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Abstract

In this paper, we present a combinatorial proof of the inversion formula on

the Kazhdan-Lusztig R-polynomials. This problem was raised by Brenti. As a

consequence, we obtain a combinatorial interpretation of the equi-distribution

property due to Verma stating that any nontrivial interval of a Coxeter group

in the Bruhat order has as many elements of even length as elements of odd

length. The same argument leads to a combinatorial proof of an extension of

Verma’s equi-distribution to the parabolic quotients of a Coxeter group obtained

by Deodhar. As another application, we derive a refinement of the inversion

formula for the symmetric group by restricting the summation to permutations

ending with a given element.
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1 Introduction

Let (W,S) be a Coxeter system. For u, v ∈ W , let Ru,v(q) be the Kazhdan-Lusztig

R-polynomial indexed by u and v. The following inversion formula was obtained by

Kazhdan and Lusztig [8]:∑
u≤w≤v

(−1)`(w)−`(u)Ru,w(q)Rw,v(q) = δu,v, (1.1)
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where ≤ is the Bruhat order and ` is the length function, see also Humphreys [6]. The

aim of this paper is to present a combinatorial interpretation of this formula. This

problem was raised by Brenti [3].

To give a combinatorial proof of (1.1), we start with Dyer’s combinatorial description

of the R-polynomials in terms of increasing Bruhat paths [5]. Then we reformulate the

inversion formula in terms of V -paths. For u ≤ w ≤ v, by a V -path from u to v with

bottom w we mean a pair (∆1,∆2) of Bruhat paths such that ∆1 is a decreasing path

from u to w and ∆2 is an increasing path from w to v. We construct an involution on

V -paths. This leads to a combinatorial proof of (1.1).

We give two applications of the involution. First, we restrict the involution to

V -paths from u to v with maximal length. This induces an involution on the interval

[u, v] with u < v, which leads to a combinatorial proof of the equi-distribtution property

that any nontrivial interval [u, v] has as many elements of even length as elements of

odd length. This property was proved inductively by Verma [12], which was used to

deduce the Möbius function of the Bruhat order. Other proofs of the Möbius function

formula for the Bruhat order can be found in [2, 4, 9, 11]. Recently, Jones [7] found

a combinatorial proof for the equi-distribution property by constructing an involution

on the intervals of a Coxeter group W . When W is finite, Jones [7] showed that this

involution agrees with the construction of Rietsch and Williams [10] in their study of

discrete Morse theory and totally nonnegative flag varieties.

The idea that we have used to prove Verma’s equi-distribution can also be applied

to Deodhar’s [4] extension to parabolic quotients. For J ⊆ S, let WJ be the parabolic

subgroup of W generated by J , and let W J be the quotient of W consisting of minimal

representatives of the left cosets of WJ in W , that is,

W J = {w ∈ W | `(ws) > `(w) for any s ∈ J}.

The quotient W J forms a subposet of W in the Bruhat order. For u ≤ v ∈ W J , let

[u, v]J = [u, v] ∩W J

and let

KJ(u, v) = {w ∈ [u, v]J | [w, v]J = [w, v]}.

When u < v, Deodhar [4] showed that KJ(u, v) contains as many elements of even

length as elements of odd length, from which the Möbius function of the Bruhat order on

W J can be easily deduced. When J = ∅, Deodhar’s assertion reduces to Verma’s euqi-

distribution. The Möbius function on W J was rederived by Björner and Wachs [2] with

the aid of topological techniques, and by Stembridge [11] by an algebraic approach. We

construct an involution on KJ(u, v) that leads to a simple combinatorial interpretation

of Deodhar’s equi-distribution.

As a second application, we find a refinement of the inversion formula when W is

the symmetric group Sn. For a permutation w ∈ Sn, we write w = w(1)w(2) · · ·w(n),
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where w(i) denotes the element in the i-th position. Let u and v be two permutations

in Sn such that u < v in the Bruhat order. For 1 ≤ k ≤ n, let [u, v]k denote the set of

permutations in the interval [u, v] that end with k, that is,

[u, v]k = {w ∈ [u, v] |w(n) = k}.

By using a variation of the involution, we show that the summation∑
w∈[u,v]k

(−1)`(w)−`(u)Ru,w(q)Rw,v(q)

equals zero or a power of q up to a sign.

