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Abstract. The Springer numbers are defined in connection with the irreducible root
system of type Bn and also arise as the generalized Euler and class numbers introduced
by Shanks. Combinatorial interpretations of the Springer numbers have been found
by Purtill in terms of André signed permutations, and by Arnol’d in terms of snakes
of type Bn. We introduce the inversion code of a snake of type Bn and establish a
bijection between labeled ballot paths of length n and snakes of type Bn. Moreover, we
obtain the bivariate generating function for the number B(n, k) of labeled ballot paths
starting at (0, 0) and ending at (n, k). Using our bijection, we find a statistic α such
that the number of snakes π of type Bn with α(π) = k equals B(n, k). We also show
that our bijection specializes to a bijection between labeled Dyck paths of length 2n and
alternating permutations on [2n].
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1 Introduction

The Springer numbers are introduced by Springer [16] in the study of irreducible root
system of type Bn. Let Sn denote the n-th Springer number. The sequence {Sn}n≥0 is
listed as entry A001586 in OEIS [11]. The first few values of Sn are

1, 1, 3, 11, 57, 361, 2763, 24611, . . . .

To be more specific, Sn can be defined as follows. Let V be a real vector space, R be a
root system of type Bn in V , and W be the Weyl group of R. It is known that for a fixed
simple root set S of R, any α ∈ R is either a positive or a negative linear combination
of elements of S, denoted by α > 0 or α < 0. For a subset I ⊂ S, let σ(I, S) denote
the number of elements w ∈ W such that wα > 0 for any α ∈ I and wα < 0 for any
α ∈ S−I. Then the Springer number Sn can be defined as the maximum value of σ(I, S)
among I ⊂ S. Springer derived the following generating function,∑

n≥0

Sn
xn

n!
=

1

cosx− sinx
. (1.1)
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On the other hand, Hoffman [10] pointed out that the Springer numbers also arise
as the generalized Euler and class numbers sm,n (n ≥ 0) for m = 2, where the numbers
sm,n are introduced by Shanks [15] based on the Dirichlet series

Lm(s) =
∞∑
k=0

(
−m

2k + 1

)
1

(2k + 1)s
.

Note that the above notation (−m/(2k + 1)) is the Jacobi symbol. To be precise, the
generalized Euler and class numbers s2,n are defined by

s2,n =

{
c2,n

2
, if n is even;

d2,n+1
2
, if n is odd,

where the numbers c2,n and d2,n are given by

c2,n =
(2n)!√

2

(π
4

)−2n−1

L2(2n+ 1),

d2,n =
(2n− 1)!√

2

(π
4

)−2n

L−2(2n).

According to the following recurrence relations for c2,n and d2,n derived by Shanks
[15],

n∑
i=0

(−4)i
(

2n

2i

)
c2,n−i = (−1)n,

n−1∑
i=0

(−4)i
(

2n− 1

2i

)
d2,n−i = (−1)n−1,

one sees that the numbers s2,n are integers. In fact, the above recurrence relations lead
to the following formulas ∑

n≥0

c2,n
x2n

(2n)!
= sec 2x cosx,

∑
n≥1

d2,n
x2n−1

(2n− 1)!
= sec 2x sinx.

Shanks raised the question of finding combinatorial interpretations for the Euler and
class numbers sm,n. For m = 2, s2,n is the n-th Springer number. Purtill [12] gave an
interpretation of the Springer numbers in terms of the André signed permutations on
[n] = {1, 2, . . . , n}. Arnol’d [1] found another interpretation of the Springer numbers in
terms of snakes of type Bn. Recall that, intuitively, a signed permutation on [n] can
be viewed as an ordinary permutation on [n] with some elements associated with minus
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signs. An element i with a minus sign is often written as ī. A snake of type Bn is an
alternating signed permutation π = π1π2 · · · πn on [n] such that

0 < π1 > π2 < π3 > π4 < · · · πn. (1.2)

The above alternating or up-down condition (1.2) is based on the following order:

n̄ < · · · < 1̄ < 1 < · · · < n.

For example, 13̄2 is a snake of type B3. Arnol’d [1] proved that the Springer number
Sn equals the number of snakes of type Bn. Hoffman [10] showed that the exponential
generating function for the number of snakes of type Bn also equals the right hand side of
(1.1), that is, the generating function of the Springer numbers. Recently, Chen, Fan and
Jia [4] obtained a formula for the generating function of sm,n for arbitrary m. When m
is square-free, this leads to a combinatorial interpretation of the numbers sm,n in terms
of Λ-alternating augmented m-signed permutations. Note that for m = 2, Λ-alternating
augmented 2-signed permutations are exactly snakes of type Bn.

The objective of this paper is to give a combinatorial interpretation for the Springer
numbers in terms of labeled ballot paths. In fact, we shall introduce the inversion code
of a snake of type Bn. By using the inversion code, we construct a bijection between
the set of snakes of type Bn and the set of labeled ballot paths of length n. Let B(n, k)
denote the number of labeled ballot paths starting at (0, 0) and ending at (n, k). Then
the numbers B(n, k) can be viewed as a refinement of the Springer numbers. Using the
recurrence relation of B(n, k), we obtain the generating function for B(n, k).

Using our bijection, we find a statistic α on snakes of type Bn such that the number of
snakes π of type Bn with α(π) = k equals B(n, k). A labeled ballot path that eventually
returns to the x-axis is called a labeled Dyck path. When k = 0, B(2n, 0) is the number
of labeled Dyck paths of length 2n. We find that B(2n, 0) and the number E2n of
alternating permutations on [2n] have the same generating function, and we show that
our bijection for labeled ballot paths of length n and snakes of type Bn reduces to a
bijection between labeled Dyck paths of length 2n and alternating permutations on [2n].

The paper is organized as follows. In Section 2, we give descriptions of the map Φ
from the set of snakes of type Bn to the set of labeled ballot paths of length n, and the
map Ψ from labeled ballot paths of length n to snakes of type Bn. In Section 3, we show
that the maps Φ and Ψ are well-defined, and they are inverses of each other. The last
section is devoted to the bivariate generating function for the numbers B(n, k) and the
classification of snakes of type Bn in accordance with the numbers B(n, k). We also show
that the map Ψ restricted to labeled Dyck paths serves as a combinatorial interpretation
of the fact that B(2n, 0) equals E2n. To conclude, we point out the connections of the
restriction of our bijection to labeled Dyck paths with the restrictions of some known
bijections on weighted 2-Motzkin paths.
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2 The bijection

In this section, we define a class of labeled ballot paths and establish a bijection between
such labeled ballot paths of length n and snakes of type Bn.

