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Abstract. We introduce the notion of infinitely log-monotonic sequences.
By establishing a connection between completely monotonic functions and in-
finitely log-monotonic sequences, we show that the sequences of the Bernoulli
numbers, the Catalan numbers and the central binomial coefficients are in-
finitely log-monotonic. In particular, if a sequence {an}n≥0 is log-monotonic
of order two, then it is ratio log-concave in the sense that the sequence
{an+1/an}n≥0 is log-concave. Furthermore, we prove that if a sequence
{an}n≥k is ratio log-concave, then the sequence { n

√
an}n≥k is strictly log-

concave subject to a certain initial condition. As consequences, we show
that the sequences of the derangement numbers, the Motzkin numbers, the
Fine numbers, the central Delannoy numbers, the numbers of tree-like poly-
hexes and the Domb numbers are ratio log-concave. For the case of the
Domb numbers Dn, we confirm a conjecture of Sun on the log-concavity of
the sequence { n

√
Dn}n≥1.
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1 Introduction

In this paper, we introduce the notion of infinitely log-monotonic sequences
based on the classical concept of logarithmically completely monotonic func-
tions. A function f is said to be completely monotonic on an interval I if f
has derivatives of all orders on I and

(−1)nf (n)(x) ≥ 0 (1.1)

for x ∈ I and all integers n ≥ 0.
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A positive function f is said to be logarithmically completely monotonic
on an interval I if log f satisfies

(−1)n[log f(x)](n) ≥ 0 (1.2)

for x ∈ I and all the integers n ≥ 1, see, for example, Atanassov and
Tsoukrovski [3]. A logarithmically completely monotonic function is com-
pletely monotonic, but the converse is not necessarily the case, see Berg [4].

Recall that a sequence {an}n≥0 is said to be log-concave (resp. log-convex)
if for all n ≥ 1, a2

n ≥ an−1an+1 (resp. a2
n ≤ an−1an+1), and it is said to

be strictly log-concave (resp. strictly log-convex) if the inequality is strict.
Define an operator R on a sequence {an}n≥0 by

R{an}n≥0 = {bn}n≥0,

where bn = an+1/an. We say that a sequence {an}n≥0 is log-monotonic of
order k if for r odd and not greater than k−1, the sequence Rr{an}n≥0 is log-
concave and for r even and not greater than k − 1, the sequence Rr{an}n≥0

is log-convex. A sequence {an}n≥0 is called infinitely log-monotonic if it is
log-monotonic of order k for all integers k ≥ 1.

We establish a connection between completely monotonic functions and
infinitely log-monotonic sequences. Using the log-behavior of the Riemann
zeta function and the gamma function, we show that the sequences of the
Bernoulli numbers, the Catalan numbers and the central binomial coefficients
are infinitely log-monotonic.

Log-monotonic sequences of order two are of special interest. It can be
easily seen that a sequence {an}n≥0 is log-monotonic of order two if and
only if it is log-convex and the ratio sequence {an+1/an}n≥0 is log-concave.
A sequence {an}n≥0 is said to be ratio log-concave if {an+1/an}n≥0 is log-
concave. Similarly, a sequence {an}n≥0 is called ratio log-convex if the ratio
sequence {an+1/an}n≥0 is log-convex.

We prove that under a certain initial condition, the ratio log-concavity of
a sequence {an}n≥k of positive numbers implies that the sequence { n

√
an}n≥k

is strictly log-concave. Analogous to Firoozbakht’s conjecture that the se-
quence { n

√
pn}n≥1 is strictly increasing, where pn is the n-th prime number,

Sun [16] conjectured that for some combinatorial sequences {an}n≥0, the se-
quences { n

√
an}n≥1 are strictly log-concave except for the first few terms.

Hou, Sun and Wen [10] proved this conjecture for the derangement numbers.
Luca and Stănică’s [13] showed that the conjecture holds for the Bernoulli
numbers, the Euler numbers, the Tangent numbers, the Motzkin numbers,
the Apéry numbers, the Franel numbers, the central Delannoy numbers, the
Schröder numbers and the trinomial coefficients.
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In this paper, we prove that for the derangement numbers, the Motzkin
numbers, the Fine numbers, the central Delannoy numbers, the numbers of
tree-like polyhexes and the Domb numbers, the sequences {an}n≥0 are ratio
log-concave except for the first few terms. As consequences, we are led to the
log-concavity of the sequence { n

√
an}n≥1 for the derangement numbers proved

by Hou, Sun and Wen and the log-concavity of the sequences { n
√

an}n≥1

for the Bernoulli numbers, the Motzkin numbers and the central Delonnay
numbers proved by Luca and Stănică. Moreover, we confirm the conjecture
of Sun on the log-concavity of the sequence { n

√
Dn}n≥1 of the Domb numbers.

We also show that for the sequences {an}n≥0 of the Catalan numbers, the
central binomial coefficients, the Fine numbers and the numbers of tree-like
polyhexes, the sequences { n

√
an}n≥0 are strictly log-concave except for the

first few terms.

Our approach also applies to the log-behavior of the harmonic numbers.
We prove that for any given integer m ≥ 1, the sequence of the generalized
harmonic numbers {Hn,m}n≥1 is ratio log-convex. This leads to the strict
log-convexity of the sequence { n

√

Hn,m}n≥3, as conjectured by Sun [16] and
confirmed by Hou, Sun and Wen [10].

We conclude this paper with a conjecture on almost infinitely log-monotonic
sequences, where a sequence {an}n≥0 is called almost infinitely log-monotonic
if for k ≥ 0, {an}n≥0 is log-monotonic of order k except for certain entries at
the beginning.

2 Infinitely Log-monotonic Sequences

In this section, we establish a connection between completely monotonic
functions and infinitely log-monotonic sequences. We show that the Riemann
zeta function is logarithmically completely monotonic. Then we deduce that
the sequence of the Bernoulli numbers is infinitely log-monotonic. Using the
fact that [log Γ(x)]′′ is completely monotonic, we prove that the sequences
of the Catalan numbers and the central binomial coefficients are infinitely
log-monotonic.

The following theorem shows that a completely monotonic function gives
rise to an infinitely log-monotonic sequence.

Theorem 2.1 Assume that f(x) is a function such that [log f(x)]′′ is com-
pletely monotonic for x ≥ 1. Let an = f(n) for n ≥ 1. Then the sequence
{an}n≥1 is infinitely log-monotonic.

