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Abstract. A 2-coloring of the n-cube in the n-dimensional Euclidean space
can be considered as an assignment of weights of 1 or 0 to the vertices. Such
a colored n-cube is said to be balanced if its center of mass coincides with
its geometric center. Let Bn,2k be the number of balanced 2-colorings of
the n-cube with 2k vertices having weight 1. Palmer, Read and Robinson
conjectured that for n ≥ 1, the sequence {Bn,2k}k=0,1,...,2n−1 is symmetric and
unimodal. We give a proof of this conjecture. We also propose a conjecture
on the log-concavity of Bn,2k for fixed k, and by probabilistic method we
show that it holds when n is sufficiently large.
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1 Introduction

This paper is concerned with a conjecture of Palmer, Read and Robinson [5]
in the n-dimensional Euclidean space. A 2-coloring of the n-cube is consid-
ered as an assignment of weights of 1 or 0 to the vertices. The black vertices
are considered as having weight 1 whereas the white vertices are considered
as having weight 0. We say that a 2-coloring of the n-cube is balanced if
the colored n-cube is balanced, namely, the center of mass is located at its
geometric center.

Let Bn,2k denote the set of balanced 2-colorings of the n-cube with exactly
2k black vertices and Bn,2k = |Bn,2k|. Palmer, Read and Robinson proposed
the conjecture that the sequence {Bn,2k}0≤k≤2n−1 is unimodal with the max-
imum at k = 2n−2 for any n ≥ 1. For example, when n = 4, the sequence
{Bn,2k} reads

1, 8, 52, 152, 222, 152, 52, 8, 1.

A sequence {ai}0≤i≤m is called unimodal if there exists k such that

a0 ≤ · · · ≤ ak ≥ · · · ≥ am,
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and is called strictly unimodal if

a0 < · · · < ak > · · · > am.

A sequence {ai}0≤i≤m of real numbers is said to be log-concave if

a2
i ≥ ai+1ai−1

for all 1 ≤ i ≤ m − 1.

Palmer, Read and Robinson [5] used Pólya’s theorem to derive a formula
for Bn,2k, which is a sum over integer partitions of 2k. However, the uni-
modality of the sequence {Bn,2k} does not seem to be an easy consequence
since the summation involves negative terms. In Section 2, we will establish
a relation on a refinement of the numbers Bn,2k from which the unimodal-
ity easily follows. In Section 3, we conjecture that the sequence {Bn,2k} is
log-concave for fixed k, and shall show that it holds when n is sufficiently
large.

2 The unimodality

In this section, we shall give a proof of the unimodality conjecture of Palmer,
Read and Robinson. Let Qn be the n-dimensional cube represented by a
graph whose vertices are sequences of 1’s and −1’s of length n, where two
vertices are adjacent if they differ only at one position. Let Vn denote the
set of vertices of Qn, namely,

Vn = {(ε1, ε2, . . . , εn) | εi = −1 or 1, 1 ≤ i ≤ n}.

By a 2-coloring of the Qn we mean an assignment of weights 1 or 0 to the
vertices of Qn. The weight of a 2-coloring is the sum of weights or the
numbers of vertices with weight 1. The center of mass of a coloring f with
w(f) 6= 0 is the point whose coordinates are given by

1

w(f)

∑

(ε1, ε2, . . . , εn),

where the sum ranges over all black vertices. If w(f) = 0, we take the
center of mass to be the origin. A 2-coloring is balanced if its center of
mass coincides with the origin. A pair of vertices of the n-cube is called an
antipodal pair if it is of the form (v,−v). A 2-coloring is said to be antipodal
if any vertex v and its antipodal have the same color.

The key idea of our proof relies on the following further classification of
the set Bn,2k of balanced 2-colorings.
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Theorem 2.1 Let Bn,2k,i denote the set of the balanced 2-colorings in Bn,2k

containing exactly i antipodal pairs of black vertices. Then we have

(2n−1 − 2k + i)|Bn,2k,i| = (i + 1)|Bn,2k+2,i+1|, (2.1)

for 0 ≤ i ≤ k and 0 ≤ k ≤ 2n−2 − 1.

Proof. We aim to show that both sides of (2.1) count the number of ordered
pairs (F, G), where F ∈ Bn,2k,i and G ∈ Bn,2k+2,i+1, such that G can be
obtained by changing a pair of antipodal white vertices of F to black vertices.
Equivalently, F can be obtained from G by changing a pair of antipodal black
vertices to white vertices.