Recall that a ballot path of length n is a lattice path with n steps from the origin
consisting of up steps u = (1, 1) and down steps d = (1,−1) that does not go below the
x-axis. As a special case, a Dyck path is a ballot path of length 2n that ends at the
x-axis. A ballot path is also called a partial Dyck path [3]. The height of a step of a
ballot path is defined to be the smaller y-coordinate of its endpoints. By a labeled ballot
path we mean a ballot path for which each step is endowed with a nonnegative integer
that is less than or equal to its height. If the label of a step equals its height, then we
say that this step is saturated. Otherwise, we say this step is unsaturated. A labeled
ballot path P = p1p2 · · · pn for which the step pi is labeled by wi is denoted by (P,W ),
where W = w1w2 · · ·wn.

It should be noted that Françon and Viennot [6] defined a class of weighted 2-Motzkin
paths. If such a weighted 2-Motzkin path of length 2n does not contain any horizontal
steps, then it becomes a labeled Dyck path of length 2n in our terminology. In Section 4,
we shall discuss the connections between the restriction of our bijection to labeled Dyck
paths and the restrictions of known bijections for weighted 2-Motzkin paths.

For example, for a ballot path P = uuudduu, there are 216 labelings. Figure 1 gives
a labeling of the ballot path P .

s��0 s��1 s��1 s
@@
0 s
@@
1 s��1 s��2 s

Figure 1: A labeled ballot path (uuudduu, 0110112) of length 7.

For n = 3, there are 3 ballot paths P1 = uuu, P2 = uud and P3 = udu. There are 6
labelings for P1, 4 labelings for P2 and 1 labeling for P3. On the other hand, there are
11 snakes of type B3 as listed below:

12̄3, 13̄2, 13̄2̄, 213, 21̄3, 23̄1, 23̄1̄, 312, 31̄2, 32̄1, 32̄1̄.

In order to establish a bijection between the set of ballot paths of length n and the
set of snakes of type Bn, we introduce the inversion code of a snake π of type Bn. Let
π = π1 · · · πn. We define ci(π) as follows

ci(π) =

{
#{(π2k, π2k+1)|1 ≤ k ≤ (n− 1)/2, i < 2k, π2k < πi < π2k+1}, if n is odd;

#{(π2k−1, π2k)|1 ≤ k ≤ n/2, i < 2k − 1, π2k < πi < π2k−1}, if n is even.
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The sequence (c1(π), c2(π), . . . , cn(π)), denoted c(π), is called the inversion code of π. For
example, let n = 7 and π = 35̄2147̄6. Then the inversion code of π is (2, 1, 2, 1, 1, 0, 0).
For n = 8 and π = 5382̄1̄4̄76, the inversion code of π is (1, 1, 0, 1, 0, 0, 0, 0).

As will be seen, we need an alternative way to compute ci(π). For 1 ≤ i ≤ n, an
element πi is called a peak of π if πi is greater than its neighbors, and πi is called a
bottom if it is smaller than its neighbors. Notice that for the first and last element of π,
there is only one neighbor. Denote the set of peaks of π by P(π), and the set of bottoms
of π by B(π). For a snake π of type Bn, each element πi is either a peak or a bottom.
For a bottom πi of π, we define

ai(π) = #{j > i|πj < πi, πj ∈ B(π)},

bi(π) = #{j > i|πj < πi, πj ∈ P(π)}.

For a peak πi of π, we define

ai(π) = #{j > i|πj > πi, πj ∈ B(π)},

bi(π) = #{j > i|πj > πi, πj ∈ P(π)}.

Lemma 2.1 Let π = π1π2 · · · πn be a snake of type Bn. For 1 ≤ i ≤ n, if πi is a bottom,
then we have

ci(π) = ai(π)− bi(π). (2.3)

If πi is a peak, then we have
ci(π) = bi(π)− ai(π). (2.4)

Proof. We first consider the case when n is odd and πi is a bottom. Clearly, for each pair
(π2k, π2k+1), π2k is a bottom and π2k+1 is a peak and π2k < π2k+1. For a pair (π2k, π2k+1)
to the right of πi, if πi > π2k+1 or πi < π2k, then by definition, this pair contributes 0
to ci(π). In the meantime, this pair contributes 0 to the right hand side of (2.3). On
the other hand, if π2k < πi < π2k+1, the pair (π2k, π2k+1) contributes 1 to ci(π), and
contributes 1 to the right hand side of (2.3) as well. Thus (2.3) is valid when n is odd
and πi is a bottom. The case when n is odd and πi is a peak and the case when n is
even can be justified by using the same argument. Similarly, (2.4) can be verified. This
completes the proof.

We are now ready to describe the map Φ from the set of snakes of type Bn to the
set of labeled ballot paths of length n. Let π = π1π2 · · · πn and Φ(π) = (P,W ) =
(p1p2 · · · pn, w1w2 · · ·wn). The map Φ consists of n steps. Suppose that we are in step
k, that is, p1, p2, . . . , pk−1 and their labels w1, w2, . . . , wk−1 are already determined. We
proceed to demonstrate how to determine pk and its label wk. Let us look for the element
n − k + 1 or n− k + 1 in π. Assume that πi = n − k + 1 or n− k + 1. There are two
cases.

Case 1: πi = n−k+1. If i is odd, then set pk = u; if i is even, then set pk = d. Moreover,
set wk = ci(π).
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Case 2: πi = n− k + 1. If i is odd, then set pk = d; if i is even, then set pk = u.
Moreover, set wk = hk − ci(π), where hk denotes the height of the k-th step pk in the
ballot path p1p2 · · · pk.

For example, let n = 7 and π = 21̄5476̄3̄. The construction of Φ(π) is illustrated in
Figure 2.

=⇒ s��0 s��1 s��1 s
@@
0 s
@@
1s��1 s

=⇒ s��0 s��1 s��1 s
@@
0 s
@@
1 s��1 s��2 s

s��0 s
=⇒ s��0 s��1 s

=⇒ s��0 s��1 s��1 s
=⇒ s��0 s��1 s��1 s

@@
0 s

=⇒ s��0 s��1 s��1 s
@@
0 s
@@
1 s

Figure 2: The construction of Φ(π) for π = 21̄5476̄3̄.

