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Abstract. Hirschhorn and Sellers studied arithmetic properties of the number of partitions
with odd parts distinct. In another direction, Hammond and Lewis investigated arithmetic
properties of the number of bipartitions. In this paper, we consider the number of bipartitions
with odd parts distinct. Let this number be denoted by pod−2(n). We obtain two Ramanujan
type identities for pod−2(n), which imply that pod−2(2n + 1) is even and pod−2(3n + 2) is di-
visible by 3. Furthermore, we show that for any α ≥ 1 and n ≥ 0, pod−2

(
32α+1n + 23×32α−7

8

)

is a multiple of 3 and pod−2

(
5α+1n + 11×5α+1

4

)
is divisible by 5. We also find combinatorial

interpretations for the two congruences modulo 2 and 3.
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1 Introduction

A partition λ of a positive integer n is any non-increasing sequence of positive integers whose
sum is n. The weight of λ is the sum of its parts, denoted by |λ|. A bipartition π of n is a
pair of partitions (π1, π2) with |π1|+ |π2| = n. Let p−2(n) denote the number of bipartitions
of n. The generating function for p−2(n) equals

∞∑

n=0

p−2(n)qn =
1

(q; q)2∞
.

In this paper, we shall employ the standard q-series notation [1]

(a; q)0 = 1, (a; q)n :=
n−1∏

k=0

(1− aqk), for n ≥ 1,

and

(a1, a2, . . . , am; q)∞ = lim
n→∞

m∏

j=1

(aj ; q)n, |q| < 1.

The function p−2(n) has drawn much interest, see, for example, [3, 9, 11–13, 16]. Ra-
manathan [16] established the following congruences:

p−2(5n + 2) ≡ p−2(5n + 3) ≡ p−2(5n + 4) ≡ 0 (mod 5), (1.1)

which are analogous to the classical congruences of Ramanujan, namely,

p(5n + 4) ≡ 0 (mod 5) (1.2)
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and
p(7n + 5) ≡ 0 (mod 7), (1.3)

where p(n) is the number of partitions of n.

Dyson [10] defined the rank of a partition as the largest part minus the number of parts.
Let N(r, t, n) denote the number of partitions of n whose rank is congruent to r modulo t.
Aktin and Swinnerton-Dyer [4] proved the following conjecture of Dyson [10]

N(r, 5, 5n + 4) =
p(5n + 4)

5
0 ≤ r ≤ 4,

and
N(r, 7, 7n + 5) =

p(7n + 5)
7

0 ≤ r ≤ 6.

For a bipartition π = (π1, π2), Hanmmond and Lewis [13] defined the birank b(π) as

b(π) = n(π1)− n(π2), (1.4)

where n(λ) denotes the number of parts of λ. It has been shown that the birank b(π) can be
used to give combinatorial interpretations of the congruences in (1.1). Recently, Garvan [11]
defined two biranks. One can be utilized to explain all three congruences in (1.1), while the
other is valid for two of the three congruences.

We wish to consider bipartitions with odd parts distinct. Recall that Andrews, Hirschhorn
and Sellers [2] have investigated arithmetic properties of partitions with even parts distinct.
Hirschhorn and Sellers [14] considered arithmetic properties of partitions with odd parts
distinct. To be precise, by a bipartition with odd parts distinct we mean a bipartition
π = (π1, π2) for which the odd parts of π1 are distinct and the odd parts of π2 are also
distinct. Notice that π1 and π2 are allowed to have an odd part in common. For example,
there are 11 bipartitions of 4:

((4), ∅) ((3, 1), ∅) ((2, 2), ∅) ((3), (1)) ((2, 1), (1)) ((2), (2))

((1), (2, 1)) ((1), (3)) (∅, (2, 2)) (∅, (3, 1)) (∅, (4)).

