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1 Introduction

The main objective of this paper is to study the q-log-convexity of a class of
polynomials whose coefficients satisfy a triangular recurrence relation with
linear coefficients. The notion of log-convexity is closely related to log-
concavity. Stanley introduced the concept of q-log-concavity, which natu-
rally leads to the notion of q-log-convexity. Compared with q-log-concave
polynomials, q-log-convex polynomials did not draw much attention. Only
till recently, Liu and Wang [16] have shown that some classical polynomials
are q-log-convex, such as the Bell polynomials and the Eulerian polynomials.

In this paper, we will show that a polynomial

Pn(q) =

n
∑

k=0

T (n, k)qk (1.1)

is q-log-convex if the coefficients T (n, k) satisfy certain recurrence relation
with linear coefficients in n and k. The concept of strong q-log-concavity is
due to Sagan [18]. In this framework, we will show that the Bell polyno-
mials, the Bessel polynomials, the Ramanujan polynomials and the Dowling
polynomials are strongly q-log-convex.
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Let us give a brief review of the background and terminology. Unimodal
and log-concave sequences and polynomials often arise in combinatorics, al-
gebra and geometry; See the surveys of Brenti [4, 5] and Stanley [20]. A
sequence {zk}k≥0 of nonnegative real numbers is said to be unimodal if there
exists an integer r ≥ 0 such that

z0 ≤ z1 ≤ · · · ≤ zr ≥ zr+1 ≥ zr+2 ≥ · · · .

It is said to be log-concave if

z2

m ≥ zm+1zm−1, m ≥ 1,

and it is said to be strongly log-concave if

zmzn ≥ zm−1zn+1, n ≥ m ≥ 1.

For a sequence of positive real numbers, log-concavity is equivalent to strong
log-concavity and implies unimodality.

Analogously, a sequence {zk}k≥0 of nonnegative real numbers is said to
be log-convex if

z2

m ≤ zm+1zm−1, m ≥ 1,

and it is said to be strongly log-convex if

zmzn ≤ zm−1zn+1, n ≥ m ≥ 1.

It is also easily seen that, for a sequence of positive real numbers, log-
concavity is equivalent to the log-convexity of the sequence of the reciprocals;
See [16].

However, the equivalence of log-concavity and strong log-concavity does
not apply to polynomial sequences. The q-log concavity of polynomials has
been extensively studied; See, for example, Butler [7], Krattenthaler [14],
Leroux [17], and Sagan [18]. Adopting the notation of Sagan [18], we write

f(q) ≥q g(q)

if the difference f(q)−g(q) has nonnegative coefficients as a polynomial of q.
A sequence of polynomials {fk(q)}k≥0 over the field of real numbers is called
q-log-concave if

fm(q)2 ≥q fm+1(q)fm−1(q), m ≥ 1,

and it is strongly q-log-concave if

fm(q)fn(q) ≥q fm−1(q)fn+1(q), n ≥ m ≥ 1.
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Based on the q-log concavity, it is natural to define the q-log-convexity and
the strong q-log-convexity. We say that a polynomial sequence {fn(q)}n≥0 is
q-log-convex if

fm+1(q)fm−1(q) ≥q fm(q)2, m ≥ 1,

and it is strongly q-log-convex if

fm−1(q)fn+1(q) ≥q fm(q)fn(q), n ≥ m ≥ 1.

For a sequence of polynomials, q-log-convexity is also not equivalent to strong
q-log-convexity. Note that Butler and Flanigan [8] defined a different q-
analogue of log-convexity.

For a q-log-convex sequence of polynomials Pn(q) as given in (1.1), we
will be concerned with the linear transformation associated with Pn(q) which
transforms a sequence {zn}n≥0 into a sequence {wn}n≥0 given by

wn =
n

∑

k=0

T (n, k)zk.

We say that the linear transformation preserves log-convexity, if, for any
given log-convex sequence {zn}n≥0 of positive real numbers, the sequence
{wn}n≥0 defined by the above transformation is also log-convex. For the
Bell polynomials, the corresponding linear transformation is defined by the
Stirling numbers of the second kind. It has been proved that the Bell trans-
formation preserves log-convexity [16]. In this paper, we will show that the
Bessel transformation preserves log-convexity.