We now give the inverse map Ψ from the set of labeled ballot paths to the set of
snakes of type Bn. By a partial signed permutation of [n], we mean a permutation on
some subset of [n] with some elements having minus signs. For example, γ = 425 is a
partial signed permutation of {1, 2, . . . , 6}.

Given a labeled ballot path (P,W ) = (p1p2 · · · pn, w1w2 · · ·wn), we shall construct a
sequence of partial signed permutations Γ0,Γ1,Γ2, . . . ,Γn, such that Γ0 = ∅ and Γn =
π = Ψ(P,W ) is the desired snake of type Bn. To reach this goal, we generate a sequence
of labeled ballot paths (P1,W1), (P2,W2), . . . , (Pn,Wn), where (P1,W1) = (P,W ), Pi+1

is obtained from Pi by contracting a certain step pri of Pi into a single point, and Wi+1

is obtained from Wi by deleting the label of the step pri and updating the labels of other
steps. Below is a procedure to determine (Pi+1,Wi+1) and Γi from (Pi,Wi) and Γi−1.
There are two cases.

Case 1: Pi has an odd number of steps. If there exists a saturated down step in Pi,
namely, a down step whose label equals equals its height, then we assume that pri is the
leftmost saturated down step. Contract pri into a single point to form a ballot path Pi+1

and add 1 to the labels of all down steps of Pi+1. Let (Pi+1,Wi+1) denote the resulting
labeled ballot path and set Γi = n− ri + 1Γi−1.

For the case when all the down steps of Pi are unsaturated, that is, the label of each
down step is less than its height, the first step is an up step labeled by 0. We assume that
pri is the rightmost up step labeled by 0. Contract pri into a single point to form a ballot
path Pi+1. Then subtract 1 from the labels of up steps of Pi+1 that are originally to the
right of pri and add 1 to the labels of down steps of Pi+1 that are originally to the left of
pri . Denote the resulting labeled ballot path by (Pi+1,Wi+1) and set Γi = (n−ri+1)Γi−1.
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Case 2: Pi has an even number of steps. If there exists a down step of Pi labeled by
0, we assume that pri is the leftmost down step labeled by 0. Contract pri into a single
point to form a ballot path Pi+1. Then add 1 to the labels of up steps of Pi+1 which are
originally to the right of pri and subtract 1 from the labels of down steps of Pi+1 which
are originally to the left of pri . Denote the resulting labeled ballot path by (Pi+1,Wi+1)
and set Γi = (n− ri + 1)Γi−1.

For the case when there are no down steps of Pi labeled by 0, the first step is an up
step labeled by 0. We assume that pri is the rightmost saturated up step. Contract pri
into a single point to form a ballot path Pi+1. Then subtract 1 from the labels of all down
steps of Pi+1. Denote the resulting path by (Pi+1,Wi+1) and set Γi = n− ri + 1Γi−1.

For example, for the labeled ballot path (P,W ) = (uuudduu, 0110112) in Figure 1,
the construction of Ψ(P,W ) is illustrated in Figure 3. The order of the contracted steps
is p5, p2, p1, p4, p3, p7, p6. The labeled ballot paths (Pi,Wi) are given in Figure 3, and the
partial signed permutations Γi are given below:

Γ0 = ∅,Γ1 = 3̄,Γ2 = 6̄3̄,Γ3 = 76̄3̄,Γ4 = 476̄3̄,Γ5 = 5476̄3̄,Γ6 = 1̄5476̄3̄,Γ7 = 21̄5476̄3̄.

=⇒s��0 s��1 s��1 s
@@
1 s��1 s��2 s

P2 = p1p2p3p4p6p7

=⇒s��0 s��1 s��1 s
@@
0 s
@@
1 s��1 s��2 s

P1 = p1p2p3p4p5p6p7

=⇒s��0 s��1 s
@@
0 s��1 s��2 s

P3 = p1p3p4p6p7

=⇒s��0 s
@@
0 s��0 s��1 s

P4 = p3p4p6p7

=⇒s��0 s��1 s��2 s

P5 = p3p6p7

=⇒s��0 s��1 s

P6 = p6p7

s��0 s
P7 = p6

Figure 3: The construction of Ψ(P,W ) for the labeled ballot path in Figure 1.

3 The proof

In this section, we shall show that the maps Φ and Ψ described in the previous section
are well-defined and are inverses of each other. Thus the map Φ and the map Ψ induce
a bijection between the set of labeled ballot paths of length n and the set of snakes of
type Bn.
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Proposition 3.1 The map Φ is well-defined, that is, for any snake π = π1π2 · · · πn of
type Bn, Φ(π) is a labeled ballot path.

Proof. Before we show that Φ(π) = (P,W ) is a labeled ballot path, it is necessary to
prove that P = p1p2 · · · pn is a ballot path, that is, for any 1 ≤ k ≤ n, the number of
up steps is greater than or equal to the number of down steps among the first k steps of
P . By the definition of Φ, we have p1 = u. Assume that in step k of the construction of
Φ(π), we have already constructed a ballot path p1p2 · · · pk−1. The task of this step is to
locate n− k + 1 or n− k + 1 in π in order to obtain pk. We consider two cases.

If πi = n − k + 1 and i is odd or πi = n− k + 1 and i is even, then we set pk = u.
Clearly, p1p2 · · · pk is a ballot path. If πi = n− k+ 1 and i is even or πi = n− k + 1 and
i is odd, then we set pk = d and we wish to show that the height of pk is nonnegative.
In other words, the step pk does not go below the x-axis while assuming that the first
step p1 starts at the origin. Consider the case πi = n− k + 1 and i is odd. Note that
the height of pk equals the number of up steps among p1, p2, . . . , pk−1 minus the number
of down steps among p1, p2, . . . , pk. By the definition of Φ, we find

hk = #{1 ≤ j ≤ n |πj > 0, n− k + 1 < πj and j is odd}
+ #{1 ≤ j ≤ n | πj < 0, n− k + 1 < |πj| and j is even}
−#{1 ≤ j ≤ n | πj < 0, n− k + 1 ≤ |πj| and j is odd}
−#{1 ≤ j ≤ n | πj > 0, n− k + 1 < πj and j is even}. (3.5)

In view of the alternating property of π, for any negative element π2i+1 at an odd position,
we have π2i < π2i+1 and hence π2i is negative. Consequently,

#{1 ≤ j ≤ n | πj < 0, n− k + 1 ≤ |πj| and j is odd}
≤ #{1 ≤ j ≤ n |πj < 0, n− k + 1 < |πj| and j is even}.