Let pod−2(n) denote the number of bipartitions of n with odd parts distinct. It is easy
to derive the generating function for pod−2(n), that is,

∞∑

n=0

pod−2(n)qn =
(−q; q2)2∞
(q2; q2)2∞

. (1.5)

The main objective of this paper is to study arithmetic properties of pod−2(n) in the spirit
of Ramanujan’s congruences for the partition function p(n). We shall prove that

∞∑

n=0

pod−2(2n + 1)qn =
2(q8; q8)2∞

(q; q)3∞(q4; q4)∞
(1.6)

and ∞∑

n=0

pod−2(3n + 2)qn = 3
(q2; q2)4∞(q6; q6)6∞
(q; q)6∞(q4; q4)6∞

, (1.7)
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which implies that for all n ≥ 0,

pod−2(2n + 1) ≡ 0 (mod 2) (1.8)

and
pod−2(3n + 2) ≡ 0 (mod 3). (1.9)

We also give three infinite families of congruences modulo 3 and two infinite families of
congruences modulo 5. For example, for α ≥ 1 and n ≥ 0,

pod−2

(
32α+1n +

23× 32α − 7
8

)
≡ 0 (mod 3) (1.10)

and

pod−2

(
5α+1n +

11× 5α + 1
4

)
≡ 0 (mod 5). (1.11)

Furthermore, we show that the birank b(π) defined by Hammond and Lewis can be used
to explain the congruence (1.9). Furthermore, we introduce another birank to give a com-
binatorial explanation of (1.9). Our birank c(π) of a bipartition π = (π1, π2) is defined
by

c(π) = l(π1)− l(π2), (1.12)

where l(λ) denotes the largest part of λ. It is worth mentioning that neither of the two
biranks b(π) and c(π) leads to a combinatorial interpretation of the congruence (1.8). It
should be noted that the birank c(π) is not the conjugate of b(π) for bipartitions with odd
parts distinct because the conjugation of such a bipartition no longer preserves this property.

This paper is organized as follows. In Section 2, two identities of Ramanujan type are
obtained. In Section 3, three infinite families of congruences modulo 3 for pod−2(n) are
established. In section 4, we obtain two infinite families of congruences modulo 5 for pod−2(n).
In Section 5, we prove that both biranks b(π) and c(π) can be applied to give a combinatorial
interpretation of the fact that pod−2(3n + 2) is a multiple of 3. We also give a simple
combinatorial explanation of the fact that pod−2(2n + 1) is even for any n.

2 Two Ramanujan-type identities

In this section, we shall prove the following two Ramanujan-type identities for the number of
bipartitions with odd parts distinct.

Theorem 2.1. We have
∞∑

n=0

pod−2(2n + 1)qn =
2(q8; q8)2∞

(q; q)3∞(q4; q4)∞
, (2.1)

∞∑

n=0

pod−2(3n + 2)qn = 3
(q2; q2)4∞(q6; q6)6∞
(q; q)6∞(q4; q4)6∞

. (2.2)
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We need some properties of the function ψ(q), namely,

ψ(q) =
∞∑

n=0

qn(n+1)/2. (2.3)

Let f(a, b) be Ramanujan’s general theta function given by

f(a, b) =
∞∑

n=−∞
an(n−1)/2bn(n+1)/2, |ab| < 1.

Jacobi’s triple product identity can be stated in Ramanujan’s notation as follows

f(a, b) = (−a, ab)∞(−b; ab)∞(ab; ab)∞. (2.4)

Thus,

ψ(−q) = f(−q,−q3) =
(q2; q2)∞
(−q; q2)∞

. (2.5)

Combining (1.5) and (2.5), we obtain that

∞∑

n=0

pod−2(n)qn =
1

ψ(−q)2
. (2.6)

It should be noted that Bringmann and Lovejoy [7] have studied arithmetic properties of
the numbers pp(n), which are the coefficients of qn in 1/ϕ(−q)2, namely,

∞∑

n=0

pp(n)qn =
1

ϕ(−q)2
,

where

ϕ(q) =
∞∑

n=−∞
qn2

. (2.7)

Lemma 2.1. We have

1
ψ(−q)

=
1

(q2; q2)∞(q4; q4)∞

(
f(q6, q10) + qf(q2, q14)

)
(2.8)

=
ψ(−q9)
ψ(−q3)4

(
A(−q3)2 + qA(−q3)ψ(−q9) + q2ψ(−q9)2

)
, (2.9)

where

A(q) =
(q2; q2)∞(q3; q3)2∞
(q; q)∞(q6; q6)∞

.

Proof. It is easily checked that

ψ(q)ψ(−q) =
(q2; q2)∞
(q; q2)∞

· (q2; q2)∞
(−q; q2)∞

=
(q2; q2)2∞
(q2; q4)∞

= (q2; q2)∞(q4; q4)∞. (2.10)
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From [5, Corollary (ii), p.49], it follows that

ψ(q) = f(q6, q10) + qf(q2, q14). (2.11)

Dividing (2.11) by (2.10), we are led to the 2-dissection (2.8) of 1/ψ(−q). The proof of (2.9)
is a little more involved; See [14, Lemma 2.2] for the details.

