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Abstract

We find a combinatorial setting for the coefficients of the Boros-Moll polynomials
𝑃𝑚(𝑎) in terms of partially 2-colored permutations. Using this model, we give a combina-
torial proof of a recurrence relation on the coefficients of 𝑃𝑚(𝑎). This approach enables us
to give a combinatorial interpretation of the log-concavity of 𝑃𝑚(𝑎) which was conjectured
by Moll and confirmed by Kauers and Paule.
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1 Introduction

The main objective of this paper is to present a combinatorial approach to the log-
concavity of the Boros-Moll polynomials. The Boros-Moll polynomials 𝑃𝑚(𝑎) arise in
the evaluation of a quartic integral, see [3–7,13]. Boros and Moll have shown that for any
𝑎 > −1 and any nonnegative integer 𝑚,∫ ∞

0

1

(𝑥4 + 2𝑎𝑥2 + 1)𝑚+1
𝑑𝑥 =

𝜋

2𝑚+3/2(𝑎+ 1)𝑚+1/2
𝑃𝑚(𝑎), (1.1)
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where

𝑃𝑚(𝑎) =
∑
𝑗,𝑘

(
2𝑚+ 1

2𝑗

)(
𝑚− 𝑗

𝑘

)(
2𝑘 + 2𝑗

𝑘 + 𝑗

)
(𝑎+ 1)𝑗(𝑎− 1)𝑘

23(𝑘+𝑗)
. (1.2)

Boros and Moll also derived a single sum formula for 𝑃𝑚(𝑎):

𝑃𝑚(𝑎) = 2−2𝑚
∑
𝑘

2𝑘
(
2𝑚− 2𝑘

𝑚− 𝑘

)(
𝑚+ 𝑘

𝑘

)
(𝑎+ 1)𝑘, (1.3)

which implies that the coefficients of 𝑃𝑚(𝑎) are positive. More precisely, let 𝑑𝑖(𝑚) be the
coefficient of 𝑎𝑖 in 𝑃𝑚(𝑎). Then (1.3) gives

𝑑𝑖(𝑚) = 2−2𝑚

𝑚∑
𝑘=𝑖

2𝑘
(
2𝑚− 2𝑘

𝑚− 𝑘

)(
𝑚+ 𝑘

𝑘

)(
𝑘

𝑖

)
. (1.4)

Several proofs of the formula (1.3) can be found in the survey of Amdeberhan and Moll [2].

Further positivity properties of 𝑃𝑚(𝑎) have been studied recently. Boros and Moll [5]
have shown that the sequence {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 is unimodal for 𝑚 ≥ 0. Moll conjectured
that this sequence is log-concave, that is, for 𝑚 ≥ 2 and 1 ≤ 𝑖 ≤ 𝑚− 1,

𝑑2𝑖 (𝑚) ≥ 𝑑𝑖−1(𝑚)𝑑𝑖+1(𝑚). (1.5)

This conjecture has been confirmed by Kauers and Paule [12] based on recurrence rela-
tions. Chen and Xia [10] have proved a stronger property of 𝑑𝑖(𝑚), called the ratio mono-
tone property, which implies both the log-concavity and the spiral property. Moll [14,15]
posed a conjecture that is stronger than the log-concavity of 𝑃𝑚(𝑎). This conjecture
has been proved by Chen and Xia [11]. Chen and Gu [8] established the reverse ultra
log-concavity of the Boros-Moll polynomials.

It turns out that the polynomials 𝑃𝑚(𝑎) are closely related to combinatorial structures.
The 2-adic valuation of the numbers 𝑖!𝑚!2𝑚+𝑖𝑑𝑖(𝑚) has been studied by Amdeberhan,
Manna and Moll [1], and Sun and Moll [16]. By using reluctant functions and an extension
of Foata’s bijection, Chen, Pang and Qu [9] have found a combinatorial derivation of the
single sum formula (1.3) from the double sum formula (1.2). For the special case 𝑎 = 1,
we are led to a combinatorial argument for the identity

𝑚∑
𝑘=0

2−2𝑘

(
2𝑘

𝑘

)(
2𝑚− 𝑘

𝑚

)
=

𝑚∑
𝑘=0

2−2𝑘

(
2𝑘

𝑘

)(
2𝑚+ 1

2𝑘

)
.