On the other hand, for any positive element π2i at an even position, we see that π2i−1 >
π2i and hence π2i−1 is also positive. This implies that

#{1 ≤ j ≤ n |πj > 0, n− k + 1 < πj and j is even}
≤ #{1 ≤ j ≤ n |πj > 0, n− k + 1 < πj and j is odd}.

Thus we deduce that whenever there is a negative term contributing to hk, there is at
least one positive term contributing to hk as well. So we conclude that hk ≥ 0. A similar
argument applies to the case when πi = n − k + 1 and i is even. Hence we have shown
that P is a ballot path.

We next prove that for any step in Φ(π), its label does not exceed its height. Assume
we are in step k in the construction of Φ(π) and we have determined a labeled ballot
(p1 · · · pk−1, w1 · · ·wk−1) of length k − 1. We proceed to locate n− k + 1 or n− k + 1 in
π in order to determine whether pk is an up step or a down step and the label wk of pk.
Suppose that πi = n− k + 1 and i is odd. In this case, by the definition of Φ, we see
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that pk = d and wk = hk − ci(π). We claim that ci(π) ≤ hk. To compute hk by using
formula (3.5), we shall consider two cases with respect to the range of j. The first case
is 1 ≤ j ≤ i and the second case is i+ 1 ≤ j ≤ n. In other words, we shall consider the
contributions of π1π2 · · · πi and πi+1 · · · πn to the value of hk.

We claim that ci(π) does not exceed the contribution of πi+1 · · · πn to hk. Suppose
that n is odd. By the definition of ci(π), a pair (π2j, π2j+1) of consecutive elements of
π with i < 2j ≤ n − 1 contributes 1 to the value of ci(π) if π2j < πi < π2j+1 < 0 or
π2j < πi < 0 and π2j+1 > 0. If there is a pair (π2j, π2j+1) with π2j < πi < π2j+1 < 0,
then this pair contributes 1 to both hk and ci(π). If there is a pair (π2j, π2j+1) with
π2j < πi < 0 and π2j+1 > 0, then this pair contributes 1 or 2 to hk (depends on whether
π2j+1 is greater than n− k + 1), while it contributes 1 to ci(π). It is straightforward to
check that if a pair (π2j, π2j+1) contributes 0 to ci(π), then it contributes 0 or 1 to hk.
On the other hand, because π1 · · · πi contributes 0 to ci(π), it remains to show that the
contribution of π1 · · · πi to hk is nonnegative. Let

gi(π) = #{1 ≤ j ≤ i |πj > 0, n− k + 1 < πj and j is odd}
+ #{1 ≤ j ≤ i | πj < 0, n− k + 1 < |πj| and j is even}
−#{1 ≤ j ≤ i | πj < 0, n− k + 1 ≤ |πj| and j is odd}
−#{1 ≤ j ≤ i | πj > 0, n− k + 1 < πj and j is even}.

By the same reasoning as in the proof of the fact that hk ≥ 0, we can verify that
gi(π) ≥ 0. Thus we have completed the proof for the case when πi = n− k + 1 and both
n and i are odd. All the other cases with respect to the sign of πi and the parities of n
and i can be treated in the same manner. The details are omitted. This completes the
proof.

Proposition 3.2 The map Ψ is well-defined, that is, for any labeled ballot path (P,W )
of length n, the signed permutation π = Γn = π1π2 · · · πn is a snake of type Bn.

Proof. Suppose that at the i-th step in the construction of Ψ(P,W ), we have already
constructed a labeled ballot path (Pi,Wi). We first consider the case when Pi has an
odd number of steps. In this case we aim to show that after contracting a certain step
of Pi, we get a ballot path Pi+1.

By the construction of Ψ, if there exists a saturated down step in Pi, then we contract
the leftmost saturated down step. In this case, we get a ballot path Pi+1. We now assume
that all the down steps are unsaturated. This means that there are no down steps with
height 0, that is, there are no down steps touching the x-axis. By the construction of
Ψ, we shall contract the rightmost up step labeled by 0. After this step is contracted, it
is easily seen that the height of every step in Pi+1 is nonnegative, since by assumption
there are no down steps that touch the x-axis. Hence we also get a ballot path Pi+1 in
this case. Moreover, one can check that after updating the labels of the steps in Pi+1,
each step has a nonnegative label that does not exceed its height.
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The case when Pi has an even number of steps can be dealt with by the same argu-
ment. Thus we conclude that once we have accomplished the task in step i, we are led
to a labeled ballot path (Pi+1,Wi+1).

We now turn to the proof of the alternating property of π. It is apparent from the
construction of Ψ that π1 > 0. Now we prove that π1 > π2 < π3 > · · · πn. Suppose that
in step i we have already constructed a partial signed permutation Γi−1 and a labeled
ballot path (Pi,Wi). To determine Γi, by our construction, we are supposed to contract
a certain step pri in Pi to form a ballot path Pi+1 and to set Γi = (n − ri + 1)Γi−1 or
Γi = n− ri + 1Γi−1 depending on whether pri is an up step or a down step and the parity
of the number of steps of Pi.

Similarly, in order to determine Γi+1, we contract a certain step pri+1
of Pi+1 to form

Pi+2 and set Γi+1 = (n−ri+1+1)Γi or Γi+1 = n− ri+1 + 1Γi. For notational convenience,
set ti = n−ri+1 and ti+1 = n−ri+1 +1. There are four possibilities for the construction
of Γi+1, namely, t̄i+1t̄iΓi−1, ti+1tiΓi−1, t̄i+1tiΓi−1 and ti+1t̄iΓi−1.