In view of the above lemma, we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. By the 2-dissection (2.8) of 1/ψ(−q) and the generating function (2.6)
for pod−2(n), we see that

∞∑

n=0

pod−2(n)qn =
1

(q2; q2)2∞(q4; q4)2∞

(
f(q6, q10) + qf(q2, q14)

)2
.

Considering the coefficients of q2n+1 on both sides, we observe that

∞∑

n=0

pod−2(2n + 1)qn =
2

(q; q)2∞(q2; q2)2∞
f(q3, q5)f(q, q7).

Consequently, we get (2.1), since

f(q3, q5)f(q, q7) = (−q,−q3,−q5,−q7; q8)∞(q8; q8)2∞

= (−q; q2)∞(q8; q8)2∞

=
(q2; q2)2∞(q8; q8)2∞
(q; q)∞(q4; q4)∞

.

This completes the proof of (2.1).

By the 3-dissection (2.9) of 1/ψ(−q), we find that

∞∑

n=0

pod−2(n)qn =
ψ(−q9)2

ψ(−q3)8
(
A(−q3)2 + qA(−q3)ψ(−q9) + q2ψ(−q9)2

)2
.

Extracting the terms q3n+2 on both sides, we obtain

∞∑

n=0

pod−2(3n + 2)q3n+2 = 3q2 ψ(−q9)2

ψ(−q3)8
A(−q3)2ψ(−q9)2.

By dividing both sides by q2 and replacing q3 by q, arrive at (2.2). This completes the proof.

As consequences of Theorem 2.1, we obtain the following congruences.

Corollary 2.1. For each nonnegative integer n,

pod−2(2n + 1) ≡ 0 (mod 2) and pod−2(3n + 2) ≡ 0 (mod 3).
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3 Three infinite families of congruences modulo 3

In this section, we wish to establish the following three infinite families of Ramanujan-like
congruences modulo 3 satisfied by pod−2(n) by two different approaches. The proof of Theo-
rem 3.1 needs the formula for the number of ways to represent an integer n as a sum of two
triangular numbers as well as a characterization of integers that cannot be written as a sum
of two squares. On the other hand, Theorem 3.2 follows from the generating function for the
numbers pod−2(3n + 1). For notational convenience, we assume that all the congruences in
this section are modulo 3.

Theorem 3.1. For all α ≥ 0 and n ≥ 0,

pod−2

(
32α+1n +

23× 32α − 7
8

)
≡ 0 (mod 3). (3.1)

Theorem 3.2. For all α ≥ 1 and n ≥ 0,

pod−2

(
32α+1n +

7× 32α + 1
4

)
≡ 0 (mod 3) (3.2)

and

pod−2

(
32α+1n +

11× 32α + 1
4

)
≡ 0 (mod 3). (3.3)

To prove the above congruences, the following lemma is useful.

Lemma 3.1.

ψ(q) = f(q3, q6) + qψ(q9), (3.4)

ψ(q3) ≡ ψ(q)3. (3.5)

Proof. From [5, Corollary (ii), p.49] it is clear that the identity (3.4) holds. Since

(1− qn)3 ≡ (1− q3n) (mod 3)

and

ψ(q) =
(q2; q2)2∞
(q; q)∞

=

∏
n≥1(1− q2n)2∏
n≥1(1− qn)

,

we obtain (3.5). This completes the proof.

Proof of Theorem 3.1. By Lemma 3.1, we have

∞∑

n=0

pod−2(n)(−q)n =
ψ(q)
ψ(q)3

≡ f(q3, q6) + qψ(q9)
ψ(q3)

.

Extracting the terms q, q4, q7, . . . on both sides of the above identity, dividing by q, and
replacing q3 by q, we get

∞∑

n=0

(−1)n+1pod−2(3n + 1)qn ≡ ψ(q3)
ψ(q)

≡ ψ(q)2. (3.6)
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Let the numbers t2(n) be defined by

ψ(q)2 =
∞∑

n=0

t2(n)qn.