However, this combinatorial approach does not seem to apply to recurrence relations for
𝑑𝑖(𝑚) or the log-concavity of 𝑃𝑚(𝑎).

In this paper, we shall consider a variation of the coefficients 𝑑𝑖(𝑚), that is,

𝐷𝑖(𝑚) =

(
2𝑚

𝑚− 𝑖

)
𝑚!𝑖!(𝑚− 𝑖)!2𝑖𝑑𝑖(𝑚). (1.6)
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Then the numbers 𝐷𝑖(𝑚) have a combinatorial interpretation in terms of partially 2-
colored permutations.

Using this combinatorial setting, we give an explanation of the following recurrence
relation of 𝑑𝑖(𝑚) derived independently by Kauers and Paule [12] and Moll [14]:

𝑖(𝑖+ 1)𝑑𝑖+1(𝑚) = 𝑖(2𝑚+ 1)𝑑𝑖(𝑚)− (𝑚− 𝑖+ 1)(𝑚+ 𝑖)𝑑𝑖−1(𝑚). (1.7)

The reasoning of the above recurrence relation also implies a simple combinatorial
interpretation of the log-concavity of the Boros-Moll polynomials.

2 A combinatorial setting for 𝐷𝑖(𝑚)

In this section, we shall give a combinatorial interpretation of 𝐷𝑖(𝑚) by introducing the
structure of partially 2-colored permutations. Throughout this paper, we shall adopt the
notation (𝑥)𝑛 for rising factorials, that is, (𝑥)0 = 1 and for 𝑛 > 0,

(𝑥)𝑛 = 𝑥(𝑥+ 1) ⋅ ⋅ ⋅ (𝑥+ 𝑛− 1).

From the expression (1.4) for 𝑑𝑖(𝑚), we have

𝑑𝑖(𝑚) = 2−2𝑚
𝑚∑
𝑘=𝑖

2𝑘
(
2𝑚− 2𝑘

𝑚− 𝑘

)(
𝑚+ 𝑘

𝑘

)(
𝑘

𝑖

)

= 2−2𝑚
𝑚−𝑖∑
𝑗=0

2𝑗+𝑖

(
2𝑚− 2𝑖− 2𝑗

𝑚− 𝑖− 𝑗

)(
𝑚+ 𝑖+ 𝑗

𝑖+ 𝑗

)(
𝑖+ 𝑗

𝑖

)

= 2−2𝑚
𝑚−𝑖∑
𝑗=0

2𝑗+𝑖 (2𝑚− 2𝑖− 2𝑗)!

(𝑚− 𝑖− 𝑗)!(𝑚− 𝑖− 𝑗)!
⋅ (𝑚+ 𝑖+ 𝑗)!

(𝑖+ 𝑗)!𝑚!
⋅ (𝑖+ 𝑗)!

𝑗!𝑖!

= 2−2𝑚
𝑚−𝑖∑
𝑗=0

2𝑗+𝑖 2
2𝑚−2𝑖−2𝑗(𝑚− 𝑖− 𝑗 − 1

2)!

(𝑚− 𝑖− 𝑗)!
⋅ (𝑚+ 𝑖+ 𝑗)!

(𝑖+ 𝑗)!𝑚!
⋅ (𝑖+ 𝑗)!

𝑗!𝑖!
.

It follows that

𝑚!𝑖!(𝑚− 𝑖)!2𝑖𝑑𝑖(𝑚) = (𝑚− 𝑖)!

𝑚−𝑖∑
𝑗=0

(
1

2

)𝑗 (𝑚− 𝑖− 𝑗 − 1
2)!

(𝑚− 𝑖− 𝑗)!
⋅ (𝑚+ 𝑖+ 𝑗)!