We only consider the case that Pi has an odd number of steps and so ti is at an odd
position of π. To prove the alternating property of Γn, we aim to verify that

t̄i+1 < t̄i if Γi+1 = t̄i+1t̄iΓi−1,

ti+1 < t̄i if Γi+1 = ti+1t̄iΓi−1,

ti+1 < ti if Γi+1 = ti+1tiΓi−1,

and that the situation Γi+1 = ti+1t̄iΓi−1 can never happen.

We shall give the proof only for the case Γi+1 = t̄i+1t̄iΓi−1. To this end, we assume
that in the i-th step in the construction of Ψ(P,W ), we contract a down step pri of Pi,
and in the (i+1)-st step, we contract an up step pri+1

of Pi+1. By the implementation of
Ψ, we see that Γi+1 = t̄i+1t̄iΓi−1. We claim that ti < ti+1, that is, ri > ri+1. Assume to
the contrary that ri < ri+1. Once the down step pri is contracted, the height of all steps
to the right of the step pri will increase by 1. However, by the construction of Ψ, the
labels of up steps remain unchanged. Since the height of each up step has been increased
by 1, this implies that the up steps to the right of pri are unsaturated. Therefore, the
up step pri+1

cannot be chosen in the (i + 1)-st step, which is a contradiction. So we
deduce that t̄i+1 < t̄i. The discussions for the other three cases are similar, and hence
are omitted.

It remains to consider the case when the number of steps of Pi is even. But the
argument for this case is analogous to the case when the number of steps of Pi is odd.
Hence we have reached the conclusion that Γn = π1π2 · · · πn is a snake of type Bn. This
completes the proof.

Proposition 3.3 The maps Φ and Ψ are inverses of each other.

Proof. It suffices to show that Ψ is the inverse of Φ. In fact, we need to prove a stronger
property. To this end, let π = π1π2 · · · πn be a snake of type Bn. For 1 ≤ i ≤ n,
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let Πi = π1π2 · · · πi. For convenience, we use Φ(Πi) to denote the labeled ballot path
obtained by applying the map Φ to the partial signed permutation Πi. Set Φ(Π0) to be
the empty path. Roughly speaking, by the construction of Φ, it can be seen that Φ(Πi)
is obtained from Φ(Πi−1) by adding a step to Φ(Πi−1) and updating the labels of other
steps. A precise description of the process to obtain Φ(Πi) from Φ(Πi−1) enables us to
show that

Ψ(Φ(Πi)) = Πi. (3.6)

Of course, this implies that Ψ is the inverse of Φ.

Before we examine how to obtain Φ(Πi) from Φ(Πi−1), we need to recall the construc-
tion of Φ(Πi). The labeled ballot path Φ(Πi) consists of i steps. Let p1p2 · · · pi denote
this path. For any k with 1 ≤ k ≤ i, we can find the element πj among π1, π2, . . . , πi such
that |πj| is the k-th largest element of the set {|π1|, . . . , |πi|}. Then by the construction
of Φ(Πi), we have pk = u if πj > 0 and j is odd, or πj < 0 and j is even; otherwise we
have pk = d. If πj > 0, the label of the step pk in Φ(Πi) is equal to cj(Πi). If πj < 0,
then the label of the step pk in Φ(Πi) is equal to hk − cj(Πi), where hk is the height of
the step pk in Φ(Πi). For example, for a snake π = 21̄5476̄3̄, we have Π3 = 21̄5 and
Φ(Π3) consists of 3 steps p1p2p3, where p1 = u, p2 = u and p3 = u, and the labels are
0, 1 and 2.

Notice that for i < n, Πi is a partial signed permutation on [n], which is not necessar-
ily a permutation of the set {1, 2, . . . , i}. For example, for a snake π = 21̄5476̄3̄, we have
Π3 = 21̄5. For this reason, we should note that for 1 ≤ k ≤ i, the k-th largest element of
the set {|π1|, . . . , |πi|} is not necessarily the element i+ 1− k in the construction of the
k-th step pk of the labeled ballot path Φ(Πi). This explains why we should keep track
of the k-th largest element of the set {|π1|, . . . , |πi|} in the construction of the k-th step
of the labeled ballot path Φ(Πi).

Given a labeled ballot path (P,W ) of length n, let us look at the construction of
Ψ(P,W ), which consists of n steps. At each step, we contract a certain step of P , delete
the label of the contracted step and update the labels of other steps. We also obtain a
partial signed permutation at every step.

For i < n, at the first step of applying Ψ to Φ(Πi), let pk denote the contracted step
of the labeled ballot path Φ(Πi) = p1p2 · · · pi. Assume the k-th largest element of the
set {|π1|, . . . , |πi|} is |πj|. Set Γ0 = ∅. The partial signed permutation obtained at the
first step of applying Ψ to Φ(Πi) is Γ1 = (n − (n − |πj| + 1) + 1)Γ0 = |πj|Γ0 = |πj| or

Γ1 = n− (n− |πj|+ 1) + 1Γ0 = |πj|Γ0 = |πj|.

To prove the claim (3.6), we proceed by induction on i. When i = 1, Φ(Π1) = Φ(π1)
is a ballot path consisting of a single up step labeled by 0. As stated before, we should
keep track of π1. When applying Ψ to Φ(Π1), we contract p1 and obtain the partial
signed permutation n − (n − π1 + 1) + 1 = π1. Assume that Ψ(Φ(Πi−1)) = Πi−1. We
continue to show that Ψ(Φ(Πi)) = Πi. In fact, we need to prove the following properties:

(1) At the first step of applying Ψ to Φ(Πi), the contracted step is exactly the step
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that is added to Φ(Πi−1) in order to get Φ(Πi).

(2) After contracting the added step in Φ(Πi) and updating the labels of other steps,
we get the labeled ballot path Φ(Πi−1).

(3) The partial signed permutation obtained at the first step is πi.

To describe the process to construct Φ(Πi) from Φ(Πi−1), we need to consider four
cases according to the parity of i and the sign of πi. We shall restrict our attention only
to the case when i is even and πi > 0, because the same argument applies to other cases.
In this case, assume that |πi| is the r-th largest element of the set {|π1|, . . . , |πi|}. So we
deduce that Φ(Πi) can be obtained from Φ(Πi−1) by adding a down step pr labeled by
0.