By comparing the coefficients of qn on both sides of (3.6), we find that for each n ≥ 0,

pod−2(3n + 1) ≡ (−1)n+1t2(n). (3.7)

From [6, Theorem 3.6.2], it follows that for all integers n ≥ 0,

t2(n) = d1,4(4n + 1)− d3,4(4n + 1),

where dj,k(n) denotes the number of positive divisors d of n such that d ≡ j (mod k).
Moreover, by [15, Theorem 2.15], we have that d1,4(n)−d3,4(n) = 0 if and only if there exists
a prime p congruent to 3 modulo 4 in the canonical factorization of n appears with an odd
exponent.

It is clear that for α ≥ 1 and n ≥ 0, the integer s = 4 × 32αn + 23×32α−1−3
2 is a multiple

of 3 but not divisible by 9. This implies that

t2

(
s− 1

4

)
= d1,4(s)− d3,4(s) = 0.

Substituting n = s−1
4 into (3.7), we obtain that

pod−2

(
32α+1n +

23× 32α − 7
8

)
≡ 0 (mod 3).

The case α = 0 has been considered in Corollary 2.1. This completes the proof.

Proof of Theorem 3.2. Invoking the identity (3.6) in the proof of Theorem 3.1, we deduce
that ∞∑

n=0

pod−2(3n + 1)qn ≡ −ψ(−q)2. (3.8)

Applying (2.9) and (3.5) to (3.8), we obtain

∞∑

n=0

pod−2(3n + 1)qn = −ψ(−q)3

ψ(−q)
≡ −ψ(−q3)

ψ(−q)

≡ − ψ(−q9)
ψ(−q3)3

(
A(−q3)2 + qA(−q3)ψ(−q9) + q2ψ(−q9)2

)
.

Extracting the terms q3n+2 for n ≥ 0, we find that

∞∑

n=0

pod−2(9n + 7)q3n+2 ≡ −q2 ψ(−q9)3

ψ(−q3)3
.
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Dividing both sides of the above identity by q2 and replacing q3 by q, we see that

∞∑

n=0

pod−2(9n + 7)qn ≡ −ψ(−q3)3

ψ(−q)3
≡ −ψ(−q3)2.

Similarly, it can be shown that

∞∑

n=0

pod−2(27n + 7)qn ≡ −ψ(−q)2 (3.9)

and for n ≥ 0,
pod−2(27n + 16) ≡ pod−2(27n + 25) ≡ 0.

So the proof is complete for the case α = 1. Combining (3.8) and (3.9), it can be seen that
for n ≥ 0,

pod−2(3n + 1) ≡ pod−2(27n + 7). (3.10)

By induction on α, it is easy to establish the congruences (3.2) and (3.3) based on the relation
(3.10).

4 Two infinite families of congruences modulo 5

In this section, we give two infinite families of Ramanujan-like congruences modulo 5 satis-
fied by pod−2(n) from a modular equation of degree 5 due to Ramanujan. For notational
convenience, we assume that all the congruences in this section are modulo 5.

Theorem 4.1. For all α ≥ 1 and n ≥ 0,

pod−2

(
5α+1n +

11× 5α + 1
4

)
≡ 0 (mod 5) (4.1)

and

pod−2

(
5α+1n +

19× 5α + 1
4

)
≡ 0 (mod 5). (4.2)

To prove the above congruences, we need the following lemma.

Lemma 4.1. Let 1 ≤ r ≤ 4. Let the numbers a(n) be given by

∞∑

n=0

a(n)qn =
∞∑

n=0

q5n+r

1− q10n+2r
.

Then ∞∑

n=0

a(5n)qn =
∞∑

n=0

q5n+r

1− q10n+2r
.
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Proof. Clearly,
∞∑

n=0

q5n+r

1− q10n+2r
=

∞∑

n=0

∞∑

k=0

q(5n+r)(2k+1). (4.3)

Since for 1 ≤ r ≤ 4 and k ≥ 0, (5n+ r)(2k +1) is a multiple of 5 if and only if k ≡ 2 (mod 5).
It follows that

∞∑

n=0

a(5n)q5n =
∞∑

n=0

∞∑

k≡2 (mod 5)

q(5n+r)(2k+1)

=
∞∑

n=0

∞∑

t=0

q(5n+r)(10t+5).

Replacing q5 by q and using (4.3), we complete the proof.