𝑗!
,

=

𝑚−𝑖∑
𝑗=0

(
𝑚− 𝑖

𝑗

)(
1

2

)𝑗 (1

2

)
𝑚−𝑖−𝑗

(𝑚+ 𝑖+ 𝑗)!,

which yields

𝐷𝑖(𝑚) =

(
2𝑚

𝑚− 𝑖

)𝑚−𝑖∑
𝑗=0

(
𝑚− 𝑖

𝑗

)(
1

2

)𝑗 (1

2

)
𝑚−𝑖−𝑗

(𝑚+ 𝑖+ 𝑗)!. (2.1)
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We proceed to give a combinatorial interpretation of𝐷𝑖(𝑚) according to the expression
(2.1). It is well known that (𝑥)𝑛 equals the generating function for permutations on [𝑛]
with respect to the number of cycles. Let 𝜎 be a permutation on [𝑛]. The weight of 𝜎
is defined as 𝑥𝑘, where 𝑘 is the number of cycles in 𝜎. So (𝑥)𝑛 is the weighted count of
permutations on [𝑛].

Suppose that (𝐴,𝐵,𝐶) is a composition of [2𝑚] = {1, 2, . . . , 2𝑚}, namely, any 𝐴, 𝐵
and 𝐶 are disjoint and 𝐴∪𝐵 ∪𝐶 = [2𝑚], where 𝐴, 𝐵 and 𝐶 are allowed to be empty. A
permutation on [2𝑚] associated with a composition (𝐴,𝐵,𝐶) of [2𝑚] is called a partially
2-colored permutation on [2𝑚] if it can be written as (𝜋∣𝜎), where 𝜋 is a permutation on
𝐴 ∪ 𝐵 and 𝜎 is a permutation on 𝐶. We assume that the elements in 𝐴 are white, the
elements in 𝐵 are black and written in boldface, while the elements in 𝐶 are uncolored.

Moreover, we need to use two different representations for the permutations 𝜋 and 𝜎
in a partially 2-colored permutation (𝜋∣𝜎). To be precise, we shall write 𝜋 in the one-
line notation in the form of a sequence. For example, 5, 7, 8, 2, 1, 6, 4, 3 is the one-line
representation of a permutation. On the other hand, we shall express 𝜎 in terms of
the cycle decomposition. For instance, the permutation in the above example has cycle
decomposition (1, 5)(2, 7, 4)(3, 8)(6).

Let 𝒟𝑖(𝑚) denote the set of all partially 2-colored permutations (𝜋∣𝜎) on [2𝑚] such
that the 2-colored permutation 𝜋 has 𝑚 + 𝑖 black elements. For example, consider the
partially 2-colored permutation

(2,12, 8,11,5,9,7, 1,4,3∣(6, 10))

in 𝒟2(6). Then we have 𝐴 = {1, 8}, 𝐵 = {2, 3, 4, 5, 7, 9, 11, 12}, and 𝐶 = {6, 10}. From
the definition, we see that for a partially 2-colored permutation (𝜋∣𝜎) in 𝒟𝑖(𝑚), we have
∣𝐴 ∪ 𝐶∣ = 𝑚− 𝑖.

We are now ready to give a combinatorial interpretation of 𝐷𝑖(𝑚). With respect to the
weight a partially 2-colored permutation (𝜋∣𝜎) in 𝒟𝑖(𝑚), we impose the following rules:

(1) An element in 𝐴 is given a weight 1
2
;

(2) A cycle in 𝜎 is given a weight 1
2
.

The weight (𝜋∣𝜎) is defined as the product of the weights of the white elements and the
cycles. In light of the above weight assignment, 𝐷𝑖(𝑚) can be viewed as a weighted count
of partially 2-colored permutations. The weight of a set 𝑆 means to be the sum of weights
of its elements, and is denoted by 𝑤(𝑆).