Proof. Denote the sequence Ri{an}n≥1 by {bn,i}n≥1 for i ≥ 0. In other
words, bn,0 = an and bn,i+1 = bn+1,i/bn,i. Let f0(x) = f(x), and define the
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functions f1(x), f2(x), . . . by the relation

fi+1(x) =
fi(x + 1)

fi(x)
. (2.1)

It is clear that bn,i = fi(n) for any i ≥ 0 and n ≥ 1. We aim to show that
for j ≥ 0 and k ≥ 2,

(−1)k[log f2j(x)](k) ≥ 0, (2.2)

and
(−1)k[log f2j+1(x)](k) ≤ 0. (2.3)

We use induction on j. Since [log f(x)]′′ is completely monotonic, we find
that for k ≥ 2,

(−1)k[log f(x)](k) ≥ 0, (2.4)

that is, (2.2) holds for j = 0. Rewriting (2.4) as (−1)k+1[log f(x)](k+1) ≥ 0
for k ≥ 1, we get

(−1)k[log f(x)](k+1) ≤ 0, (2.5)

for k ≥ 1. Since f1(x) = f(x + 1)/f(x), by (2.5) we find that for k ≥ 2,

(−1)k[log f1(x)](k) = (−1)k[log f(x + 1)](k) − (−1)k[log f(x)](k) ≤ 0.

Thus (2.3) is verified for j = 0.

We now assume that (2.2) and (2.3) hold for j ≤ n − 1. We proceed to
show that (2.2) and (2.3) hold for j = n. Rewriting the induction hypothesis
(2.3) as (−1)k+1[log f2n−1(x)](k+1) ≤ 0 for k ≥ 1, we see that for k ≥ 2,

(−1)k[log f2n(x)](k) = (−1)k[log f2n−1(x + 1)](k) − (−1)k[log f2n−1(x)](k) ≥ 0.

Hence (2.2) holds for j = n. Similarly, it can be shown that for k ≥ 2,

(−1)k[log f2n+1(x)](k) ≤ 0,

that is, (2.3) holds for j = n. Up to now, we have proved (2.2) and (2.3) for
j ≥ 0 and k ≥ 2.

In view of (2.2) and (2.3), we conclude that for any i ≥ 0, the sequence
{f2i(n)}n≥1 is log-convex and the sequence {f2i+1(n)}n≥1 is log-concave, in
other words, for any i ≥ 0, the sequence R2i{an}n≥1 is log-convex and the
sequence R2i+1{an}n≥1 is log-concave. This completes the proof.

It is not difficult to see that the Riemann zeta function is logarithmically
completely monotonic. Indeed, it is known that for <(s) > 1,

− ζ ′(s)

ζ(s)
=

∞
∑

n=1

Λ(n)n−s, (2.6)
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where Λ(n) is the von Mangoldt function defined by

Λ(n) =

{

log p, if n = pm, where p is a prime and m ≥ 1,

0, otherwise,
(2.7)

see [11, pp.3]. Using the above formula (2.6), we find that, for x > 1,

(−1)k[log ζ(x)](k) =

∞
∑

n=1

Λ(n)(log n)k−1

nx
> 0.

It follows that ζ(x) is logarithmically completely monotonic on (1,∞). Thus
[log ζ(x)]′′ is completely monotonic on (1,∞).

To prove that the sequence of the Bernoulli numbers {|B2n|}n≥1 is in-
finitely log-monotonic, we need to show that [log Γ(x)]′′ is completely mono-
tonic on (0,∞). It is known that for x > 0,

Γ′(x)

Γ(x)
= −γ −

∞
∑

m=1

(

1

x + m − 1
− 1

m

)

, (2.8)

where γ is the Euler constant, see [2]. It follows that

(

Γ′(x)

Γ(x)

)(k)

= (−1)k+1k!

∞
∑

m=0

1

(x + m)k+1
. (2.9)

Therefore, for k ≥ 2 and x ≥ 1, we have (−1)k[log Γ(x)](k) > 0, namely,
[log Γ(x)]′′ is completely monotonic on (0,∞).

Theorem 2.2 Let Bn be the n-th Bernoulli number. The sequence {|B2n|}n≥1

is infinitely log-monotonic.

Proof. It is well known that

ζ(2n) =
22n−1π2n

(2n)!
|B2n|. (2.10)

Set

z(x) =
2ζ(2x)Γ(2x + 1)

(2π)2x
. (2.11)

Using (2.10), it can be checked that z(n) = |B2n|. Since for x ≥ 1 and k ≥ 2,

[log z(x)](k) = 2k[log ζ(2x)](k) + 2k[log Γ(2x + 1)](k),
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we see that for x ≥ 1 and k ≥ 2, (−1)k[log z(x)](k) > 0. Thus for x ≥ 1,
[log z(x)]′′ is completely monotonic. Hence the proof is complete by using
Theorem 2.1.

Next we consider the Catalan numbers Cn. Define

c(x) =
Γ(2x + 1)

Γ(x + 1)Γ(x + 2)
,

so that c(n) = Cn = 1
n+1

(

2n

n

)

for n ≥ 1. To prove that the sequence {Cn}n≥1

is infinitely log-monotonic, we shall demonstrate that [log c(x)]′′ is completely
monotonic on [1,∞].

Theorem 2.3 The sequence {Cn}n≥1 of the Catalan numbers is infinitely
log-monotonic.

Proof. By the definition of c(x), we find that for x ≥ 1 and k ≥ 2,

[log c(x)](k) = [log Γ(2x + 1)](k) − [log Γ(x + 1)](k) − [log Γ(x + 2)](k). (2.12)

In view of (2.9), we obtain that for x ≥ 1 and k ≥ 2,

(−1)k[log Γ(2x + 1)](k)

= 2k(k − 1)!
∞

∑

m=0

1

(2x + 1 + m)k

= (k − 1)!
∞

∑

i=0

1

(x + 1/2 + (2i)/2)k
+ (k − 1)!

∞
∑

i=0

1

(x + 1/2 + (2i + 1)/2)k

= (k − 1)!

∞
∑

i=0

1

(x + 1/2 + i)k
+ (k − 1)!

∞
∑

i=0

1

(x + i + 1)k
. (2.13)

Since

(k−1)!
∞

∑

i=0

1

(x + 1/2 + i)k
> (k−1)!

∞
∑

m=0

1

(x + 1 + m)k
= (−1)k[log Γ(x+1)](k)

and

(k−1)!

∞
∑

i=0

1

(x + i + 1)k
> (k−1)!