2 An involution on V -paths

Our combinatorial proof of the inversion formula is based on an equivalent formulation

of (1.1) in terms of the R̃-polynomials. Let (W,S) be a Coxeter system. For u, v ∈ W
with u ≤ v, the R̃-polynomials R̃u,v(q) were introduced by Dyer [5], which are connected

to the R-polynomials via the following relation

Ru,v(q) = q
`(v)−`(u)

2 R̃u,v(q
1
2 − q−

1
2 ),

see also Björner and Brenti [1]. Thus the inversion formula (1.1) can be restated as∑
u≤w≤v

(−1)`(w)−`(u)R̃u,w(q)R̃w,v(q) = δu,v. (2.1)

To give a bijective proof of (2.1), we need a combinatorial interpretation of the

R̃-polynomials due to Dyer [5] in terms of increasing Bruhat paths of a Coxeter group.

For a Coxeter system (W,S), let

T = {wsw−1 | s ∈ S, w ∈ W}

be the set of reflections. The Bruhat graph BG(W ) of W is a directed graph whose

nodes are the elements of W such that there is an arc from u to v if v = ut for some

t ∈ T and `(u) < `(v). We use u
t−→ v to denote the arc from u to v, where t is the

reflection such that v = ut. An increasing path in the Bruhat graph is defined based

on the reflection ordering on the positive roots of W . Let Φ be the root system of W ,

and Φ+ be the positive root system. A total ordering ≺ on Φ+ is called a reflection

ordering if for any α ≺ β ∈ Φ+ and two nonnegative real numbers λ, µ such that

λα+ µβ ∈ Φ+, then we have α ≺ λα+ µβ ≺ β. Since positive roots in Φ+ are in one-

to-one correspondence with reflections, a reflection ordering induces a total ordering

on the reflection set T .

Let ∆ = u0
t1−→ u1

t2−→ · · · tr−→ ur be a path from u to v, where u0 = u and ur = v. We

say that ∆ is increasing if t1 ≺ t2 ≺ · · · ≺ tr, and ∆ is decreasing if t1 � t2 � · · · � tr.
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Let `(∆) denote the length of ∆, that is, the number of arcs in ∆. Dyer [5] showed

that for any fixed reflection ordering ≺ on T , we have

R̃u,v(q) =
∑

∆

q`(∆), (2.2)

where the sum ranges over increasing Bruhat paths from u to v with respect to ≺, see

also Björner and Brenti [1]. By definition, the reverse of a reflection ordering is also a

reflection ordering. So (2.2) can be restated as

R̃u,v(q) =
∑
∆′

q`(∆
′),

where the sum ranges over decreasing Bruhat paths from u to v with respect to ≺.

By a V -path from u to v with bottom w, we mean a pair (∆1,∆2) of Bruhat paths

such that ∆1 is a decreasing path from u to w and ∆2 is an increasing path from w to

v. The sign of a V -path (∆1,∆2) is defined as

sgn(∆1,∆2) = (−1)`(∆1).

The length of a Bruhat path from u to w has the same parity as `(w)− `(u), see, e.g.,

Björner and Brenti [1]. It follows that

sgn(∆1,∆2) = (−1)`(w)−`(u),

and so (2.1) can be rewritten as∑
u≤w≤v

(−1)`(w)−`(u)R̃u,w(q)R̃w,v(q) =
∑

(∆1,∆2)

sgn(∆1,∆2)q`(∆1)+`(∆2) = δu,v, (2.3)

where the second sum ranges over V -paths from u to v.

We now define an involution Φ on V -paths, which preserves the length, but reverses

the sign of a V -path. This leads to a combinatorial proof of (2.3).

An Involution Φ on V -Paths: For u < v, let (∆1,∆2) be a V -path from u to v with

bottom w. Write

∆1 = u0
t1−→ u1

t2−→ · · · ti−→ ui and ∆2 = v0

t′1−→ v1

t′2−→ · · ·
t′j−→ vj,

where u0 = u, ui = v0 = w and vj = v. The V -path Φ(∆1,∆2) = (∆′1,∆
′
2) is

constructed according to the following two cases.

Case 1: u = w or ti � t′1. Set

∆′1 = u0
t1−→ u1

t2−→ · · · ti−→ ui
t′1−→ v1 and ∆′2 = v1

t′2−→ · · ·
t′j−→ vj.

