ β and i plays C.  If xi = β, i is 

indifferent between C and D and the expected payoff is again VD.  If x i > β , i plays C; his 

expected payoff (conditional on x i > β) exceeds that in the x i = β  case by [1 – F(β)](x i – β); 

here 1 – F(β) represents the probability that i’s opponent plays C.  Hence: 

 V*(β , π) = VD + [1 – F(β)] E[max(x i – β , 0)],     (A1)       

where E is the expectation operator.  Since VD ≥ 0 and β < xmax, the value of V*(β, π) is strictly 

positive. 

Proof of Result 3:  If (β , π) and (β′, π′) are both interior and/or boundary equilibria, Result 3 

can be derived from (A1) using the fact that VD is decreasing in β (an implication of (2)).  If (β , 

π) is the non-participation equilibrium, V*(β, π) = 0 and so Result 3 follows trivially from 

Result 2. 

Proof of Result 4: Suppose xmax > ab/c.  Let (β , π) be the highest-value F equilibrium and let 

(β′, π′) be the highest-value G equilibrium.  There are three possibilities.   Case 1: (β , π) and 

(β′, π′) are both interior equilibria.  Then β′ = β  = ab/c and π′ > π .  (This case is illustrated in 

Figure 2.)  Since G(β′) < F(β), the frequency of cooperation is higher in the G equilibrium.  

Using (A1) and the fact that VD = 0 in every interior equilibrium, it can be shown that the value 

of the game is strictly greater in the G equilibrium.  Case 2:  (β , π) and (β′, π′) are both 

boundary equilibria.  Then (because the CM locus for G lies outside the CM locus for F) β′ < β 

and π′ = π  = 1.  Since G(β′) < F(β), the frequency of cooperation is higher in the G 

equilibrium.  Using (2), it can be shown that VD is strictly greater in the G equilibrium.  Then, 

using (A1) in relation to the distributions F and G, it can be shown that the value of the game is 

strictly greater in the G equilibrium.  Case 3: (β , π) is an interior equilibrium and (β′, π′) is a 

boundary equilibrium.  Then β′ ≤ β  and 1 = π′ > π. Since G(β′) < F(β), the frequency of 
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cooperation is higher in the G equilibrium.  In the interior equilibrium, VD = 0.  In the boundary 

equilibrium, VD ≥ 0.  Then, using (A1), it can be shown that the value of the game is strictly 

greated in the G equilibrium. 
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Figure 1.  Equilibria and dynamics  
 
a: Non-participation the only equilibrium 
 

 
 
b:  An internal equilibrium 
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c:  A boundary equilib rium 
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Figure 2: Effects of a shift in the distribution of cooperative benefit 
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