First, for each F ∈ Bn,2k,i, we wish to obtain G in Bn,2k+2,i+1 by changing
a pair of antipodal white vertices to black. By the definition of Bn,2k,i, for
each F there are i antipodal pairs of black vertices and 2k−2i black vertices
whose antipodal vertices are colored by white. Since k ≤ 2n−2 − 1, that
is, 2n−1 − 2(k − i) − i > 0, there are exactly 2n−1 − 2(k − i) − i antipodal
pairs of white vertices in F . Thus from each F ∈ Bn,2k,i, we can obtain
2n−2−2k+ i different 2-coloring in Bn,2k+2,i+1 by changing a pair of antipodal
white vertices of F to black. Hence the number of ordered pair (F, G) equals
(2n−1 − 2k + i)|Bn,2k,i|.

On the other hand, for each G ∈ Bn,2k+2,i+1, since there are i+1 antipodal
pairs of black vertices in G, we see that from G we can obtain i+1 different 2-
colorings in Bn,2k,i by changing a pair of antipodal black vertices to white. So
the number of ordered pairs (F, G) equals (i+1)|Bn,2k+2,i+1|. This completes
the proof.

Theorem 2.2 For n ≥ 1, the sequence {Bn,2k}0≤k≤2n−1 is strictly unimodal

with the maximum attained at k = 2n−2.

Proof. It is easily seen that {Bn,2k}0≤k≤2n−1 is symmetric for any n ≥ 1.
Given a balanced coloring of the n-cube, if we exchange the colors on all
vertices, the complementary coloring is still balanced. Thus it is sufficient to
prove Bn,2k < Bn,2k+2 for 0 ≤ k ≤ 2n−2 − 1.

Clearly, for each F ∈ Bn,2k, there are at most k antipodal pairs of black
vertices. It follows that

Bn,2k =
k
∑

i=0

|Bn,2k,i|.

We wish to establish the inequality

|Bn,2k,i| < |Bn,2k+2,i+1|. (2.2)
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If it is true, then

Bn,2k =

k
∑

i=0

|Bn,2k,i| <

k+1
∑

i=1

|Bn,2k+2,i| ≤

k+1
∑

i=0

|Bn,2k+2,i| = Bn,2k+2,

for 0 ≤ k ≤ 2n−2 − 1, as claimed in the theorem. Thus it remains to prove
(2.2). Since 0 ≤ k ≤ 2n−2 − 1, it is clear that

(2n−1 − 2k + i) − (i + 1) = 2n−1 − 2k − 1 ≥ 1.

Applying Theorem 2.1, we find that

|Bn,2k,i| < |Bn,2k+2,i+1|,

for 0 ≤ i ≤ k and 1 ≤ k ≤ 2n−2 − 1, and hence (2.2) holds. This completes
the proof.

3 The log-concavity for fixed k

Log-concave sequences and polynomials often arise in combinatorics, algebra
and geometry, see for example, Brenti [1] and Stanley [6]. While {Bn,2k}k

is not log-concave in general, we shall show that the sequence {Bn,2k}n is
log-concave for fixed k and sufficiently large n, and we conjecture that the
log-concavity holds for any given k.

Conjecture 3.1 When 0 ≤ k ≤ 2n−1, we have

B2
n,2k ≥ Bn−1,2kBn+1,2k.

Palmer, Read and Robinson [5] have shown that

Bn,2 = 2n−1

and

Bn,4 =
1

4n
((4!)n−1 − 23n−3).

It is easy to verify that the sequences {Bn,2}n≥1 and {Bn,4}n≥2 are both
log-concave. In the remaining of this paper, we shall be concerned with the
case k ≥ 3. To be more specific, we shall show that Conjecture 3.1 is true
for n > 5 log 4

3

k + log 4

3

96 . Our proof utilizes the well-known Bonferroni

inequality, which can be stated as follows. Let P (Ei) be the probability of
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the event Ei, and let P

(

n
⋃

i=1

Ei

)

be the probability that at least one of the

events E1, E2, . . . , En will occur. Then

P

(

n
⋃

i=1

Ei

)

≤

n
∑

i=1

P (Ei).

Before we present the proof of the asymptotic log-concavity of the se-
quence {Bn,2k} for fixed k, let us introduce the (0, 1)-matrices associated
with a balanced 2-coloring of the n-cube with 2k vertices having weight 1.
Since such a 2-coloring is uniquely determined by the set of vertices having
weight 1, we may represent a 2-coloring by these vertices with weight 1. This
leads us to consider the set Mn,2k of n×2k matrices such that each row con-
tains k +1’s and k −1’s without two identical columns. Let Mn,2k = |Mn,2k|.
It is clear that

Mn,2k = (2k)!Bn,2k.