∞
∑

m=0

1

(x + 2 + m)k
= (−1)k[log Γ(x+2)](k),

it follows from (2.13) that

(−1)k[log Γ(2x + 1)](k) > (−1)k[log Γ(x + 1)](k) + (−1)k[log Γ(x + 2)](k).
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According to (2.12), we find that for x ≥ 1 and k ≥ 2, (−1)k[log c(x)](k) > 0,
that is, [log c(x)]′′ is completely monotonic for x ≥ 1. By Theorem 2.1, we
conclude that the sequence {Cn}n≥1 is infinitely log-monotonic.

For the sequence {
(

2n

n

)

}n≥1 of the central binomial coefficients, we define

d(x) =
Γ(2x + 1)

Γ(x + 1)2
.

Then we have d(n) =
(

2n

n

)

for n ≥ 1. Using the same argument as in the

proof of Theorem 2.3, it can be shown that for x ≥ 1, (−1)k[log d(x)](k) > 0.
By Theorem 2.1, we come to the conclusion that the sequence {

(

2n

n

)

}n≥1 is
infinitely log-monotonic.

3 Ratio Log-Concavity

In this section, we show that the ratio log-concavity (resp. ratio log-convexity)
of a sequence {an}n≥k implies the strict log-concavity (resp. strict log-
convexity) of the sequence { n

√
an}n≥k under a certain initial condition. We

also show that the sequence of the derangement numbers is ratio log-concave
and the sequence of the generalized harmonic numbers is ratio log-convex.
Some known results are consequences of the log-behavior of these two ratio
sequences.

Theorem 3.1 Assume that k is a positive integer. If a sequence {an}n≥k is
ratio log-concave and

k+1
√

ak+1

k
√

ak

>
k+2
√

ak+2

k+1
√

ak+1

, (3.1)

then the sequence { n
√

an}n≥k is strictly log-concave.

To prove above theorem, we need the following lemmas.

Lemma 3.2 Assume that k is a positive integer. If a sequence {an}n≥k is
ratio log-concave, then for any k ≤ i < j ≤ n, we have

log
aj+1

aj

≥ (j − i)

(

log
an+1

an

− log
an

an−1

)

+ log
ai+1

ai

. (3.2)

Proof. The ratio log-concavity of {an}n≥k implies that for k ≤ i ≤ n − 1,

(

ai+2

ai+1

)2

≥ ai+1

ai

· ai+3

ai+2
.
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Thus, for k ≤ i ≤ n − 1,

log
ai+2

ai+1
− log

ai+1

ai

≥ log
ai+3

ai+2
− log

ai+2

ai+1
.

It follows that for k ≤ i ≤ n − 1,

log
ai+2

ai+1
− log

ai+1

ai

≥ log
an+1

an

− log
an

an−1
. (3.3)

Since for j > i,

log
aj+1

aj

=

j−1
∑

l=i

(

log
al+2

al+1

− log
al+1

al

)

+ log
ai+1

ai

,

by (3.3), we finally get (3.2).

Under the initial condition (3.1) in Theorem 3.1, we have the following
inequality.

Lemma 3.3 Assume that k is a positive integer. If a ratio log-concave se-
quence {an}n≥k satisfies the initial condition (3.1) in Theorem 3.1, then we
have for n > k,

k log
ak+1

ak

>
k2 + k

2

(

log
an+1

an

− log
an

an−1

)

+ log ak. (3.4)

Proof. The initial condition (3.1) can be rewritten as

log ak+1

k + 1
− log ak

k
>

log ak+2

k + 2
− log ak+1

k + 1
,

that is,

2(k2 + 2k) log ak+1 > (k2 + k) log ak+2 + (k2 + 3k + 2) log ak. (3.5)

Expressing (3.5) in terms of logarithms of ratios, we find that

k log
ak+1

ak

>
k2 + k

2

(

log
ak+2

ak+1
− log

ak+1

ak

)

+ log ak. (3.6)

By the ratio log-concavity of {an}n≥k, we deduce that for k < n,

log
ak+2

ak+1

− log
ak+1

ak

≥ · · · ≥ log
an+1

an

− log
an

an−1

. (3.7)

Combining (3.6) and (3.7), we arrive at (3.4).

We are now ready to complete the proof of Theorem 3.1.
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Proof of Theorem 3.1. To establish the strict log-concavity of { n
√

an}n≥k, we
aim to show that for n > k,

2 log an

n
>

log an+1

n + 1
+

log an−1

n − 1
. (3.8)

It is easily verified that

2 log an

n
− log an+1

n + 1
− log an−1

n − 1

=
1

n(n + 1)(n − 1)
(2(n2 − 1) log an − (n2 − n) log an+1 − (n2 + n) log an−1)

=
1

n3 − n

[

n

(

log
an+1

an

+ log
an

an−1

)

− n2

(

log
an+1

an

− log
an

an−1

)

− 2 log an

]

.

(3.9)

We wish to estimate n log an+1

an
and n log an

an−1
. We claim that

n log
an+1

an

>
n(n + 1)

2

(

log
an+1

an

− log
an

an−1

)

+ log an, (3.10)

and

n log
an

an−1
>

n(n − 1)

2

(

log
an+1

an

− log
an

an−1

)

+ log an. (3.11)

Setting j = n in (3.2) of Lemma 3.2, we see that for k ≤ i ≤ n − 1,

log
an+1

an

≥ (n − i)

(

log
an+1

an

− log
an

an−1

)

+ log
ai+1

ai

. (3.12)

Summing (3.12) over i from k to n − 1 gives

(n − k) log
an+1

an

≥
n−1
∑

i=k

(n − i)

(

log
an+1

an

− log
an

an−1

)

+
n−1
∑

i=k

log
ai+1

ai

. (3.13)

Write k log an+1

an
in the following form

k log
an+1

an

= k

n
∑

j=k+1

(

log
aj+1

aj

− log
aj

aj−1

)

+ k log
ak+1

ak

. (3.14)

It follows from the ratio log-concavity condition (3.7) that

k
n

∑

j=k+1

(

log
aj+1

aj

− log
aj

aj−1

)

≥ k(n − k)

(

log
an+1

an

− log
an

an−1

)

. (3.15)
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Applying (3.15) and Lemma 3.3 to the righthand side of (3.14), we deduce
that

k log
an+1

an

>

(

k(n − k) +
k2 + k

2

) (

log
an+1

an

− log
an

an−1

)

+ log ak

=

k−1
∑

i=0

(n − i)

(

log
an+1

an

− log
an

an−1

)

+ log ak. (3.16)

Combining (3.13) and (3.16), we obtain that

n log
an+1

an

>

n−1
∑

i=0

(n − i)

(

log
an+1

an

− log
an

an−1

)

+

n−1
∑

i=k

log
ai+1

ai

+ log ak

=
n(n + 1)

2

(

log
an+1

an

− log
an

an−1

)

+ log an.