2 The strong q-log-convexity

In this section, we consider polynomials

Pn(q) =

n
∑

k=0

T (n, k)qk, n ≥ 0,

where the coefficients T (n, k) are nonnegative real numbers and satisfy the
following recurrence relation

T (n, k) = (a1n + a2k + a3)T (n − 1, k)

+ (b1n + b2k + b3)T (n − 1, k − 1), for n ≥ k ≥ 1, (2.2)

and the boundary conditions

T (n,−1) = T (n, n + 1) = 0, for n ≥ 1,
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a1 ≥ 0, a1 + a2 ≥ 0, a1 + a2 + a3 > 0,

and
b1 ≥ 0, b1 + b2 ≥ 0, b1 + b2 + b3 > 0.

For the triangular array {T (n, k)}n≥k≥0, we always assume that T (0, 0) > 0.
Thus we have T (n, k) > 0 for 0 ≤ k ≤ n.

The following lemma is a special case of Theorem 2 of Kurtz [15].

Lemma 2.1 Suppose that the positive array {T (n, k)}n≥k≥0 satisfies the re-
currence relation (2.2). Then, for given n, the sequence {T (n, k)}0≤k≤n is
log-concave, namely, for 0 ≤ k ≤ n,

T (n, k)2 ≥ T (n, k − 1)T (n, k + 1). (2.3)

Using the log-concavity (2.3) for the triangular array {T (n, k)}n≥k≥0,
Liu and Wang obtained a sufficient condition for the polynomial sequence
{Pn(q)}n≥0 to be q-log-convex [16, Theorem 4.1].

Theorem 2.2 Suppose that the array {T (n, k)}n≥k≥0 of positive numbers
satisfies the recurrence relation (2.2) and the additional condition

(a2b1 − a1b2)n + a2b2k + (a2b3 − a3b2) ≥ 0, for 0 < k ≤ n.

Then the polynomials Pn(q) form a q-log-convex sequence.

This theorem can be used to show that the Bell polynomials and the
Eulerian polynomials are q-log-convex. We will give alternative conditions
for the recurrence relation (2.2) and will show that our conditions are satisfied
by the Bell polynomials, the Bessel polynomials, the Ramanujan polynomials
and the Dowling polynomials. It is also hoped that further studies will be
carried out for more other types of recurrence relations with polynomial or
even rational coefficients in n and k.

An important property of the triangular array satisfying our conditions
is described by the following lemma.

Lemma 2.3 Suppose that the array {T (n, k)}n≥k≥0 of positive numbers sat-
isfies (2.2) with a2, b2 ≥ 0. Then, for any l′ ≥ l ≥ 0 and m′ ≥ m ≥ 0, we
have

T (m, l)T (m′, l′) − T (m, l′)T (m′, l) ≥ 0. (2.4)
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Proof. Restate (2.4) as

T (m, l′)

T (m, l)
≤

T (m′, l′)

T (m′, l)
.

It suffices to show that for any s ≥ m

T (s, l′)

T (s, l)
≤

T (s + 1, l′)

T (s + 1, l)
.

Let
f(l, l′, s) = T (s, l)T (s + 1, l′) − T (s, l′)T (s + 1, l).

From the recurrence relation (2.2), we see that

f(l, l′, s) = (a1(s + 1) + a2l
′ + a3) T (s, l′)T (s, l)

+ (b1(s + 1) + b2l
′ + b3)T (s, l′ − 1)T (s, l)

− (a1(s + 1) + a2l + a3) T (s, l)T (s, l′)

− (b1(s + 1) + b2l + b3) T (s, l − 1)T (s, l′)

= (b1(s + 1) + b2l
′ + b3) T (s, l′ − 1)T (s, l)

− (b1(s + 1) + b2l + b3) T (s, l − 1)T (s, l′)

+ a2(l
′ − l)T (s, l)T (s, l′)

≥ (b1(s + 1) + b2l
′ + b3) T (s, l − 1)T (s, l′)

− (b1(s + 1) + b2l + b3) T (s, l − 1)T (s, l′)

+ a2(l
′ − l)T (s, l)T (s, l′) (by Lemma 2.1)

= b2(l
′ − l)T (s, l − 1)T (s, l′) + a2(l

′ − l)T (s, l)T (s, l′),

Which is nonnegative in view of the condition a2, b2 ≥ 0. This completes the
proof.

The main result of this paper is given below.