We now prove property (1), that is, at the first step of applying Ψ to Φ(Πi), we must
contract the down step pr. Since pr is labeled by 0, it is sufficient to show that there
are no down steps of Φ(Πi) labeled by 0 that appear to the left of pr. Again, by the
construction of Φ(Πi), we see that there is a down step pt of Φ(Πi) appearing to the left
of pr if there exists an element of Πi that is either

(a) a positive element at an even position which is greater than πi, or

(b) a negative element at an odd position whose absolute value is greater than πi.

It can be shown that if the step pt is labeled by 0, then neither cases can happen. If
(a) happens, that is, there exists an element of Πi, say π2k, such that π2k > πi > 0 and
π2k is the t-th largest element of the set {|π1|, . . . , |πi|}. Since the step pt is labeled by
0, we have c2k(Πi) = 0. By the definition of c2k(Πi) = 0, there are no pairs (π2j−1, π2j)
of Πi such that π2j−1 > π2k > π2j. In particular, by the assumption π2k > πi, we have
π2k > πi−1. Since i is even, by the alternating property of Πi, we have πi−1 > πi−2. Thus
we obtain π2k > πi−2. Moreover, since c2k(Πi) = 0, we get π2k > πi−3. Continuing this
process, we reach the conclusion that π2k > π2k+1, contradicting the alternating property
of Πi.

If (b) happens, that is, there is an element of Πi, say π2k+1, such that π2k+1 < 0,
|π2k+1| > πi and |π2k+1| is the t-th largest element of the set {|π1|, . . . , |πi|}. Since the
step pt is labeled by 0, we find that c2k+1(Πi) equals the height of the step pt. However,
to the contrary, we can show that the height of pt is greater than c2k+1(Πi). Consider any
pair (π2j−1, π2j) such that π2j−1 > π2k+1 > π2j. Suppose that |π2j| is the j1-th largest
element of the set {|π1|, . . . , |πi|}. Then the step pj1 is an up step and it appears to the
left of pt. On the other hand, suppose that |π2j−1| is the j2-th largest element of the
set {|π1|, . . . , |πi|}. Then one can check that the step pj2 cannot be a down step that
appears to the left of pt. In other words, the pair (π2j−1, π2j) contributes 1 to c2k+1(Πi),
and it contributes at least 1 to the height of pt. Moreover, suppose that |π2k+2| is the
j3-th largest element of the set {|π1|, . . . , |πi|}. Since π2k+2 < π2k+1 < 0, we see that
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the step pj3 is an up step that appears to the left of pt. This means that the step pj3
increases the height of the step pt by 1. So we deduce that the height of pt is at least
c2k+1(Πi) + 1.

Next we verify property (2), that is, after contracting the added step pr in Φ(Πi)
and updating the labels of other steps, we get the labeled ballot path Φ(Πi−1). By the
construction of Ψ, after contracting the down step pr, we add 1 to the labels of up steps
to the right of pr, and subtract 1 from the labels of down steps to the left of pr, all the
labels of other steps remain unchanged.

We proceed to show that in the process of constructing Φ(Πi) from Φ(Πi−1), after we
add the down step pr to Φ(Πi−1), the labels of all the up steps to the right of pr decrease
by 1, the labels of all the down steps to the left of pr increase by 1, the labels of other
steps remain unchanged.

Since the labels of the steps of Φ(Πi−1) involve the inversion code c(Πi−1), let us
examine the change of c(Πi−1) after adding the element πi to Πi−1. According to Lemma
2.1, we see that after adding the element πi to Πi−1, for any element π2j of Πi−1 with
π2j > πi, c2j(Πi−1) increases by 1. For any element π2j+1 of Πi−1 with π2j+1 < πi,
c2j+1(Πi−1) decreases by 1. Let us consider the changes of the labels of the steps in
Φ(Πi−1) in the process of constructing Φ(Πi) from Φ(Πi−1).

Suppose that |π2j| (|π2j+1| resp.) is the j4-th (j5-th resp.) largest element of the set
{|π1|, . . . , |πi|}. By the construction of Φ(Πi−1), pj4 is a down step whose label equals
c2j(Πi−1). Thus the label of the step pj4 increases by 1 in Φ(Πi).

Next, we examine the change of the label of the step pj5 . There are three cases: (i)
If π2j+1 > 0, then pj5 is an up step appearing to the right of pr. Since the label of pj5
equals c2j+1(Πi), we see that its label decreases by 1 in Φ(Πi). (ii) If π2j+1 < 0 and
|π2j+1| < πi, then pj5 is a down step appearing to the right of pr. Since the label of
the step pj5 equals its height minus c2j+1(Πi), and the height of pj5 decreases by 1, we
deduce that label of pj5 remains unchanged. (iii) If π2j+1 < 0 and |π2j+1| > πi, then pj5
is a down step appearing to the left of pr. Since the height of pj5 remains unchanged
and c2j+1(Πi−1) decreases by 1, we deduce that the label of pj5 increases by 1 in Φ(Πi).

The proof of property (3) is obvious according to the construction of Ψ. Thus we
have completed the proof for the case when i is even and πi > 0. The other cases are
omitted as mentioned before.

4 A refinement

In this section, we obtain a formula for the bivariate generating function for the number
B(n, k) of labeled ballot paths of length n that end at the point (n, k), where 0 ≤ k ≤ n.
The numbers B(n, k) can be considered as a refinement of the Springer numbers. By a
restriction of our bijection, we also obtain a correspondence between labeled Dyck paths

13



of length 2n and alternating permutations on [2n]. By considering the last step of a
labeled ballot path, it is easy to derive the following recurrence relation.

Theorem 4.1 For 1 ≤ k ≤ n, we have

B(n, k) = (k + 1)B(n− 1, k + 1) + kB(n− 1, k − 1). (4.7)

Since a ballot path can never end at a point (n, k) when n + k is odd, we have
B(n, k) = 0 if n+ k is odd.
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Figure 4: The table for B(n, k) when 0 ≤ k, n ≤ 8.

When k = 0, B(2n, 0) is the number of labeled Dyck paths of length 2n, where a
labeled Dyck path of length 2n is a labeled ballot path of length 2n that ends at a point
on the x-axis. It should be noticed that the numbers B(2n, 0) are the secant numbers
and they are closely related to alternate level codes of ballots, see Strehl [18]. Recall
that an alternate level code of ballots of length n is an integer sequence λ = λ1λ2 · · ·λn
such that λ1 = 1, and for 2 ≤ j ≤ n,

λj−1 + 1 ≥ λj ≥ 1.