Proof of Theorem 4.1. It is easy to deduce the following relation

ψ(q5) ≡ ψ(q)5. (4.4)

From the generating function (2.6) for pod−2(n) and (4.4) it follows that

q
∞∑

n=0

pod−2(n)(−q)n =
q

ψ(q)2
≡ qψ(q)3ψ(q5)

ψ(q5)2

≡ qψ(q)3ψ(q5)− 5q2ψ(q)ψ(q5)3

ψ(q5)2
. (4.5)

From [5, Entry 8(i), p.249], we see that

qψ(q)3ψ(q5)− 5q2ψ(q)ψ(q5)3 =
∞∑

n=0

(5n + 1)q5n+1

1− q10n+2
−

∞∑

n=0

(5n + 2)q5n+2

1− q10n+4

−
∞∑

n=0

(5n + 3)q5n+3

1− q10n+6
+

∞∑

n=0

(5n + 4)q5n+4

1− q10n+8
.

This implies that

qψ(q)3ψ(q5)− 5q2ψ(q)ψ(q5)3 ≡
∞∑

n=0

q5n+1

1− q10n+2
−

∞∑

n=0

2q5n+2

1− q10n+4

−
∞∑

n=0

3q5n+3

1− q10n+6
+

∞∑

n=0

4q5n+4

1− q10n+8
.

Write the above series modulo 5 as ∞∑

n=0

A(n)qn.

Applying Lemma 4.1 yields
∞∑

n=0

A(5n)qn ≡ qψ(q)3ψ(q5)− 5q2ψ(q)ψ(q5)3.
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Extracting the terms q5n from (4.5) and replacing q5 by q, we have

−
∞∑

n=0

pod−2(5n + 4)(−q)n+1 ≡

∞∑
n=0

A(5n)qn

ψ(q)2
.

Combining the above two equations, we find that

−
∞∑

n=1

pod−2(5n− 1)(−q)n ≡ qψ(q)3ψ(q5)− 5q2ψ(q)ψ(q5)3

ψ(q)2

≡ qψ(q)3ψ(q5)
ψ(q)2

≡ qψ(q)ψ(q5) (4.6)

= ψ(q5)
(
qf(q10, q15) + q2f(q5, q20) + q4ψ(q25)

)
. (4.7)

Note that the last equation follows from [5, Corollary (ii), p.49]. Comparing coefficients of
q5n+a(a = 0, 3, 4) in (4.7), we see that for n ≥ 0,

pod−2(25n + 14) ≡ pod−2(25n + 24) ≡ 0 (4.8)

and ∞∑

n=0

pod−2(25n + 19)(−q)n+1 ≡ qψ(q)ψ(q5).

In view of the above identity and (4.6), we deduce that
∞∑

n=0

pod−2(25n + 19)(−q)n+1 ≡ −
∞∑

n=0

pod−2(5n + 4)(−q)n+1,

which implies that for n ≥ 0,

pod−2(25n + 19) ≡ −pod−2(5n + 4).

Using the above relation and (4.8), it is easily checked by induction that for α ≥ 1,

pod−2

(
5α+1n +

11× 5α + 1
4

)
≡ pod−2

(
5α+1n +

19× 5α + 1
4

)
≡ 0.

This completes the proof.

It should be noted that Chan [8] has used modular forms to establish infinite families of
congruences modulo 5 for Andrews-Paule’s broken 2-diamond partitions. His approach can
also be used to prove the congruences in this section.

5 Combinatorial interpretations

In this section, we show that both the biranks b(π) and c(π) can be used to give a combina-
torial interpretation of the fact that pod−2(3n + 2) is divisible by 3. We conclude this paper
with a simple explanation of the parity of pod−2(2n + 1).
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Let R(m,n) denote the number of bipartitions π of n with odd parts distinct such that
birank b(π) = m. By using the transformation that interchanges π1 and π2 in (1.4), we see
that

R(m,n) = R(−m,n). (5.1)

Let R(r, t, n) be the number of bipartitions π of n with odd parts distinct such that birank
b(π) is congruent to r modulo t, i.e.,

R(r, t, n) =
∑

m≡r (mod t)

R(m,n).

Then we have R(r, t, n) = R(t−r, t, n). Moreover, it is easy to derive the following generating
function for R(m,n),

∞∑

n=0

∞∑
m=−∞

R(m,n)zmqn =
(−qz; q2)∞(−q/z; q2)∞
(q2z; q2)∞(q2/z; q2)∞

. (5.2)

The above formula enables us to obtain generating functions for the numbers of the form
R(r, t, n)−R(s, t, n).