This verifies (3.10).

We continue to prove (3.11). Setting j = n− 1 in (3.2) in Lemma 3.2, we
find that for k ≤ i ≤ n − 2,

log
an

an−1

≥ (n − i − 1)

(

log
an+1

an

− log
an

an−1

)

+ log
ai+1

ai

. (3.17)

Summing (3.17) over i from k to n − 2, we get

(n − k − 1) log
an

an−1
≥

n−2
∑

i=k

(n − i − 1)

(

log
an+1

an

− log
an

an−1

)

+

n−2
∑

i=k

log
ai+1

ai

.

(3.18)
Note that

k log
an

an−1
= k

n−1
∑

j=k+1

(

log
aj+1

aj

− log
aj

aj−1

)

+ k log
ak+1

ak

. (3.19)

Using the ratio log-concavity condition (3.7), we find that

k

n−1
∑

j=k+1

(

log
aj+1

aj

− log
aj

aj−1

)

≥ k(n−k−1)

(

log
an+1

an

− log
an

an−1

)

. (3.20)

Applying (3.20) and Lemma 3.3 to the righthand side of (3.19), we obtain
that

k log
an

an−1
>

k
∑

i=0

(n − i − 1)

(

log
an+1

an

− log
an

an−1

)

+ log ak. (3.21)
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Combining (3.18) and (3.21), we have

(n − 1) log
an

an−1
>

n−2
∑

i=0

(n − i − 1)

(

log
an+1

an

− log
an

an−1

)

+

n−2
∑

i=k

log
ai+1

ai

+ log ak

=
n(n − 1)

2

(

log
an+1

an

− log
an

an−1

)

+ log an−1.

This proves (3.11).

Utilizing the estimates of n log an+1

an
and n log an

an−1
as given in (3.10) and

(3.11), we deduce that

n

(

log
an+1

an

+ log
an

an − 1

)

> n2

(

log
an+1

an

− log
an

an−1

)

+ 2 log an.

It follows from (3.9) that

2 log an

n
>

log an+1

n + 1
+

log an−1

n − 1
.

This completes the proof.

In Section 2, we have shown that the sequences {|B2n|}n≥1, {Cn}n≥1

and {
(

2n

n

)

}n≥1 are infinitely log-monotonic, and hence they are ratio log-

concave. For the sequences { n
√

|B2n|}n≥2, { n
√

Cn}n≥1 and { n

√

(

2n

n

)

}n≥1, it

can be checked that the initial condition (3.1) in Theorem 3.1 holds. Thus
we obtain the following properties.

Corollary 3.4 The sequences { n
√

|B2n|}n≥2, { n
√

Cn}n≥1 and { n

√

(

2n

n

)

}n≥1 are

strictly log-concave.

Next we show that the sequence of the derangement numbers are ratio
log-concave. For n ≥ 1, the n-th derangement number Dn is the number of
permutations σ of {1, 2, . . . , n} that have no fixed points, that is, σ(i) 6= i
for i = 1, 2, . . . , n. It is known that the sequence {Dn}n≥2 is log-convex, see
Liu and Wang [12].

Theorem 3.5 The sequence {Dn}n≥2 is ratio log-concave.

Proof. To prove that {Dn}n≥2 is ratio log-concave, we proceed to verify that

D2
n+2

D2
n+1

>
Dn+3

Dn+2
· Dn+1

Dn

. (3.22)

11



Using the recurrence relation

Dn = nDn−1 + (−1)n, (3.23)

we get

D2
n+2

D2
n+1

− Dn+3

Dn+2

Dn+1

Dn

(3.24)

=

(

n + 2 +
(−1)n+2

Dn+1

)2

−
(

n + 3 +
(−1)n+3

Dn+2

) (

n + 1 +
(−1)n+1

Dn

)

≥ 1 − n + 1

Dn+2

− n + 3

Dn

− 2(n + 2)

Dn+1

+
1

D2
n+1

− 1

Dn+2Dn

. (3.25)

From (3.23), it is easily seen that for n ≥ 5,

Dn > 5(n + 3). (3.26)

It follows that
n + 1

Dn+2
+

n + 3

Dn

+
2(n + 2)

Dn+1
<

4

5
. (3.27)

Since the sequence {Dn}n≥2 is log-convex, that is,

1

D2
n+1

>
1

Dn+2Dn

, (3.28)

applying (3.27) to the righthand side of (3.25), we deduce that (3.22) holds
for n ≥ 5. On the other hand, it is easily verified that (3.22) holds for
2 ≤ n ≤ 5. Hence the proof is complete.

Since 4
√

D4/
3
√

D3 > 5
√

D5/
4
√

D4, by Theorem 3.1 we are led to the known
result that the sequence { n

√
Dn}n≥3 is strictly log-concave.

The above approach also applies to ratio log-convex sequences. We have
the following criterion.

Theorem 3.6 Assume that k is a positive integer. If a sequence {an}n≥k is
ratio log-convex and

k+1
√

ak+1

k
√

ak

<
k+2
√

ak+2

k+1
√

ak+1

,

then the sequence { n
√

an}n≥k is strictly log-convex.

As an application of the above theorem, we find that for any m ≥ 1,
the sequence {Hm,n}n≥1 of the generalized harmonic numbers is ratio log-
convex. Recall that for any positive integers m, n, the n-th generalized
harmonic number Hn,m of order m is defined by

Hn,m =
n

∑

k=1

1

km
. (3.29)

12



Theorem 3.7 For any m ≥ 1, the sequence {Hn,m}n≥1 is ratio log-convex.

Proof. Towards the assertion of the theorem, we aim to show that
Hn+2,mHn,m

H2
n+1,m

is strictly increasing in n. By the definition given by (3.29), we get the
following recurrence relations

Hn+2,m = Hn+1,m +
1

(n + 2)k
(3.30)

and

Hn,m = Hn+1,m − 1

(n + 1)k
. (3.31)

Thus

Hn+2,mHn,m

H2
n+1,m

= 1 −
(

1

(n + 1)m
− 1

(n + 2)m

)

1

Hn+1,m

− 1

(n + 1)m(n + 2)mH2
n+1,m

. (3.32)

Since for x > 0, (x−m − (x + 1)−m) is strictly decreasing, we see that 1
nm −

1
(n+1)m is strictly decreasing in n. By (3.32), we deduce that Hn+2,mHn,m

H2
n+1,m

is

strictly increasing in n, that is, the sequence {Hn,m}n≥1 is ratio log-convex
for any m ≥ 1.