Denote by Λn the set of alternate level codes of ballots of length n. For example,

Λ3 = {111, 112, 121, 122, 123}.
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Rosen [14] derived the formula∑
n≥0

(∑
λ∈Λn

n∏
i=1

λi(λi + 1)

)
xn

n!
= tanx. (4.8)

Strehl [18] deduced the secant companion equation of (4.8):∑
n≥0

(∑
λ∈Λn

n∏
i=1

λ2
i

)
xn

n!
= secx. (4.9)

To make a connection between labeled Dyck paths and alternate level codes of ballots,
we need the following bijection, see Stanley [17, Ex. 6.19].

Theorem 4.2 There is a bijection between the set of Dyck paths of length 2n and the
set of alternate level codes of ballots of length n.

Proof. Let λ = λ1λ2 · · ·λn ∈ Λn be an alternate level code of ballots of length n. We
shall construct a Dyck path P of length 2n from λ. For convenience, we set λn+1 = 1.
Let P = P1P2 · · ·Pn, where Pi = udλi−λi+1+1. We proceed to prove that P is a Dyck
path of length 2n. First, we show that for 1 ≤ i ≤ n, the number of down steps is less
than or equal to the number of up steps in P1 · · ·Pi, that is,

i∑
j=1

(λj − λj+1 + 1) ≤ i,

which is evident since λ1 = 1 and λi+1 ≥ 1. Furthermore, one can check that there are
exactly n down steps in P , namely,

n∑
j=1

(λj − λj+1 + 1) = n.

Thus P is indeed a Dyck path of length 2n.

Conversely, given a Dyck path P of length 2n, we can construct an alternate level
code of ballots λ = λ1λ2 · · ·λn of length n. Let λi be the larger y-coordinate of the
endpoints of the i-th up step of P . It is straightforward to verify that λ is an alternate
level code of ballots of length n. This completes the proof.

For instance, let λ = 122 ∈ Λ3. Then the Dyck path corresponding to λ is uududd.
Using the above bijection we are led to a connection between the number B(2n, 0) and
alternate level codes of ballots.

Corollary 4.3 We have

B(2n, 0) =
∑
λ∈Λn

n∏
i=1

λ2
i . (4.10)
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Proof. Relation (4.10) follows from the observation that for a given Dyck path, the
number of labelings equals the product of squares of the elements of the corresponding
alternate level code of ballots.

In passing, we mention that Getu, Shapiro and Woen [8] considered a generalization
of the formula of Rosen [14] on tangent numbers, namely, equation (4.8). More precisely,
for a given ballot path, they defined the weight of the path to be the product of the
y-coordinates of all the endpoints, except for the last point. Let T (n, k) denote the sum
of weights of ballot paths from (1, 1) to (n, k). It is easily checked that

T (n, k) = (k − 1)T (n− 1, k − 1) + (k + 1)T (n− 1, k + 1).

When k = 1, T (n, 1) is the tangent number, that is,∑
n≥1

T (n, 1)
xn

n!
= tanx.

They gave a table for T (n, k) similar to the table in Figure 4, where the first row consists
of the tangent numbers. For k ≥ 1, they obtained the generating function∑

n≥1

T (n, k)
xn

n!
=

tank x

k
.

By replacing the first row of their table with the secant numbers, they introduced another
number E(n, k) and considered the following recurrence relation

E(n, k) = (k − 1)E(n− 1, k − 1) + kE(n− 1, k + 1),

where E(0, 1) = 1, E(1, 2) = E(2, 1) = 1 and E(n, k) = 0 for n < k − 1 or k < 1. When
k = 1, E(n, 1) is the secant number. However, no combinatorial interpretation was given
for the numbers E(n, k). Using the recurrence relation of E(n, k), Getu, Shapiro and
Woen [8] derived the exponential generating function∑

n≥k

E(n, k)
xn

n!
= tank−1 x secx. (4.11)

Comparing the recurrence relations and the initial values of B(n, k) and E(n, k), we find
that

B(n, k) = E(n, k + 1).

Therefore B(n, k) can be viewed as a combinatorial explanation for E(n, k). Moreover,
we obtain the generating function Gn(y) for the n-th row of the table for B(n, k). Let

Gn(y) =
n∑
k=0

B(n, k)yk. (4.12)
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Note that

Gn(1) =
n∑
k=0

B(n, k)

equals the n-th Springer number. Let B(x, y) be the generating function for Gn(y), that
is,

B(x, y) =
∑
n≥0

Gn(y)
xn

n!
.

Then we have the following formula.

Theorem 4.4 We have

B(x, y) =
1

cosx− y sinx
.

Proof. Let

Fk(x) =
∑
n≥k

B(n, k)
xn

n!
=
∑
n≥k

E(n, k + 1)
xn

n!
= tank x secx.

Hence

B(x, y) =
∑
n≥0

∑
0≤k≤n

B(n, k)yk
xn

n!
=
∑
k≥0

Fk(x)yk =
1

cosx− y sinx
,

as required.

As applications of our bijection, we shall give a classification of snakes of type Bn

and establish a connection between labeled Dyck paths and alternating permutations.

Define the statistic

α(π) = #{1 ≤ j ≤ n |πj > 0 and j is odd}
+ #{1 ≤ j ≤ n |πj < 0 and j is even}
−#{1 ≤ j ≤ n |πj < 0 and j is odd}
−#{1 ≤ j ≤ n |πj > 0 and j is even}.

Then we have the following classification of snakes of type Bn.

Theorem 4.5 For 0 ≤ k ≤ n, B(n, k) equals the number of snakes π = π1π2 · · · πn with
α(π) = k.

Proof. From the construction of Φ from the set of snakes of type Bn to the set of labeled
ballot paths of length n, it can be seen that α(π) equals the number of up steps minus
the number of down steps of Φ(π). Consequently, if α(π) = k, then the ballot path
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Φ(π) ends at a point with y-coordinate k. So the theorem follows from the definition of
B(n, k). This completes the proof.

We remark that Theorem 4.4 and Theorem 4.5 lead to a combinatorial interpretation
for a sequence of derivative polynomials for the secant function secx, as introduced by
Hoffman [9]. Let {Qn(y)}n≥0 be a sequence of polynomials defined by

dn

dxn
secx = Qn(tanx) secx.