Case 2: v = w or ti ≺ t′1. Set

∆′1 = u0
ti−→ u1

t2−→ · · · ti−1−−→ ui−1 and ∆′2 = ui−1
ti−→ v0

t′1−→ v1

t′2−→ · · ·
t′j−→ vj.

It turns out that the involution Φ yields a simple combinatorial interpretation of

the following parity property of Verma [12].
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Theorem 2.1 (Verma [12]) Let (W,S) be a Coxeter system and u < v ∈ W . Then

the interval [u, v] has the same number of elements of odd length as elements of even

length.

Indeed, for u < v ∈ W , there exists a unique maximal increasing (or, decreasing)

Bruhat path from u to v [5]. Thus, for any w ∈ [u, v] there is a unique maximal V -path

from u to v with bottom w. So the maximal V -paths from u to v are in one-to-one

correspondence with elements in the interval [u, v]. Restricting the involution Φ to

the maximal V -paths from u to v induces an involution on the interval [u, v], which

reverses the parity of the length of each element in [u, v]. This proves Theorem 2.1.

The above argument also serves as a combinatorial interpretation of the following

equi-distribution due to Deodhar [4]. Let us recall the common notation as mentioned

in Introduction. For J ⊆ S, let

W J = {w ∈ W | `(ws) > `(w) for any s ∈ J}.

For u ≤ v ∈ W J , let

[u, v]J = [u, v] ∩W J

and let

KJ(u, v) = {w ∈ [u, v]J | [w, v]J = [w, v]}.

Theorem 2.2 (Deodhar [4]) Let (W,S) be a Coxeter system, and J ⊆ S. Then, for

u < v ∈ W , the set KJ(u, v) has the same number of elements of odd length as elements

of even length.

To construct an involution on KJ(u, v), we recall a labeling on the edges of the poset

[u, v]J introduced by Björner and Wachs [2], see also Björner and Brenti [1]. Let v =

s1s2 · · · sq be a given reduced expression of v. We read a maximal chain in [u, v]J from

top to bottom. Let v = w0 → w1 → · · · → wr = u be a maximal chain in [u, v]J , where

r = `(v)− `(u). Then there is a unique sequence (i1, i2, . . . , ir) of distinct integers such

that for 1 ≤ k ≤ r, wk has a reduced expression obtained from s1s2 · · · sq by deleting

simple reflections indexed by i1, i2, . . . , ik. Label the edge from wk−1 to wk by ik. We

denote the maximal chain with such a labeling by v = w0
i1−→ w1

i2−→ · · · ir−→ wr = u, and

say that the chain v = w0
i1−→ w1

i2−→ · · · ir−→ wr = u is increasing if i1 < i2 < · · · < ir,

and it is decreasing if i1 > i2 > · · · > ir. The following theorem is due to Björner and

Wachs [2], see also Björner and Brenti [1].

Theorem 2.3 (Björner and Wachs [2]) Let u < v ∈ W J , and let v = s1s2 · · · sq be a

given reduced expression of v. Then there is a unique increasing maximal chain from

v to u in [u, v]J .
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We remark that when J = ∅, the proof of Theorem 2.3 can be employed to show

that for any given reduced expression of v, there is a unique decreasing maximal chain

from v to u in [u, v]∅ = [u, v].

We are now ready to present an involution Ψ on KJ(u, v), which reverses the parity

of the length. This leads to a combinatorial proof of Theorem 2.2.

An Involution Ψ on KJ(u, v): Let w ∈ KJ(u, v), and let v = s1s2 · · · sq be a fixed

reduced expression of v. Since [w, v]J = [w, v], by the above remark, there exists a

unique decreasing maximal chain v = v0
i1−→ v1

i2−→ · · · im−→ vm = w from v to w in

[u, v]J . Let w = sk1sk2 · · · skp be the reduced expression of w obtained from s1s2 · · · sq
by deleting the generators indexed by i1, i2, . . . , im, that is, 1 ≤ k1 < k2 < · · · < kp ≤ q

and {k1, k2, . . . , kp} = {1, 2, . . . , q}\{i1, i2, . . . , im}. Assume that w = w0

kj1−−→ w1

kj2−−→
· · ·

kjt−→ wt = u is the unique increasing maximal chain in [u,w]J with respect to the

reduced expression w = sk1sk2 · · · skp . Note that 1 ≤ j1 < · · · < jt ≤ p. Then Ψ(w) is

defined according to the following two cases:

Case 1: u = w or im < kj1 . Set Ψ(w) = vm−1;

Case 2: v = w or im > kj1 . Set Ψ(w) = w1.