For any m ≥ 1, it can be checked that 4
√

H4,m/ 3
√

H3,m < 5
√

H5,m/ 4
√

H4,m.
As a consequence of Theorem 3.6 and Theorem 3.7, we arrive at the known
result that the sequence { n

√

Hn,m}n≥3 is strictly log-convex for any m ≥ 1.

4 Sequences Satisfying a Three-term Recur-

rence Relation

In this section, we are concerned with sequences {an}n≥0 satisfying a three-
term recurrence relation

an = u(n)an−1 + v(n)an−2 (4.1)

where u(n) and v(n) are rational functions in n and u(n) > 0 for n ≥ 2.
We shall give a criterion for {an}n≥k to be ratio log-concave. Using this
criterion, it can be shown that the sequences of the Motzkin numbers, the
Fine numbers, the central Delannoy numbers, the numbers of the tree-like
polyhexes and the Domb numbers are ratio log-concave. As consequences,
we are led to two known results for the Motzkin numbers and the central
Delannoy numbers. Moreover, we confirm a conjecture of Sun [16] on the
log-behavior of the Domb numbers.

First, we consider the case when v(n) > 0 for any n ≥ 2.
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Theorem 4.1 Let {an}n≥0 be the sequence defined by the recurrence relation
(4.1). Assume that for n ≥ 2, v(n) > 0 and u(n)3 > u(n + 1)v(n). If there
exists a nonnegative integer N and a function g(n) such that for all n ≥ N+2,

(i) an/an−1 ≥ g(n) ≥ u(n);

(ii) g(n)4 − u(n)g(n)3 − u(n + 1)v(n)g(n) − v(n)v(n + 1) > 0,

then the sequence {an}n≥N is ratio log-concave.

Proof. To prove that the sequence {an}n≥N is ratio log-concave, we proceed
to show that for n ≥ N + 2,

a3
nan−2 − an+1a

3
n−1 > 0. (4.2)

By the recurrence relation (4.1), we deduce that

a3
nan−2 − an+1a

3
n−1

=
1

v(n)
a3

n(an − u(n)an−1) − (u(n + 1)an + v(n + 1)an−1)a
3
n−1

=
a4

n−1

v(n)

[

(

an

an−1

)4

− u(n)

(

an

an−1

)3

−u(n + 1)v(n)

(

an

an−1

)

− v(n)v(n + 1)

]

.

Since v(n) > 0 for n ≥ 2, in order to prove (4.2), it suffices to verify that for
n ≥ N + 2,

(

an

an−1

)4

−u(n)

(

an

an−1

)3

−u(n+1)v(n)

(

an

an−1

)

−v(n)v(n+1) > 0. (4.3)

Define
f(x) = x4 − u(n)x3 − u(n + 1)v(n)x − v(n)v(n + 1).

Then (4.3) can be rewritten as f( an

an−1
) > 0. Note that

f ′(x) = 4x3 − 3u(n)x2 − u(n + 1)v(n)

and
f ′′(x) = 12x2 − 6u(n)x.

Hence f ′′(x) > 0 for x > u(n)/2. This implies that for x > u(n)/2, f ′(x) is
strictly increasing. Using the condition u(n)3 > u(n+1)v(n) in the theorem,
we get f ′(u(n)) > 0. It follows that for x ≥ u(n), f ′(x) > 0. Thus f(x) is
increasing for x ≥ u(n). Given the condition g(n) ≥ u(n), we see that f(x) is

14



strictly increasing for x ≥ g(n). On the other hand, condition (ii) says that
f(g(n)) > 0 for any n ≥ N + 2. So we have f(x) > 0 for x ≥ g(n). From
the condition an/an−1 ≥ g(n) in the theorem, we deduce that f( an

an−1
) > 0

for n ≥ N + 2. This completes the proof.

To apply the above theorem, we need a lower bound g(n) on the ratio
an/an−1 subject to conditions (i) and (ii). The following lemma will be used
to give a heuristic approach to finding a lower bound g(n).

Lemma 4.2 Let {an}n≥0 be the sequence defined by the recurrence relation
(4.1). Assume that v(n) > 0 for n ≥ 2. If there exists a positive integer N
and a function g(n) such that

g(N) <
aN

aN−1
<

v(N + 1)

g(N + 1) − u(N + 1)

and the inequalities

u(n) +
v(n)

g(n − 1)
<

v(n + 1)

g(n + 1) − u(n + 1)
(4.4)

hold for all n ≥ N , then for n ≥ N ,

g(n) <
an

an−1

<
v(n + 1)

g(n + 1) − u(n + 1)
. (4.5)

Proof. We use induction on n. Assume that (4.5) hold for n, where n ≥ N .
We proceed to show that (4.5) also holds for n + 1, that is,

g(n + 1) <
an+1

an

<
v(n + 2)

g(n + 2) − u(n + 2)
. (4.6)

By recurrence relation (4.1), we find that

an+1

an

=
u(n + 1)an + v(n + 1)an−1

an

= u(n + 1) + v(n + 1)
an−1

an

.

So (4.6) is equivalent to

g(n + 1) < u(n + 1) + v(n + 1)
an−1

an

<
v(n + 2)

g(n + 2) − u(n + 2)
. (4.7)

But the second inequality

an

an−1
<

v(n + 1)

g(n + 1) − u(n + 1)
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in the induction hypothesis can be rewritten as

u(n + 1) + v(n + 1)
an−1

an

> g(n + 1), (4.8)

this yields the first inequality in (4.7). On the other hand, using condition
(4.4) with n replaced by n + 1, we get

u(n + 1) +
v(n + 1)

g(n)
<

v(n + 2)

g(n + 2) − u(n + 2)
, (4.9)

By the first inequality g(n) < an/an−1 in the induction hypothesis and the
above inequality (4.9), we find that

u(n+1)+v(n+1)
an−1

an

< u(n+1)+
v(n + 1)

g(n)
<

v(n + 2)

g(n + 2) − u(n + 2)
. (4.10)

This leads to the second inequality in (4.7). Hence the proof is complete by
induction.