Hoffman [9] obtained the following exponential generating function for Qn(y)

∞∑
n=0

Qn(y)
xn

n!
=

1

cosx− y sinx
.

Hence we have
Qn(y) = Gn(y) =

∑
π

yα(π),

where the sum ranges over snakes of type Bn.

We now consider a restriction of our bijection to labeled Dyck paths and alternating
permutations. Substituting (4.10) into(4.9), we obtain∑

n≥0

B(2n, 0)
xn

n!
= secx.

Since secx is the generating function for the number E2n of alternating permutations
on [2n], we see that B(2n, 0) equals E2n. Recall that B(2n, 0) equals the number of
labeled Dyck paths of length 2n. The following theorem asserts that the restriction of
the map Ψ to labeled Dyck paths serves as a combinatorial interpretation of the fact that
B(2n, 0) = E2n. When restricted to labeled Dyck paths, the map Ψ does not involve any
negative elements. On the other hand, when restricted to alternating permutations, the
map Φ generates labeled Dyck paths.

Theorem 4.6 The maps Ψ and Φ induce a bijection between labeled Dyck paths of length
2n and alternating permutations on [2n].

Proof. Let (P,W ) = (p1 · · · p2n, w1 · · ·w2n) be a labeled Dyck path of length 2n. We wish
to show that π = Ψ(P,W ) = π1 · · · π2n contains no negative elements. Since (P,W ) is a
labeled Dyck path, we see that in the first step of Ψ there exists a down step labeled by
0. Assume that pr1 is the leftmost among such down steps. Applying the map Ψ, we are
supposed to contract pr1 into a single point to form a ballot path P2. Then we add 1 to
the labels of up steps of P2 which are originally to the right of pr1 and subtract 1 from the
labels of down steps of P2 which are originally to the left of pr1 . Then we get a labeled
ballot path (P2,W2) and a partial signed permutation Γ1 = (n− r1 +1)Γ0 = (n− r1 +1),
which contains no negative elements.
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Similarly, in step 2, in the labeled ballot path (P2,W2), there does not exist any down
step of P2 whose label equals its height. So we can find an up step of P2 labeled by 0.
Suppose that pr2 is the rightmost up step of P2 with label 0. Contracting pr2 gives a
ballot path P3. Subtract 1 from the labels of up steps of P3 that are originally to the
right of pr2 and add 1 to the labels of down steps of P3 that are originally to the left
of pr2 . Then we obtain a labeled ballot path (P3,W3) and a partial signed permutation
Γ2 = (n− r2 + 1)Γ1 = (n− r2 + 1)(n− r1 + 1) without negative elements.

Note that P1 is a Dyck path of length 2n, and an up step in P1 and a down step in
P2 are contracted. Hence there are n− 1 up steps and n− 1 down steps in P3. It follows
that (P3,W3) is a labeled Dyck path. Iterating the above process, we eventually obtain
an alternating permutation.

Conversely, let π = π1π2 · · · π2n be an alternating permutation of length 2n. We wish
to show that Φ(π) = p1 · · · p2n is a labeled Dyck path. Since Φ(π) is a labeled ballot path
already, it suffices to show that Φ(π) has the same number of up steps as down steps.
In step k of the map Φ, we are supposed to find the position of the element n − k + 1
in π so that we can determine whether pk is an up step or a down step. Assume that
πi = n − k + 1. If i is odd, then pk = u, and if i is even, then pk = d. Since π has 2n
elements, there are n odd positions as well as n even positions in π. So Φ(π) has n up
steps and n down steps. Thus Φ(π) is a labeled Dyck path. This completes the proof.

To conclude, we point out a connection between a special case of our bijection for
labeled Dyck paths and the special cases of some known bijections. Françon and Viennot
[6] found a bijection, denoted ΦFV , between weighted 2-Motzkin paths of length n − 1
and permutations on [n] with last elements being n. As a variant of ΦFV , Clarke,
Steingŕımsson and Zeng [5, p.255–257] obtained a bijection, denoted ΦCSZ , between
weighted 2-Motzkin paths of length n and permutations on [n].

If the bijection ΦFV is restricted to weighted 2-Motzkin paths of length 2n without
horizontal steps, then the corresponding permutations become alternating permutations
on [2n + 1] with last elements being 2n + 1, or equivalently, alternating permutations
on [2n]. In fact, a weighted 2-Motzkin path of length 2n without horizontal steps is
exactly a labeled Dyck path of length 2n in our terminology. This means that the above
restriction of ΦFV is a bijection between labeled Dyck path of length 2n and alternating
permutations on [2n].

Similarly, if we restrict the bijection ΦCSZ to weighted 2-Motzkin paths of length
2n without horizontal steps, then the corresponding permutations become alternating
permutations on [2n]. Thus the restriction of ΦCSZ can be also regarded as a bijection
between labeled Dyck paths of length 2n and alternating permutations on [2n].

It should be noted that the restriction of our bijection to labeled Dyck paths is
closely related to the restriction of the bijection ΦCSZ . More precisely, we have the
following assertions. Given an alternating permutation π = π1 · · · π2n, let Φ(π) =
(p1 · · · p2n, w1 · · ·w2n). Then we have ΦCSZ(π) = (p′2n · · · p′1, w2n · · ·w1), where u′ = d
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and d′ = u. Conversely, given a labeled ballot path (P,W ) = (p1 · · · p2n, w1 · · ·w2n), let
(P ′,W ′) = (p′2n · · · p′1, w2n · · ·w1), where u′ = d and d′ = u. Then we have Ψ(P,W ) =
Φ−1
CSZ(P ′,W ′). On the other hand, it can be seen that the restriction of our bijection to

labeled Dyck paths is different from the restriction of ΦFV .

It is also worth mentioning that Foata and Zeilberger [7] found a bijection, denoted
ΦFZ , between weighted 2-Motzkin paths of length n and permutations on [n]. This
bijection can be reduced to a correspondence between certain weighted 2-Motzkin paths
of length 2n and alternating permutations on [2n]. Biane [2] gave a bijection with
a different weight assignment for 2-Motzkin paths, denoted ΦB, between weighted 2-
Motzkin paths of length n and permutations on [n]. The relations among the bijections
ΦFV ,ΦFZ ,ΦB and ΦCSZ are discussed in [5, 13].
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