Theorem 2.4 Suppose that the array {T (n, k)}n≥k≥0 of positive numbers
satisfies (2.2) with a2, b2 ≥ 0. Then the polynomial sequence {Pn(q)}n≥0 is
strongly q-log-convex, namely, for any n ≥ m ≥ 1,

Pm−1(q)Pn+1(q) − Pm(q)Pn(q) ≥q 0. (2.5)

Proof. Throughout the proof, we simply write Pn for Pn(q). Let

P ′
nPm−1 − PnP ′

m−1 =
m+n−1
∑

i=0

Aiq
i,
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where P ′
n is the derivative of Pn with respect to q. We claim that Ai ≥ 0 for

any i. Invoking the recurrence relation (2.2), the coefficient of qi in P ′
nPm−1

equals

i
∑

k=0

(i − k + 1)T (n, i − k + 1)T (m − 1, k)

=
i

∑

k=0

(i − k + 1)(a1n + a2(i − k + 1) + a3)T (n − 1, i − k + 1)T (m − 1, k)

+
i

∑

k=0

(i − k + 1)(b1n + b2(i − k + 1) + b3)T (n − 1, i − k)T (m − 1, k).

Again, based on (2.2), the coefficient of qi in PnP ′
m−1 equals

i+1
∑

k=1

kT (n, i − k + 1)T (m − 1, k)

=
i+1
∑

k=1

k(a1n + a2(i − k + 1) + a3)T (n − 1, i − k + 1)T (m − 1, k)

+
i

∑

k=0

k(b1n + b2(i − k + 1) + b3)T (n − 1, i − k)T (m − 1, k).

Let

ck = (i − 2k + 1)(a1n + a2(i − k + 1) + a3),

dk = (i − 2k + 1)(b1n + b2(i − k + 1) + b3).

For 0 ≤ k ≤ bi/2c, we find that

ck + ci−k+1 = (i − 2k + 1)(a1n + a2(i − k + 1) + a3)

+ (2k − i − 1)(a1n + a2k + a3)

= a2(i − 2k + 1)2,

which is nonnegative. Moreover,

dk + di−k = (i − 2k + 1)(b1n + b2(i − k + 1) + b3)

+ (2k − i + 1)(b1n + b2(k + 1) + b3)

= b2(i − 2k + 1)(i − 2k) + 2(b1n + b2(k + 1) + b3),

which is also nonnegative.

By Lemma 2.3, for 0 ≤ k ≤ bi/2c, we obtain

T (m − 1, 0)T (n − 1, i + 1) ≥ T (m − 1, i + 1)T (n − 1, 0), (2.6)

T (m − 1, k)T (n − 1, i − k + 1) ≥ T (m − 1, i − k + 1)T (n − 1, k), (2.7)

T (m − 1, k)T (n − 1, i − k) ≥ T (m − 1, i − k)T (n − 1, k). (2.8)
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We now need to consider the parity of i. First, consider the case when i
is odd. Suppose that i = 2j + 1 for some j. Clearly, we have cj+1 = 0. Since
all T (n, k) are nonnegative, we get

Ai =(i + 1)(a1n + a2(i + 1) + a3)T (m − 1, 0)T (n − 1, i + 1)

− (i + 1)(a1n + a3)T (m − 1, i + 1)T (n − 1, 0)

+

i
∑

k=1

ckT (m − 1, k)T (n − 1, i − k + 1)

+
i

∑

k=0

dkT (m − 1, k)T (n − 1, i − k)

≥
i

∑

k=1

ckT (m − 1, k)T (n − 1, i − k + 1) (by (2.6))

+
i

∑

k=0

dkT (m − 1, k)T (n − 1, i − k)

≥

j
∑

k=1

(ck + ci−k+1)T (m − 1, k)T (n − 1, i − k + 1) (by (2.7))

+

j
∑

k=0

(dk + di−k)T (m − 1, k)T (n − 1, i − k), (by (2.8))

which is nonnegative, since ck + ci−k+1 ≥ 0 and dk + di−k ≥ 0.