Theorem 2.1. For 𝑚 ≥ 1, 𝐷𝑖(𝑚) equals the weight of 𝒟𝑖(𝑚).
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Proof. Given a composition (𝐴,𝐵,𝐶) of [2𝑚] such that ∣𝐵∣ = 𝑚+ 𝑖 and ∣𝐴∪𝐶∣ = 𝑚− 𝑖.
Assume that there are 𝑗 elements in 𝐴. It is clear that there are 𝑚− 𝑖− 𝑗 elements in 𝐶.
Now, there are

(
2𝑚
𝑚−𝑖

)
ways to distribute 2𝑚 elements into 𝐵 and 𝐴 ∪𝐶. Moreover, there

are
(
𝑚−𝑖
𝑗

)
ways to distribute 𝑚− 𝑖 elements into 𝐴 and 𝐶.

Consider partially 2-colored permutations in𝒟𝑖(𝑚) associated with composition (𝐴,𝐵,𝐶)
of [2𝑚]. Since ∣𝐴 ∪𝐵∣ = 𝑚+ 𝑖+ 𝑗, the sum of weights of permutations on 𝐴 ∪𝐵 equals(

1

2

)𝑗

⋅ (𝑚+ 𝑖+ 𝑗)!.

The weighted sum of permutations on 𝐶 equals
(
1
2

)
𝑚−𝑖−𝑗

. This completes the proof.

3 Combinatorial proof of the recurrence relation

Using the interpretation of 𝐷𝑖(𝑚) in terms of partially 2-colors permutation, we give a
combinatorial proof for the following recurrence relation of the coefficients 𝑑𝑖(𝑚) of the
Boros-Moll polynomials

𝑖(𝑖+ 1)𝑑𝑖+1(𝑚) = 𝑖(2𝑚+ 1)𝑑𝑖(𝑚)− (𝑚− 𝑖+ 1)(𝑚+ 𝑖)𝑑𝑖−1(𝑚). (3.1)

This recurrence was independently derived by Kauers, Paule [12] and Moll [14].

Utilizing (1.6), the recurrence relation (3.1) can be restated as

1

2
(𝑚+ 𝑖+ 1)𝐷𝑖+1(𝑚) + 2(𝑚− 𝑖+ 1)𝐷𝑖−1(𝑚) = (2𝑚+ 1)𝐷𝑖(𝑚). (3.2)

To give a combinatorial proof of (3.2), we need to introduce some notation. Let 𝒜𝑖(𝑚)
(resp. ℬ𝑖(𝑚) and 𝒞𝑖(𝑚)) denote the set of all partially 2-colored permutations (𝜋∣𝜎) in
𝒟𝑖(𝑚) such that exactly one element in 𝐴 (resp. 𝐵 and 𝐶) is underlined. Obviously, the
four sets 𝒜𝑖(𝑚), ℬ𝑖(𝑚), 𝒞𝑖(𝑚) and 𝒟𝑖(𝑚) are disjoint. For example,

(2,12, 8,11,5,9,7, 1,4,3∣(6, 10))
is an underlined partially 2-colored permutation belonging to ℬ2(6). By definition and
Theorem 2.1, we have

(𝑚+ 𝑖)𝐷𝑖(𝑚) = 𝑤(ℬ𝑖(𝑚)), (3.3)

(𝑚− 𝑖)𝐷𝑖(𝑚) = 𝑤(𝒜𝑖(𝑚) ∪ 𝒞𝑖(𝑚)). (3.4)

Proof. From (3.3) and (3.4), we know that

(𝑚+ 𝑖+ 1)𝐷𝑖+1(𝑚) = 𝑤(ℬ𝑖+1(𝑚)), (3.5)
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(𝑚− 𝑖+ 1)𝐷𝑖−1(𝑚) = 𝑤(𝒜𝑖−1(𝑚) ∪ 𝒞𝑖−1(𝑚)). (3.6)

On the other hand, we have

(2𝑚+ 1)𝐷𝑖(𝑚) = 𝑤(𝒜𝑖(𝑚) ∪ ℬ𝑖(𝑚) ∪ 𝒞𝑖(𝑚) ∪ 𝒟𝑖(𝑚)). (3.7)