The following theorem shows that Ψ is an involution on KJ(u, v). The proof relies on

the following properties of the Bruhat order, see, for example, Björner and Brenti [1].

The Subword Property: Let u, v ∈ W . Then u ≤ v in the Bruhat order if and only if

every reduced expression of v has a subword that is a reduced expression of u.

The Lifting Property: Suppose that u < v ∈ W , and s ∈ S is a simple reflection. If

`(sv) < `(v) and `(su) > `(u), then u ≤ sv and su ≤ v. Similarly, if `(vs) < `(v) and

`(us) > `(u), then u ≤ vs and us ≤ v.

Theorem 2.4 The map Ψ is an involution on KJ(u, v).

Proof. By the construction of Ψ, it suffices to show that for w ∈ KJ(u, v), Ψ(w) also

belongs to KJ(u, v). This is trivial when u = w or im < kj1 . Now we consider the case

when v = w or im > kj1 . Let w′ = Ψ(w). Assume that w = s1 · · · ŝim · · · ŝi2 · · · ŝi1 · · · sq
and w′ = s1 · · · ŝkj1 · · · ŝim · · · ŝi1 · · · sq, where for a simple reflection s ∈ S, ŝ means

that s is missing. We aim to prove that w′ ∈ KJ(u, v).

Suppose to the contrary that w′ 6∈ KJ(u, v). Then there exists an element w′′ ∈
[w′, v] such that w′′ 6∈ [w′, v]J . By definition, there exists s ∈ J such that `(w′′s) <

`(w′′). Since `(w′s) > `(w′), the lifting property implies that w′s ≤ w′′. Thus we have

w′s ≤ v. Since `(vs) > `(v), we see that w′s 6= v. It follows that w′s < v, that is,

s1 · · · ŝkj1 · · · ŝim · · · ŝi1 · · · sqs < s1s2 · · · sq.

It is easily checked that ŝkj1 · · · ŝim · · · ŝi1 · · · sqs < skj1 · · · sq. By the lifting property,
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we deduce that skj1 · · · ŝim · · · ŝi1 · · · sqs ≤ skj1 · · · sq. Thus we have

ws = s1 · · · ŝim · · · ŝi1 · · · sqs ≤ s1 · · · sq = v,

which implies that ws ∈ [w, v]. On the other hand, it is obvious that ws 6∈ [w, v]J . So

we conclude that w 6∈ KJ(u, v), contradicting the assumption that w ∈ KJ(u, v). This

completes the proof.

From the proof of Theorem 2.4, we see that for w ∈ [u, v]J , w ∈ KJ(u, v) if and only

if there does not exist any s ∈ J such that ws ∈ [u, v]. Notice that this characterization

has been observed by Deodhar [4, Lemma 3].

3 A refinement of the inversion formula for Sn

In this section, we use a variation of the involution Φ to give a refinement of the

inversion formula for the symmetric group Sn. We introduce the notion of an S-interval.

Let u, v be two permutations in Sn with u < v. Let

D(u, v) = {1 ≤ i ≤ n |u(i) 6= v(i)}.

Suppose that D(u, v) = {i1, i2, . . . , ij}<, that is, D(u, v) = {i1, i2, . . . , ij} and i1 < i2 <

· · · < ij. Let b1 < b2 < · · · < bj be the values of u(i1), u(i2), . . . , u(ij) listed in increasing

order. We say that [u, v] is an S-interval if it satisfies the following conditions:

(1) ij = n and u(ij) = bj;

(2) The values in {b1, b2, . . . , bj} that are greater than u(i1) appear in increasing

order in u, whereas the values in {b1, b2, . . . , bj} that are less than u(i1) appear

in decreasing order in u;

(3) In the cycle notation, v = (b1, b2, . . . , bj)u, that is, v is obtained from u by

rotating the elements b1, b2, . . . , bj in u.