Theorem 5.1.

∞∑

n=0

(R(0, 2, n)−R(1, 2, n)) qn =
ϕ(−q)
ψ(q2)

, (5.3)

∞∑

n=0

(R(0, 3, n)−R(1, 3, n)) qn =
ψ(−q)
ψ(−q3)

, (5.4)

∑

n=0

(R(0, 4, n)−R(2, 4, n)) qn =
ϕ(q2)
ψ(q2)

. (5.5)

Proof. Taking z = −1 in the generating function (5.2), we have

∞∑

n=0

(R(0, 2, n)−R(1, 2, n)) qn =
(q; q2)2∞

(−q2; q2)2∞
=

(q; q)2∞
(q4; q4)2∞

=
(q; q)2∞

(q2; q2)∞
× (q2; q4)∞

(q4; q4)∞

=
ϕ(−q)
ψ(q2)

.

Note that the last equation holds since

ϕ(q) = f(q, q) = (−q; q2)2∞(q2; q2)∞.

Substituting z = ξ = e2πi/3 into both sides of (5.2) and applying the relation R(1, 3, n) =
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R(2, 3, n), we find that

(−qξ; q2)∞(−qξ2; q2)∞
(q2ξ; q2)∞(q2ξ2; q2)∞

=
∞∑

n=0

(
R(0, 3, n) + R(1, 3, n)ξ + R(2, 3, n)ξ2

)
qn

=
∞∑

n=0

(R(0, 3, n)−R(1, 3, n)) qn.

Since 1− x3 = (1− x)(1− xξ)(1− xξ2), we see that

(−qξ; q2)∞(−qξ2; q2)∞
(q2ξ; q2)∞(q2ξ2; q2)∞

=
(−q3; q6)∞(q2; q2)∞
(q6; q6)∞(−q; q2)∞

=
ψ(−q)
ψ(−q3)

.

Hence we arrive at the relation (5.4). Similarly, setting z = i in (5.2) and using the fact that
R(1, 4, n) = R(3, 4, n), we get

∞∑

n=0

(R(0, 4, n)−R(2, 4, n)) qn =
(−qi, qi; q2)∞

(q2i,−q2i; q2)∞
=

(−q2; q4)∞
(−q4; q4)∞

.

It remains to show that

ϕ(q2)
ψ(q2)

= (−q2; q4)2∞(q4; q4)∞ × (q2; q4)∞
(q4; q4)∞

= (−q2; q4)∞(q4; q8)∞ =
(−q2; q4)∞
(−q4; q4)∞

.

This completes the proof.

Based on the relation (5.4), we see that the birank given by Hammond and Lewis leads to
a classification of the bipartitions of 3n + 2 with odd parts distinct into three equinumerous
sets. Thus we deduce the following theorem.

Theorem 5.2. For 0 ≤ r ≤ 2 ,

R(r, 3, 3n + 2) =
pod−2(3n + 2)

3
.

Proof. By (3.4) and (5.4), we find

∞∑

n=0

(R(0, 3, n)−R(1, 3, n)) qn =
f(−q3, q6)− qψ(−q9)

ψ(−q3)
.

Since the term q3n+2 does not appear on the right-hand side of above identity, it follows that
for n ≥ 0,

R(0, 3, 3n + 2) = R(1, 3, 3n + 2).

Combining the fact that R(1, 3, n) = R(2, 3, n) and the relation
∑2

r=0 R(r, 3, n) = pod−2(n),
we conclude that for 0 ≤ r ≤ 2,

R(r, 3, 3n + 2) =
pod−2(3n + 2)

3
.
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This completes the proof.

We now use the new birank c(π) to give another interpretation of the congruence relation
(1.9). As above, we need to consider R2(m,n) as the number of bipartitions π of n with odd
parts distinct and whose birank c(π) equals m. The following theorem gives the generating
function for R2(m,n).

Theorem 5.3.