Notice that Theorem 4.1 and Lemma 4.2 require a lower bound g(n) of
an/an−1 subject to certain conditions. Adopting the framework in [7], we
give an iterative procedure to find a lower bound g(n). It should be noted
that the success of this procedure is not guaranteed, although it serves the
purpose in many cases.

Let us begin with the quadratic equation

λ2 − u(n)λ − v(n) = 0. (4.11)

Since v(n) > 0 for n ≥ 2, this equation has a unique positive root

λ(n) =
u(n) +

√

u(n)2 + 4v(n)

2
. (4.12)

If λ(n) satisfies condition (ii) in Theorem 4.1 and (4.4), then it is a fea-
sible choice for g(n). Otherwise, we construct a function r(n) such that
r(n) > λ(n) for any nonnegative integer n. Since u(n) and v(n) are rational
functions, we may assume that

u(n)2 + 4v(n) =
P (n)

Q(n)
, (4.13)

where P (n) and Q(n) are polynomials in n. If P (n) can be written as R(n)2−
c, where R(n) is a polynomial in n and c is a positive number, then we have

√

u(n)2 + 4v(n) <
R(n)

√

Q(n)
.
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Clearly, r(n) can be chosen as follows to meet the requirement r(n) > λ(n),

r(n) =
u(n)

√

Q(n) + R(n)

2
√

Q(n)
. (4.14)

If r(n) satisfies condition (ii) in Theorem 4.1 and (4.4), then it is the desired
lower bound. Otherwise, we try to find a number x such that

g(n) = r(n) +
1

d(n)

x

n
(4.15)

satisfies condition (ii) in Theorem 4.1 and (4.4), where d(n) is the denom-
inator of r(n). Since the lower bound g(n) in Lemma 4.2 satisfies the two
inequalities in (4.5), this implies that

v(n + 1)

g(n + 1) − u(n + 1)
> g(n). (4.16)

We shall be guided by the above inequality (4.16) in search for the number
x. More precisely, let

C(x, n) =
v(n + 1)

g(n + 1) − u(n + 1)
− g(n), (4.17)

where g(n) is given by (4.15), and

g(n + 1) = r(n + 1) +
1

d(n + 1)

x

n + 1
.

If C(x, n) is a rational function, then let

C(x, n) =
Y (x, n)

Z(x, n)
,

where Y (x, n) and Z(x, n) are polynomials in x and n. We now consider x
as a number and treat Y (x, n) as a polynomial Y (n) in n. Denote by H(x)
the coefficient of the term of highest degree in Y (n), and set H(x) = 0. If x1

is a solution of H(x) = 0, then we set

g(n) = r(n) +
1

d(n)

x1

n
.

If g(n) satisfies condition (ii) in Theorem 4.1 and (4.4), then it is the desired
lower bound. Otherwise, we repeat the above process to find a number x2

such that

g(n) = r(n) +
1

d(n)

(x1

n
+

x2

n2

)
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satisfies condition (ii) in Theorem 4.1 and (4.4). If we are lucky, by iteration
we may find numbers x1, x2, . . . , xk such that

g(n) = r(n) +
1

d(n)

(x1

n
+

x2

n2
+ · · · + xk

nk

)

satisfies the lower bound condition (ii) in Theorem 4.1 and (4.4). This leads
to a lower bound g(n) of the ratio an/an−1.

For example, let us consider the Motzkin numbers Mn defined by the
recurrence relation

Mn =
2n + 1

n + 2
Mn−1 +

3n − 3

n + 2
Mn−2, (4.18)

where n ≥ 2 and M0 = M1 = 1, see Aigner [1]. In the context of the general
recurrence relation (4.1), for the case of Mn, we have u(n) = (2n+1)/(n+2)
and v(n) = (3n − 3)/(n + 2). It is easy to see that for n ≥ 2, v(n) > 0
and u(n)3 > u(n + 1)v(n), that is, v(n) and u(n) satisfy the conditions in
Theorem 4.1.

Following the procedure of finding a lower bound g(n) of an/an−1, we
begin with the unique positive root of equation (4.11)

λ(n) =
2n + 1 +

√
16n2 + 16n − 23

2(n + 2)
.

Clearly, λ(n) does not satisfy condition (ii) in Theorem 4.1. So we continue
to construct a function r(n) such that r(n) > λ(n) for any positive integer
n. Since

u(n)2 + 4v(n) =
(4n + 2)2 − 27

(n + 2)2
,

we have R(n) = 4n + 2 and Q(n) = (n + 2)2. By (4.14), r(n) can be chosen
as

r(n) =
3n + 3

2

n + 2
.

It can be checked that r(n) does not satisfy inequality (4.4) in Lemma 4.2.
Then we try to find a number x such that

g(n) =
3n + 3

2

n + 2
+

x

n + 2

satisfies condition (ii) in Theorem 4.1 and (4.4). By the definition (4.17) of
C(x, n), we have

C(x, n) =
−(16x + 9)n2 − (16x + 9)n − 4x2 − 6x

2(2n2 + 5n + 3 + 2x)(n + 2)n
.
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Let Y (x, n) denote the numerator of C(x, n). Setting the coefficient of n2 in
Y (x, n) to zero, we get −16x − 9 = 0 and x1 = − 9

16
. So we get

g(n) =
6n2 + 3n − 9

8

2n(n + 2)
.

It is easy to verify that for n ≥ 13, g(n) satisfies the conditions in Theorem
4.1 and Lemma 4.2. Thus we deduce that {Mn}n≥11 is ratio log-concave.
Moreover, it can be verified that for 6 ≤ n ≤ 12,

M3
nMn−2 > Mn+1M

3
n−1.

Hence we arrive at the following assertion.

Theorem 4.3 The sequence {Mn}n≥4 of the Motzkin numbers is ratio log-
concave.

Since for 2 ≤ n ≤ 5, ( n
√

Mn)2 > n+1
√

Mn+1
n−1
√

Mn−1, Theorem 3.1 and
Theorem 4.3 imply the known result that the sequence { n

√
Mn}n≥1 is strictly

log-concave.

The Fine numbers fn are given by the recurrence relation

2(n + 1)fn = (7n − 5)fn−1 + 2(2n − 1)fn−2, (4.19)

where n ≥ 2 and f0 = 1 and f1 = 0, see Deutsch and Shapiro [8]. Next we
show that the sequence {fn}n≥5 is ratio log-concave.

Theorem 4.4 The sequence {fn}n≥5 of the Fine numbers is ratio log-concave,
and the sequence { n

√
fn}n≥2 is strictly log-concave.