The case when i is even can be dealt with via a similar argument. Suppose
that i = 2j for some j. In this case, we have dj ≥ 0. Therefore

Ai ≥

i
∑

k=1

ckT (m − 1, k)T (n − 1, i − k + 1) (by (2.6))

+

i
∑

k=0

dkT (m − 1, k)T (n − 1, i − k)

≥

j
∑

k=1

(ck + ci−k+1)T (m − 1, k)T (n − 1, i − k + 1) (by (2.7))

+

j−1
∑

k=0

(dk + di−k)T (m − 1, k)T (n − 1, i − k) (by (2.8))

+ djT (m − 1, j)T (n − 1, j),

which is nonnegative, since ck + ci−k+1 ≥ 0, dk + di−k ≥ 0 and dj ≥ 0.

Combining both cases, we are led to the assertion that Ai ≥ 0, namely,
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for any n ≥ m ≥ 1,
P ′

nPm−1 − PnP ′
m−1 ≥q 0. (2.9)

In view of the recurrence relation (2.2), we obtain

Pm =

m
∑

k=0

T (m, k)qk

=
m

∑

k=0

(a1m + a2k + a3)T (m − 1, k)qk

+
m

∑

k=0

(b1m + b2k + b3)T (m − 1, k − 1)qk

=
m−1
∑

k=0

(a1m + a2k + a3)T (m − 1, k)qk (by T (m − 1, m) = 0)

+

m
∑

k=1

(b1m + b2k + b3)T (m − 1, k − 1)qk (by T (m − 1,−1) = 0)

=

m−1
∑

k=0

(a1m + a2k + a3)T (m − 1, k)qk

+

m−1
∑

k=0

(b1m + b2(k + 1) + b3)qT (m − 1, k)qk

=

m−1
∑

k=0

(a1m + a3)T (m − 1, k)qk +

m−1
∑

k=0

(b1m + b2 + b3)qT (m − 1, k)qk

+

m−1
∑

k=0

(a2 + b2q)kT (m − 1, k)qk

=(a1m + a3 + b1mq + b2q + b3q)Pm−1 +

m−1
∑

k=0

(a2q + b2q
2)kT (m − 1, k)qk−1

=(a1m + a3 + b1mq + b2q + b3q)Pm−1 + (a2 + b2q)qP
′
m−1,

and hence

Pn+1 = (a1(n + 1) + a3 + b1(n + 1)q + b2q + b3q)Pn + (a2 + b2q)qP
′
n.

Substituting Pm and Pn+1 into (2.5) yields

Pm−1Pn+1 − PmPn = (a1 + b1q)(n − m + 1)Pm−1Pn

+ q(a2 + b2q)(P
′
nPm−1 − PnP ′

m−1).

Since a1, a2, b1, b2 ≥ 0, the strong q-log-convexity of {Pn(q)}n≥0 immediately
follows from (2.9).
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3 Applications

In this section, we use Theorem 2.4 to show that the Bell polynomials, the
Bessel polynomials, the Ramanujan polynomials and the Dowling polynomi-
als are strongly q-log-convex.

3.1 The Bell polynomials

The Bell polynomials [1] are defined by

Bn(q) =
n

∑

k=0

S(n, k)qk,

where S(n, k) is the Stirling number of the second kind satisfying the follow-
ing recurrence relation:

S(n, k) = kS(n − 1, k) + S(n − 1, k − 1), n, k ≥ 1

with S(0, 0) = 1.

Corollary 3.1 The Bell polynomials are strongly q-log-convex.

Moreover, one can check that the following polynomials introduced by
Tanny [21] are also strongly q-log-convex:

Fn(q) =

n
∑

k=0

k!S(n, k)qk.

3.2 The Bessel polynomials

The Bessel polynomials are defined by

yn(x) =

n
∑

k=0

(n + k)!

(n − k)!k!

(x

2

)k

,

and they have been extensively studied; See, for example, Burchnall [6],
Carlitz [9], and Grosswald [12]. The Bessel polynomials satisfy the following
recurrence relation [13]:

yn = (nx + 1)yn−1 + x2y′
n−1. (3.10)

Let

T (n, k) =
(n + k)!

(n − k)!k!
.

From the recurrence (3.10), we deduce that

T (n, k) = T (n − 1, k) + (2n + 2k − 2)T (n − 1, k − 1), n ≥ k ≥ 1.
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Corollary 3.2 The Bessel polynomials are strongly q-log-convex.