First, we claim that
1

2
𝑤(ℬ𝑖+1(𝑚)) = 𝑤(𝒜𝑖(𝑚)). (3.8)

Given (𝜋∣𝜎) ∈ ℬ𝑖+1(𝑚) with underlying composition (𝐴,𝐵,𝐶), where ∣𝐵∣ = 𝑚+ 𝑖+1 and
∣𝐴∪𝐶∣ = 𝑚− 𝑖−1, by changing the underlined black element in 𝜋 to an underlined white
element, we obtain an underlined partially 2-colored permutation in 𝒜𝑖(𝑚). Clearly, this
operation yields a bijection between ℬ𝑖+1(𝑚) and 𝒜𝑖(𝑚). Since the weight of a white
element equals 1/2, we obtain (3.8). Substituting 𝑖 with 𝑖− 1 in (3.8), we get

𝑤(ℬ𝑖(𝑚)) = 2𝑤(𝒜𝑖−1(𝑚)). (3.9)

Hence (3.2) simplifies to the following relation

2𝑤(𝒞𝑖−1(𝑚)) = 𝑤(𝒞𝑖(𝑚) ∪ 𝒟𝑖(𝑚)). (3.10)

Assume that (𝜋∣𝜎) ∈ 𝒞𝑖−1(𝑚) is a partially 2-colored permutation with underlying
composition (𝐴,𝐵,𝐶), that is, ∣𝐵∣ = 𝑚+𝑖−1, ∣𝐴∪𝐶∣ = 𝑚−𝑖+1, and 𝜎 is a permutation
with an underlined element. Suppose that 𝜎 has cycle decomposition 𝐶0, 𝐶1, . . . , 𝐶𝑟, where
𝐶0 contains the underlined element. Without loss of generality, we may always write 𝐶0

as (𝑖1𝑖2 ⋅ ⋅ ⋅ 𝑖𝑘). Given (𝜋∣𝜎) ∈ 𝒞𝑖−1(𝑚), we define

Δ(𝜋∣𝜎) = {Δ1,Δ2, . . . ,Δ𝑘},

where

Δ1 = (𝜋, i1∣(𝑖2, 𝑖3, . . . , 𝑖𝑘)𝐶1𝐶2 ⋅ ⋅ ⋅𝐶𝑟),

Δ2 = (𝜋, i1, 𝑖2∣(𝑖3, . . . , 𝑖𝑘)𝐶1𝐶2 ⋅ ⋅ ⋅𝐶𝑟),

⋅ ⋅ ⋅
Δ𝑘−1 = (𝜋, i1, 𝑖2, . . . , 𝑖𝑘−1∣(𝑖𝑘)𝐶1𝐶2 ⋅ ⋅ ⋅𝐶𝑟),

Δ𝑘 = (𝜋, i1, 𝑖2, . . . , 𝑖𝑘−1, 𝑖𝑘∣𝐶1𝐶2 ⋅ ⋅ ⋅𝐶𝑟).

For 1 ≤ 𝑗 ≤ 𝑘 − 1, we have Δ𝑗 ∈ 𝒞𝑖(𝑚) and

𝑤(Δ𝑗) =
1

2𝑗−1
𝑤(𝜋∣𝜎). (3.11)
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Moreover, we see that Δ𝑘 ∈ 𝒟𝑖(𝑚) and

𝑤(Δ𝑘) =
1

2𝑘−2
𝑤(𝜋∣𝜎). (3.12)

Conversely, any partially colored permutation in 𝒞𝑖(𝑚) ∪ 𝒟𝑖(𝑚) can be obtained from a
partially colored permutation in 𝒞𝑖−1(𝑚) by applying the above operation Δ. Thus, we
deduce that

Δ(𝒞𝑖−1(𝑚)) = 𝒞𝑖(𝑚) ∪ 𝒟𝑖(𝑚), (3.13)

where Δ acts on the partially colored permutations in 𝒞𝑖−1(𝑚). Since

𝑘−1∑
𝑗=1

1

2𝑗−1
+

1

2𝑘−2
= 2,

combining (3.11), (3.12) and (3.13) we obtain (3.2). This completes the proof.