Hence the log-concavity of the sequence {Mn,2k}n≥log2 k+1 is equivalent to the
log-concavity of the sequence {Bn,2k}n≥log2 k+1.

Canfield, Gao, Greenhill, McKay and Robinson [2] obtained the following
estimate.

Theorem 3.2 If 0 ≤ k ≤ o(2n/2), then

Mn,2k =

(

2k

k

)n(

1 − O

(

k2

2n

))

.

To prove the asymptotic log-concavity of Mn,2k for fixed k, we need the
following monotone property which implies Theorem 3.2.

Theorem 3.3 Let cn,k be the real number such that

Mn,2k =

(

2k

k

)n(

1 − cn,k

(

k2

2n

))

. (3.3)

Then we have

cn,k > cn+1,k,

for k ≥ 3 and n ≥ 5 log 4

3

k + log 4

3

96.

Proof. Let Ln,2k be the set of matrices with every row consisting of k −1’s
and k +1’s that do not belong to Mn,2k and Ln,2k = |Ln,2k|. In other words,
any matrix in Ln,2k has two identical columns. Since the number of n × 2k
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matrices with each row consisting of k +1’s and k −1’s equals
(

2k
k

)n
. From

(3.3) it is easily checked that

Ln,2k = cn,k
k2

2n

(

2k

k

)n

. (3.4)

We now proceed to give an upper bound on the cardinality of Ln+1,2k.
For each M ∈ Ln+1,2k, it is easy to see that the matrix M ′ obtained from
M by deleting the (n + 1)-st row contains two identical columns as well.
Therefore, every matrix in Ln+1,2k can be obtained from a matrix in Ln,2k

by adding a suitable row to a matrix in Ln,2k as the (n + 1)-st row. This
observation enables us to construct three classes of matrices M from Ln+1,2k

by the properties of M ′. It is obvious that any matrix in Ln+1,2k belongs to
one of these three classes. Note that the classes are not necessarily exclusive.

Class 1: There exist at least three identical columns in M ′. For each
row of M ′, the probability that the three prescribed positions of this row are
identical equals

2

(

2k − 3

k

)/(

2k

k

)

.

Here the factor 2 indicates that there are two choices for the values at the
prescribed positions. Consequently, the probability that the three prescribed
columns in M ′ are identical equals

(

2

(

2k − 3

k

)/(

2k

k

))n

=

(

k − 2

2(2k − 1)

)n

<
1

4n
.

By the Bonferroni inequality, the probability that there are at least three
identical columns in M ′ is bounded by 8k3

4n
. Because the number of (n+1)×2k

matrices with each row consisting of k +1’s and k −1’s is
(

2k
k

)n+1
, the number

of matrices M in Ln+1,2k with M ′ containing at least three identical columns
is bounded by

8k3

4n

(

2k

k

)n+1

.

Class 2: There exist at least two pairs of identical columns in M ′. For
any two prescribed pairs (i1, i2) and (j1, j2) of columns, let us estimate the
probability that in M ′ the i1-th column is identical to the i2-th column and
the j1-th column is identical to the j2-th column, that is, for any row of M ′,
the value of the i1-th (respectively, j1-th) position is equal to the value of
the i2-th (respectively, j2-th) position. We have two cases for each row of
M ′. The first case is that the values at the positions i1, i2, j1 and j2 are all
identical. The probability for any given row to be in this case equals

2

(

2k − 4

k − 4

)/(

2k

k

)

.
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Again, the factor 2 comes from the two choices for the values at the prescribed
positions.

The second case is that the value of the i1-th position is different from the
value of the j1-th position. In this case, we have either the values at the i1-th
and i2-th positions are +1 and the values at the j1-th and j2-th positions
are −1 or the values at i1-th and i2-th position are −1 and the values at the
j1-th and j2-th positions are +1. Thus the probability for any given row to
be in this case equals

2

(

2k − 4

k − 2

)/(

2k

k

)

.

Combining the above two cases, we see that for k ≥ 3, the probability that
M ′ has two prescribed pairs of identical columns equals

(

2

(

2k − 4

k − 4

)/(

2k

k

)

+ 2

(

2k − 4

k − 2

)/(

2k

k

))n

<
1

4n
.

Again, by the Bonferroni inequality, the probability that there exist at least
two pairs of identical columns of M ′ is bounded by 16k4

4n
. It follows that the

number of matrices M in Ln+1,2k with M ′ containing at least two pairs of
identical columns is bounded by

16k4

4n

(

2k

k

)n+1

.