3.3 The Ramanujan polynomials

The Ramanujan polynomials Rn(x) are defined by the following recurrence
relation:

R1(x) = 1, Rn+1(x) = n(1 + x)Rn(x) + x2R′
n(x), (3.11)

where R′
n(x) is the derivative of Rn(x) with respect to x. These polynomi-

als are related to a refinement of Cayley’s theorem due to Shor [19]. The
connection between the Ramanujan polynomials and Shor’s refinement of
Cayley’s formula was observed by Zeng [22]. Let r(n, k) be the number of
rooted labeled trees on n vertices with k improper edges. Shor [19] proved
that r(n, k) satisfies the following recurrence relation:

r(n, k) = (n − 1)r(n − 1, k) + (n + k − 2)r(n − 1, k − 1). (3.12)

where r(1, 0) = 1, n ≥ 1, k ≤ n − 1, and r(n, k) = 0 otherwise. It can be
seen from (3.11) and (3.12) that Rn(x) is indeed the generating function of
r(n, k), namely,

Rn(x) =

n
∑

k=0

r(n, k)xk.

Dumont and Ramamonjisoa [11] independently found the same combinatorial
interpretation for the coefficients of the Ramanujan polynomial Rn(x).

Let r′(n, k) = r(n + 1, k). Then the triangle {r′(n, k)}n≥k≥0 satisfies the
following recurrence relation

r′(n, k) = nr′(n − 1, k) + (n + k − 1)r′(n − 1, k − 1). (3.13)

Corollary 3.3 The Ramanujan polynomials Rn(q) are strongly q-log-convex.

3.4 The Dowling polynomials

The Dowling polynomials are defined as the generating functions of Whitney
numbers of the second kind of Dowling lattices; See Benoumhani [2]. As
a generalization of the partition lattice, Dowling [10] introduced a class of
geometric lattices based on finite groups, called the Dowling lattice. Given
a finite group G of order m ≥ 1, let Qn(G) be the Dowling lattice of rank n
associated to G, and, for 0 ≤ k ≤ n, let Wm(n, k) be the Whitney numbers
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of the second kind of Qn(G). The Dowling polynomial Dm(n; q) is defined
by

Dm(n; q) =

n
∑

k=0

Wm(n, k)qk.

Benoumhani [2] also introduced the following generalized polynomials

Fm,1(n; q) =

n
∑

k=0

k! Wm(n, k)mkqk, Fm,2(n; q) =

n
∑

k=0

k! Wm(n, k)qk.

Dowling [10] proved that the Whitney numbers Wm(n, k) satisfy the fol-
lowing recurrence relation

Wm(n, k) = (1 + mk)Wm(n− 1, k) + Wm(n− 1, k − 1), n ≥ k ≥ 1, (3.14)

with the boundary conditions:

Wm(n, n) = Wm(n, 0) = 1, for n ≥ 0,

Wm(n, k) = 0, if k > n.

Note that, for m = 1, the Whitney numbers Wm(n, k) of the second kind are
the Stirling numbers S(n + 1, k + 1) of the second kind; See [10, 2].

From (3.14), Benoumhani [2] derived that

Fm,2(n; q) = (q + 1)Fm,2(n − 1; q) + q(q + m)F ′
m,2(n − 1; q), (3.15)

where F ′ is the derivative of F with respect to q. Let T (n, k) = k! Wm(n, k).
Then (3.15) implies that T (n, k) satisfies the following recurrence relation

T (n, k) = (1 + mk)T (n − 1, k) + kT (n − 1, k − 1), n ≥ k ≥ 1. (3.16)

Corollary 3.4 The Dowling polynomials Dm(n; q), Fm,1(n; q) and Fm,2(n; q)
are strongly q-log-convex.

4 The Bessel transformation

The objective of this section is to show that the Bessel transformation pre-
serves log-convexity. The Bessel transformation is a linear transformation
associated with the Bessel polynomials, which transforms a sequence {zn}n≥0

of nonnegative real numbers into a sequence {wn}n≥0 given by

wn =
n

∑

k=0

(n + k)!

(n − k)!k!
zk.
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For a triangular array {T (n, k)}n≥k≥0, let Pn(q) be the row generating
function of T (n, k). Given any n ≥ 1, Liu and Wang defined the function
αk(n, i) for 0 ≤ i ≤ 2n and 0 ≤ k ≤ b i

2
c. If 0 ≤ k < i

2
, we have

αk(n, i) = T (n − 1, k)T (n + 1, i − k)

+T (n + 1, k)T (n − 1, i − k) − 2T (n, k)T (n, i − k).