Proof. For the Fine numbers fn, we have u(n) = (7n − 5)/(2n + 2) and
v(n) = (2n − 1)/(n + 1) in the recurrence relation (4.1). Clearly, for n ≥ 2
we have v(n) > 0 and u(n)3 > u(n + 1)v(n), that is, v(n) and u(n) satisfy
the conditions in Theorem 4.1 with n ≥ 2. Employing the above procedure
to find a lower bound g(n) of fn/fn−1, we get

g(n) =
4n2 − 2n + 2

3

n2 + n
.

It can be verified that for n ≥ 7, g(n) satisfies conditions in Theorem 4.1 and
Lemma 4.2. By Theorem 4.1, we deduce that {fn}n≥5 is ratio log-concave.
Moreover, for 2 ≤ n ≤ 5, we have

( n
√

fn)2 > n+1
√

fn+1
n−1
√

fn−1.
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By Theorem 3.1, we conclude that { n
√

fn}n≥1 is strictly log-concave.

Parallel to Theorem 4.1, we give a criterion for the ratio log-concavity of
a sequence satisfying a three-term recurrence relation

an = u(n)an−1 + v(n)an−2 (4.20)

where v(n) < 0 for n ≥ 2. The proof of the following theorem is analogous
to the proof of Theorem 4.1, and hence is omitted.

Theorem 4.5 Let {an}n≥0 be the sequence defined by the recurrence relation
(4.20). Assume that v(n) < 0 for n ≥ 2. If there exists a nonnegative integer
N and a function h(n) such that for all n ≥ N + 2,

(i) 3u(n)/4 ≤ an/an−1 ≤ h(n);

(ii) h(n)4 − u(n)h(n)3 − u(n + 1)v(n)h(n) − v(n)v(n + 1) < 0,

then {an}n≥N is ratio log-concave.

The following lemma will be used to derive an upper bound h(n) of the
ratio an/an−1, which is needed in Theorem 4.5. The proof of this lemma is
omitted since it is essentially the same as the proof of Lemma 4.2.

Lemma 4.6 Let {an}n≥0 be the sequence defined by the recurrence relation
(4.20). Assume that v(n) < 0 for n ≥ 2. If there exists a positive integer N
and a function h(n) such that aN/aN−1 < h(N) and the equalities

h(n + 1) > u(n + 1) +
v(n + 1)

h(n)
, (4.21)

hold for all n ≥ N , then for n ≥ N , we have an/an−1 < h(n).

We now describe an iterative procedure to find an upper bound h(n) of
an/an−1 which is a rational function in n satisfying certain conditions. Since
v(n) < 0 for any n ≥ 2, equation (4.11) has either no real roots or two
positive roots. If (4.11) has two positive roots, then λ(n) given by (4.12)
is the larger root. If λ(n) satisfies condition (ii) in Theorem 4.5 and (4.21),
then it is a feasible choice for h(n). Otherwise, we construct a function s(n)
such that s(n) < λ(n) for any nonnegative integer n. If P (n) given by (4.13)
can be written as T (n)2 + c, where T (n) is a polynomial in n and c is a
positive number, then we may choose s(n) to be

s(n) =
u(n)

√

Q(n) + T (n)

2
√

Q(n)
, (4.22)
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where Q(n) is given by (4.13). If s(n) satisfies condition (ii) in Theorem 4.5
and (4.21), then it is a feasible upper bound. Otherwise, we try to find a
number x such that

h(n) = s(n) +
1

d(n)

x

n
(4.23)

satisfies condition (ii) in Theorem 4.5 and (4.21), where d(n) is the denomi-
nator of s(n). We use inequality (4.21) to look for the number x. Let

D(x, n) = h(n + 1) − u(n + 1) − v(n + 1)

h(n)
, (4.24)

where h(n) is given by (4.23), and

h(n + 1) = r(n + 1) +
1

d(n + 1)

x

n + 1
.

If D(x, n) is a rational function, then we obtain x1 from D(x, n) in the same
manner as we get x1 from C(x, n) in the above procedure of deriving g(n) as
a lower bound of an/an−1. We set

h(n) = s(n) +
1

d(n)

x1

n
.

If h(n) satisfies condition (ii) in Theorem 4.5 and (4.21), then it is a feasible
upper bound. Otherwise, we repeat the above procedure to find a number
x2 such that

h(n) = s(n) +
1

d(n)

(x1

n
+

x2

n2

)

satisfies condition (ii) in Theorem 4.5 and (4.21). Eventually, by using this
process we may find numbers x1, x2, . . . , xk such that

h(n) = s(n) +
1

d(n)

(x1

n
+

x2

n2
+ · · ·+ xk

nk

)

satisfies the upper bound condition (ii) in Theorem 4.5 and (4.21). Then we
get a required bound h(n) of the ratio an/an−1.

For example, consider the central Delannoy numbers D(n) defined by the
recurrence relation

D(n) =
3(2n − 1)

n
D(n − 1) − n − 1

n
D(n − 2), (4.25)

where n ≥ 2 and D(0) = 1 and D(1) = 3, see Sun [15].

In the context of recurrence relation (4.20), for the case of D(n), we have
u(n) = 3(2n − 1)/n and v(n) = −(n − 1)/n. It can be seen that for n ≥ 2,
v(n) < 0 and

D(n)

D(n − 1)
≥ 3u(n)

4
,
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that is, u(n) and v(n) meet the requirements of Theorem 4.5 with n ≥ 2. In
this case, the quadratic equation (4.11) becomes

λ2 − 3(2n − 1)

n
λ +

n − 1

n
= 0, (4.26)

Thus the larger root of equation (4.26) is

λ(n) =
6n − 3 +

√
32n2 − 32n + 9

2n
.

It can be seen that λ(n) does not satisfy condition (ii) in Theorem 4.5. Now,
we wish to find a function s(n) such that s(n) < λ(n) for any positive integer
n. In this case,

u(n)2 + 4v(n) =
2(4n − 2)2 + 1

n2
,

so we may set T (n) = 4
√

2n − 2
√

2 and Q(n) = n2. By (4.22), s(n) can be
chosen as

s(n) =
(3 + 2

√
2)n − 3

2
−

√
2

n
.

It can be checked that s(n) does not satisfy condition (ii) in Theorem 4.5.
So we further consider

h(n) =
(3 + 2

√
2)n − 3

2
−

√
2

n
+

1

n

x

n
.