Class 3: There exists exactly one pair of identical columns in M ′. By the
definition, the number of matrices M ′ containing exactly one pair of identical
columns is bounded by Ln,2k. On the other hand, it is easy to see that for
each M ′ containing exactly one pair of identical columns, there are

2

(

2k − 2

k

)

=
k − 1

2k − 1

(

2k

k

)

(3.5)

matrices of Ln+1,2k which can be obtained by adding a suitable row as the
(n + 1)-th row. Combining (3.4) and (3.5), we find that the number of
matrices M of Ln+1,2k such that M ′ contains exactly one pair of identical
columns is bounded by

k − 1

2k − 1
cn,k

k2

2n

(

2k

k

)n+1

.

Clearly, Ln+1,2k is bounded by the sum of the cardinalities of the above
three classes. This yields the upper bound

Ln+1,2k <
8k3

4n

(

2k

k

)n+1

+
16k4

4n

(

2k

k

)n+1

+
k − 1

2k − 1
cn,k

k2

2n

(

2k

k

)n+1

,
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for k ≥ 3.

We claim that
8k3

4n
+

16k4

4n
<

1

4k − 2
cn,k

k2

2n
, (3.6)

when
n ≥ 5 log 4

3

k + log 4

3

96. (3.7)

Notice that the probability that two specified columns in M ′ are identical is

(

2

(

2k − 2

k

)/(

2k

k

))n

=

(

k − 1

2k − 1

)n

.

Since cn,k
k2

2n
is the probability that there exists at least two identical columns

in M ′, for k ≥ 2 we deduce that

cn,k
k2

2n
>

(

2

(

2k − 2

k

)/(

2k

k

))n

=

(

k − 1

2k − 1

)n

>
1

3n
.

But under the condition (3.7), we have

8k3

4n
+

16k4

4n
<

1

3n(4k − 2)
,

which implies (3.6). Since k−1
2k−1

+ 1
4k−2

= 1
2
, it follows from (3.6) that

Ln+1,2k < cn,k
k2

2n+1

(

2k

k

)n+1

, (3.8)

subject to the condition (3.7). Restating formula (3.4) for n + 1, we have

Ln+1,2k = cn+1,k
k2

2n+1

(

2k

k

)n+1

. (3.9)

Combining (3.8) and (3.9) gives

cn,k > cn+1,k,

given the condition (3.7). This completes the proof.

Applying Theorem 3.3, we arrive at the following inequality.

Theorem 3.4 When n > 5 log 4

3

k + log 4

3

96, we have

M2
n,2k > Mn−1,2kMn+1,2k.
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Proof. We only consider the case k ≥ 3. Let

Mn,2k =

(

2k

k

)n(

1 − cn,k
k2

2n

)

.

Then

M2
n,2k − Mn−1,2kMn+1,2k

=

(

2k

k

)2n
[

(

1 − cn,k
k2

2n

)2

−

(

1 − cn+1,k
k2

2n+1

)(

1 − cn−1,k
k2

2n−1

)

]

=

(

2k

k

)2n [

−cn,k
k2

2n−1
+ c2

n,k

k4

4n
+ cn+1,k

k2

2n+1
+ cn−1,k

k2

2n−1
− cn−1,kcn+1,k

k4

4n

]

.

By Theorem 3.3, we have cn−1,k > cn,k when k ≥ 3 and n > 5 log 4

3

k+log 4

3

96.
This implies that

cn,k
k2

2n−1
< cn−1,k

k2

2n−1
,

when k ≥ 3 and n > 5 log 4

3

k + log 4

3

96.

Now we claim cn,k < 4 for any n. The probability that a specified pair of
columns are equal is given by

(

2

(

2k − 2

k

)/(

2k

k

))n

=

(

k − 1

2k − 1

)n

<
1

2n
.

Since there are 2k columns in every M , by the Bonferroni inequality, the
probability that there exist at least two identical columns in M is bounded
by 4k2

2n
. This implies that cn,k < 4 for any n.

Since
5 log 4

3

k + log 4

3

96 > 2 log2 k + 3,

using the condition (3.7), we have

cn−1,kcn+1,k
k4

4n
< cn+1,k

k4

4n−1
≤ cn+1,k

k2

2n+1
.

Hence
M2

n,2k > Mn−1,2kMn+1,2k.

This completes the proof.

Since Mn,2k = (2k)!Bn,2k, Theorem 3.4 implies the asymptotic log-concavity
of Bn,2k for fixed k.

Corollary 3.5 When n > 5 log 4

3

k + log 4

3

96, we have

B2
n,2k > Bn−1,2kBn+1,2k.
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