4 Combinatorial proof of the log-concavity

In this section, we shall use the structure of partially 2-colored permutations to give a
combinatorial reasoning of the following relation

(𝑚+ 𝑖+ 1)𝐷𝑖+1(𝑚) ⋅ (𝑚− 𝑖+ 1)𝐷𝑖−1(𝑚) < (𝑚+ 𝑖)(𝑚− 𝑖+ 1)𝐷2
𝑖 (𝑚), (4.1)

which implies the log-concavity of the Boros-Moll polynomials. We shall follow the nota-
tion introduced in the previous section.

Proof. From (3.5) and (3.6), we see that

(𝑚+ 𝑖+ 1)𝐷𝑖+1(𝑚) ⋅ (𝑚− 𝑖+ 1)𝐷𝑖−1(𝑚)

= 𝑤(ℬ𝑖+1(𝑚)) ⋅ 𝑤(𝒜𝑖−1(𝑚) ∪ 𝒞𝑖−1(𝑚))

= 𝑤(ℬ𝑖+1(𝑚)) ⋅ 𝑤(𝒜𝑖−1(𝑚)) + 𝑤(ℬ𝑖+1(𝑚)) ⋅ 𝑤(𝒞𝑖−1(𝑚)). (4.2)

Meanwhile, in view of (3.3) and (3.4), we find

(𝑚+ 𝑖)(𝑚− 𝑖+ 1)𝐷2
𝑖 (𝑚)

= 𝑤(ℬ𝑖(𝑚)) ⋅ 𝑤(𝒜𝑖(𝑚) ∪ 𝒞𝑖(𝑚) ∪ 𝒟𝑖(𝑚))

= 𝑤(ℬ𝑖(𝑚)) ⋅ 𝑤(𝒜𝑖(𝑚)) + 𝑤(ℬ𝑖(𝑚)) ⋅ 𝑤(𝒞𝑖(𝑚) ∪ 𝒟𝑖(𝑚)). (4.3)

Hence (4.1) can be recast as

𝑤(ℬ𝑖+1(𝑚)) ⋅ 𝑤(𝒜𝑖−1(𝑚)) + 𝑤(ℬ𝑖+1(𝑚)) ⋅ 𝑤(𝒞𝑖−1(𝑚))
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< 𝑤(ℬ𝑖(𝑚)) ⋅ 𝑤(𝒜𝑖(𝑚)) + 𝑤(ℬ𝑖(𝑚)) ⋅ 𝑤(𝒞𝑖(𝑚) ∪ 𝒟𝑖(𝑚)). (4.4)

Invoking (3.8) and (3.9), we obtain

𝑤(ℬ𝑖+1(𝑚)) ⋅ 𝑤(𝒜𝑖−1(𝑚)) = 𝑤(ℬ𝑖(𝑚)) ⋅ 𝑤(𝒜𝑖(𝑚)). (4.5)

Using (4.5) and the fact that

2𝑤(𝒞𝑖−1(𝑚)) = 𝑤(𝒞𝑖(𝑚) ∪ 𝒟𝑖(𝑚))

as given by (3.10), (4.4) simplifies to

1

2
𝑤(ℬ𝑖+1(𝑚)) < 𝑤(ℬ𝑖(𝑚)). (4.6)

Applying(3.8), (4.6) is equivalent to the relation

𝑤(𝒜𝑖(𝑚)) < 𝑤(ℬ𝑖(𝑚)), (4.7)

which can be easily deduced from (3.3) and (3.4), since for 1 ≤ 𝑖 ≤ 𝑚− 1,

𝑤(𝒜𝑖(𝑚)) ≤ 𝑤(𝒜𝑖(𝑚) ∪ 𝒞𝑖(𝑚)) = (𝑚− 𝑖)𝐷𝑖(𝑚) < (𝑚+ 𝑖)𝐷𝑖(𝑚) = 𝑤(ℬ𝑖(𝑚)). (4.8)

This completes the proof.
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