If i is even and k = i
2
, then we have

αk(n, i) = T (n − 1, k)T (n + 1, k) − T (n, k)2.

Liu and Wang [16] found the following connection between the q-log-convexity
of Pn(q) and the log-convexity preserving property of T (n, k).

Theorem 4.1 ([16]) Suppose that the triangle {T (n, k)}n≥k≥0 of positive
real numbers satisfies the following two conditions:

(C1) The sequence of polynomials {Pn(q)}n≥0 is q-log-convex.

(C2) There exists an integer k′ depending on n and i such that αk(n, i) ≥ 0
for k ≤ k′ and ak(n, i) < 0 for k > k′.

Then the linear transformation wn =
n
∑

k=0

T (n, k)zk preserves log-convexity.

We will use the above theorem to prove that the Bessel transformation
preserves log-convexity. For any n ≥ 1 and 0 ≤ i ≤ 2n, we introduce the
following polynomials in x:

f1(x) = (n + x + 1)(n − i + x)(n + x)(n − i + x + 1),

f2(x) = (n − x)(n + i − x + 1)(n − x + 1)(n + i − x),

f3(x) = (n − x + 1)(n + i − x)(n + x)(n − i + x + 1).

Let
f(x) = f1(x) + f2(x) − 2f3(x). (4.17)

Lemma 4.2 For any n ≥ 1, 0 ≤ i ≤ 2n and 0 ≤ k ≤ b i
2
c, let

βk(n, i) = T (n + 1, k)T (n − 1, i − k) + T (n + 1, i − k)T (n − 1, k)

− 2T (n, i − k)T (n, k),

where

T (n, k) =
(n + k)!

(n − k)!k!
. (4.18)

Then, for given n and i, there exists an integer k′ depending on n and i such
that βk(n, i) ≥ 0 for k ≤ k′ and βk(n, i) ≤ 0 for k > k′.
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Proof. Suppose that n and i are given. Clearly, if k < i − n − 1, then
n < (i − k) − 1 and βk(n, i) = 0. If k = i − n − 1, then

βk(n, i) = T (n + 1, n + 1)T (n − 1, i − n − 1) ≥ 0.

Therefore, it suffices to determine the sign of βk(n, i) for i−n−1 < k ≤ b i
2
c.

By (4.18), we have

βk(n, i) =
(n + 1 + k)!

(n + 1 − k)! k!
×

(n − 1 + i − k)!

(n − 1 − i + k)! (i − k)!

+
(n + 1 + i − k)!

(n + 1 − i + k)! (i − k)!
×

(n − 1 + k)!

(n − 1 − k)! k!

−
2(n + i − k)!

(n − i + k)! (i − k)!
×

(n + k)!

(n − k)! k!

=

(

(n + k + 1)(n − i + k)

(n − k + 1)(n + i − k)
+

(n − k)(n + i − k + 1)

(n + k)(n − i + k + 1)
− 2

)

×
(n + i − k)!

(n − i + k)! (i − k)!
×

(n + k)!

(n − k)! k!

=
f(k)T (n, i − k)T (n, k)

f3(k)
.

Note that for n ≥ 1, 0 ≤ i ≤ 2n and i − n − 1 < k ≤ b i
2
c, we have

f3(k) > 0, T (n, i − k)T (n, k) ≥ 0.

By the definition (4.17) of f(x), we find

f ′(x) = 2(2x − i)g(x),

where
g(x) = 2(2 + 8n2 − i + 8n).

Thus, for i ≤ 2n and x ≤ i
2
, we have

g(x) ≥ 2(2 + 8n2 + 6n) > 0, f ′(x) ≤ 0.

Therefore, f(x) is decreasing in x on the interval (−∞, i
2
]. This implies that

there exists an integer k′ such that βk(n, i) ≥ 0 for k ≤ k′ and βk(n, i) ≤ 0
for k > k′.

Combining Corollary 3.2, Lemma 4.2 and Theorem 4.1, we deduce the
following theorem.
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Theorem 4.3 If {zk}k≥0 is a log-convex sequence of positive real numbers,
then the sequence {wn}n≥0 defined by

wn =

n
∑

k=0

(n + k)!

(n − k)!k!
zk

is also log-convex.
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