∞∑

n=0

∞∑
m=−∞

R2(m,n)zmqn = (1 + q/z)(1 + qz)
(−q3z2; q2)∞
(q2z2; q2)∞

(−q3/z2; q2)∞
(q2/z2; q2)∞

. (5.6)

Proof. Let Ak(n) (resp. Bk(n)) denote the number of partitions of n such that the odd parts
are distinct and the largest part equals 2k (resp. 2k + 1). It is easy to see that

A(z, q) :=
∞∑

k=0

∞∑

n=0

Ak(n)z2kqn =
∞∑

m=0

q2mz2m(−q; q2)m

(q2; q2)m

and

B(z, q) :=
∞∑

k=0

∞∑

n=0

Bk(n)z2k+1qn =
∞∑

m=0

q2m+1z2m+1(−q; q2)m

(q2; q2)m
.

By the q-binomial theorem [6, Theorem 1.3.1], we find that

A(z, q) =
(−q3z2; q2)∞
(q2z2; q2)∞

and

B(z, q) = qz
(−q3z2; q2)∞
(q2z2; q2)∞

.

Let π = (λ, µ) be a bipartition. Consider the parities of the largest parts of λ and µ. We
have

∞∑

n=0

∞∑
m=−∞

R2(m,n)zmqn = A(z, q)A(1/z, q) + A(z, q)B(1/z, q)

+B(z, q)A(1/z, q) + B(z, q)B(1/z, q)

= (1 + q/z + qz + q2)
(−q3z2; q2)∞
(q2z2; q2)∞

(−q3/z2; q2)∞
(q2/z2; q2)∞

= (1 + q/z)(1 + qz)
(−q3z2; q2)∞
(q2z2; q2)∞

(−q3/z2; q2)∞
(q2/z2; q2)∞

.

This completes the proof.

Let R2(r, t, n) denote the number of bipartitions π of n with odd parts distinct such that
c(π) ≡ r (mod t). We are now ready to show that the birank c(π) implies a combinatorial
explanation of congruence (1.9).
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Theorem 5.4. For 0 ≤ r ≤ 2,

R2(r, 3, 3n + 2) =
pod−2(3n + 2)

3
.

Proof. Let ξ = e2πi/3. Substituting z = ξ into (5.6), we get

∞∑

n=0

2∑

r=0

R(r, 3, n)ξrqn = (1 + qξ)(1 + qξ2)
(−q3ξ2; q2)∞
(q2ξ2; q2)∞

(−q3ξ; q2)∞
(q2ξ; q2)∞

=
(−qξ2; q2)∞
(q2ξ2; q2)∞

(−qξ; q2)∞
(q2ξ; q2)∞

=
(−q3; q6)∞
(q6; q6)∞

∞∑

n=0

(−q)n(n+1)/2.

Since no triangular numbers n(n+1)/2 are congruent to 2 modulo 3, equating coefficients of
qn on both sides, we find that, for each integer n ≥ 0,

2∑

r=0

R(r, 3, 3n + 2)ξr = 0.

Consequently,
R2(0, 3, 3n + 2) = R2(1, 3, 3n + 2) = R2(2, 3, 3n + 2),

since ξ is one of the roots of the irreducible polynomial 1 + z + z2 = 0. This completes the
proof.

Here is a simple combinatorial explanation of the congruence (1.8). Let us define the
rank d(π) of a bipartition π = (π1, π2) as the number of parts of π1. Let R3(m,n) denote the
number of bipartitions π of n with odd parts distinct and whose rank d(π) = m. Let R3(r, t, n)
denote the number of bipartitions π of n with odd parts distinct such that d(π) ≡ r (mod t).
The generating function for R3(m,n) equals

∞∑

n=0

∞∑

m=0

R3(m,n)zmqn =
(−qz; q2)∞
(q2z; q2)∞

· (−q; q2)∞
(q2; q2)∞

.

Setting z = −1, we get

∞∑

n=0

(R3(0, 2, n)−R3(1, 2, n)) qn =
(q2; q4)∞
(q4; q4)∞

, (5.7)

which immediately implies that

R3(0, 2, 2n + 1) = R3(1, 2, 2n + 1) (5.8)

and ∞∑

n=0

(R3(0, 2, 2n)−R3(1, 2, 2n)) (−q)n =
(−q; q2)∞
(q2; q2)∞

. (5.9)
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In light of (5.8), we see that the rank d(π) leads to a combinatorial interpretation of the
congruence (1.8). It is worth mentioning that the right-hand side of (5.9) is the generating
function for partitions with odd parts distinct [14].
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