By the definition (4.24) of D(x, n), we have

D(x, n) =
(16

√
2x + 1)n2 − (24x − 8

√
2x − 1)n + 4

√
2x − 6x + 4x2

2(n + 1)(6n2 + 4
√

2n2 − 2
√

2n − 3n + 2x)
.

Let Y (x, n) be the numerator of D(x, n), which is a polynomial of degree 2 in
n. Setting the coefficient of n2 in Y (x, n) to zero, we obtain 16

√
2x + 1 = 0,

x1 = −
√

2/32 and

h(n) =
(3 + 2

√
2)n2 − 3

2
n −

√
2n −

√
2

32

n2
.

At this time, h(n) satisfies the conditions in Theorem 4.5 and Lemma 4.6.
By Theorem 4.5, we reach the following conclusion.

Theorem 4.7 The sequence {D(n)}n≥0 of the central Delannoy numbers is
ratio log-concave.
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Since D(2) > D(1) 3
√

D(3), Theorem 3.1 and Theorem 4.7 lead to the

known result that the sequence { n
√

D(n)}n≥1 is strictly log-concave.

Let tn be the number of tree-like polyhexes with n + 1 hexagons, which
is given by the recurrence relation

(n + 1)tn = 3(2n − 1)tn−1 − 5(n − 2)tn−2,

where n ≥ 2 and t0 = t1 = 1, see Harary and Read [9]. The following theorem
shows that the sequence {tn}n≥0 is ratio log-concave.

Theorem 4.8 The sequence {tn}n≥2 is ratio log-concave, and the sequence
{ n
√

tn}n≥1 is strictly log-concave.

Proof. For the numbers of tree-like polyhexes, we have u(n) = (6n−3)/(n+1)
and v(n) = −(5n − 10)/(n + 1) in the recurrence (4.20). Clearly, for n ≥ 2
we have v(n) < 0 and tn/tn−1 ≥ 3u(n)/4, that is, u(n) and v(n) satisfy the
conditions in Theorem 4.5 with n ≥ 2. Using the above procedure to find an
upper bound h(n) of the ratio tn/tn−1, we get

h(n) =
10n3 − 5n2 + 15

8
n + 6

2n2 + 2n3
.

For n ≥ 7, it can be verified that h(n) satisfies the conditions in Theorem
4.5 and Lemma 4.6. Thus by Theorem 4.5, we deduce that {tn}n≥5 is ratio
log-concave. Moreover, for 2 ≤ n ≤ 6, we have

t3ntn−2 − tn+1t
3
n−1 > 0.

Thus the sequence {tn}n≥0 is ratio log-concave.

It can be verified that
√

t2/t1 > 3
√

t3/
√

t2. Hence Theorem 3.1 implies
that the sequence { n

√
tn}n≥1 is strictly log-concave.

Finally, we consider the sequence of the Domb numbers Dn given by the
recurrence relation

n3Dn = 2(2n − 1)(5n2 − 5n + 2)Dn−1 − 64(n − 1)3Dn−2,

where n ≥ 2 and D0 = 1 and D1 = 4. The n-th Domb number Dn is the
number of 2n-step polygons on the diamond lattice. Chan, Chan and Liu [5]
obtained a series for 1

π
involving the Domb numbers. Chan, Tanigawa, Yangc,

and Zudilin [6] found three analogues of Clausen’s identities involving Domb
numbers. Sun [16] conjectured that the sequence {Dn}n≥0 is log-convex and
the sequence { n

√
Dn}n≥1 is strictly increasing and strictly log-concave. Wang

and Zhu [14] proved the sequence {Dn}n≥0 is log-convex and the sequence
{ n
√

Dn}n≥1 is increasing. Next we show {Dn}n≥0 is ratio log-concave. As a
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consequence, we confirm the conjecture of Sun on the strict log-concavity of
{ n
√

Dn}n≥1.

We shall slightly modify the above procedure to derive an upper bound
h(n) of Dn/Dn−1. It turns out that with some adjustment we can find an
upper bound h(n) without iteration.

Theorem 4.9 The sequence {Dn}n≥0 of the Domb numbers is ratio log-
concave, and the sequence { n

√
Dn}n≥1 is strictly log-concave.

Proof. As far as the recurrence (4.20) is concerned, for the Domb numbers,
we have u(n) = 2(2n − 1)(5n2 − 5n + 2)/n3 and v(n) = −64(n − 1)3/n3. It
is easy to verify that for n ≥ 2, vn < 0 and for n ≥ 24, Dn/Dn−1 > 3u(n)/4,
that is, u(n) and v(n) satisfy the conditions in Theorem 4.5 with n ≥ 24. By
the definition (4.12) of λ(n), we have

λ(n) =
20n3 − 30n2 + 18n − 4

2n3

+

√

(12n3 − 18n2 + 22n − 8)2 + 208n2 − 208n + 48

2n3
.

It can be verified that λ(n) does not satisfy condition (ii) in Theorem 4.5.
In order to find a rational function s(n) such that s(n) < λ(n) for n ≥ 0, we
may ignore 208n2 − 208n + 48 in the square root. Set

s(n) =
16n3 − 24n2 + 40n − 12

n3
.

Notice that s(n) does not satisfy condition (ii) in Theorem 4.5. By adjusting
the constant term and the coefficient of n in s(n), we get a rational function

h(n) =
16n3 − 24n2 + 12n − 2

n3
.

Clearly, h(n) < s(n) for n ≥ 1. It can be checked that for n ≥ 24, h(n)
satisfies the conditions in Theorem 4.5 and Lemma 4.6. Thus by Theorem
4.5 the sequence {Dn}n≥22 is ratio log-concave. Moreover, for 2 ≤ n ≤ 23
D3

nDn−2 > D3
n−1Dn+1. Hence, the sequence {Dn}n≥0 is ratio log-concave.

It is easily seen that
√

D2/D1 > 3
√

D3/
√

D2. By Theorem 3.1, we are led
to the assertion that the sequence { n

√
Dn}n≥1 is strictly log-concave.

To conclude, we conjecture that the sequences of the Motzkin numbers,
the Fine numbers, the central Delannoy numbers, the numbers of tree-like
polyhexes and the Domb numbers are almost infinitely log-monotonic. More
precisely, we say that a sequence is almost infinitely log-monotonic if for
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each k ≥ 0, it is log-monotonic of order k except for certain terms at the
beginning.

We also conjecture that the sequence of the Bell numbers Bn is almost
infinitely log-monotonic, where Bn is the number of partitions of {1, 2, . . . , n}.
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