Recall that for u < v ∈ Sn, [u, v]k denotes the set of permutations in [u, v] that end

with k. The following theorem gives a refinement of the inversion formula for Sn.

Theorem 3.1 Assume that u < v ∈ Sn. Let m be the smallest index such that u(m) 6=
v(m). If [u, v] is an S-interval, and k = u(m) or k = v(m), then we have∑

w∈[u,v]k

(−1)`(w)−`(u)R̃u,w(q)R̃w,v(q) = (−1)rqs−1,

where s = |D(u, v)| and

r = |{j ∈ D(u, v) | u(j) > k}|;
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Otherwise, we have ∑
w∈[u,v]k

(−1)`(w)−`(u)R̃u,w(q)R̃w,v(q) = 0.

For 1 ≤ k ≤ n, let Pk(u, v) denote the set of V -paths from u to v with bottoms

contained in [u, v]k. To prove Theorem 3.1, we shall construct an involution Ω on

Pk(u, v). The reflection set T of Sn consists of transpositions of Sn, that is,

T = {(i, j) | 1 ≤ i < j ≤ n}.

For two permutations u, v in Sn, it is known that there is an arc from u to v in the

Bruhat graph of Sn if v = u(i, j) and u(i) < u(j), see Björner and Brenti [1].

From now on, we choose the reflection ordering ≺ on T to be the lexicographic

ordering:

(1, 2) ≺ (1, 3) ≺ · · · ≺ (1, n) ≺ (2, 3) ≺ · · · ≺ (n− 1, n). (3.1)

For a Bruhat path ∆ = u0
t1−→ u1

t2−→ · · · tr−→ ur, let

L(∆) = (t1, t2, . . . , tr).

An Involution Ω on Pk(u, v): Let (∆1,∆2) be a V -path in Pk(u, v) with bottom w.

Write ∆1 = u0
t1−→ u1

t2−→ · · · ti−→ ui and ∆2 = v0

t′1−→ v1

t′2−→ · · ·
t′j−→ vj, where u0 = u,

ui = v0 = w and vj = v. Let t = min{ti, t′1}. Then the V -path Ω(∆1,∆2) = (∆′1,∆
′
2)

is defined as follows. We consider three cases.

Case 1: t is an internal transposition, that is, t = (a, b) and 1 ≤ a < b < n. In this

case, set (∆′1,∆
′
2) = Φ(∆1,∆2).

Case 2: t is a boundary transposition, that is, t = (a, n) for some a < n, and there

is an internal transposition among the transpositions t1, . . . , ti, t
′
1, . . . , t

′
j. Let t̃ be the

smallest internal transposition among t1, . . . , ti, t
′
1, . . . , t

′
j. By the choice of the reflection

ordering in (3.1), it is easy to check that t̃ belongs to either {t1, . . . , ti} or {t′1, . . . , t′j},
but not both. So we have the following two subcases.

Subcase 1: t̃ belongs to {t1, . . . , ti}. Assume that ti0 = t̃, where 1 ≤ i0 ≤ i. Let ∆′1 be

the path such that L(∆′1) is the sequence obtained from L(∆1) by deleting ti0 , and let

∆′2 be the path such that L(∆′2) is the sequence obtained from L(∆2) by inserting ti0
such that L(∆′2) remains increasing.

Subcase 2: t̃ belongs to {t′1, . . . , t′j}. Assume that t′j0 = t̃, where 1 ≤ j0 ≤ j. Let ∆′2 be

the path such that L(∆′2) is the sequence obtained from L(∆2) by deleting t′j0 , and let

∆′1 be the path such that L(∆′1) is the sequence obtained from L(∆1) by inserting tj0
such that L(∆′1) remains decreasing.

Case 3: The transpositions t1, . . . , ti, t
′
1, . . . , t

′
j are all boundary transpositions. In this

case, set (∆′1,∆
′
2) = (∆1,∆2).
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It is easy to verify that Ω is a length preserving involution on Pk(u, v), and it is

clear that Ω reverses the sign of (∆1,∆2) unless (∆1,∆2) is a fixed point. To prove

Theorem 3.1, we also need the following property.

Proposition 3.2 Assume that u < v ∈ Sn and 1 ≤ k ≤ n. Then the involution Ω on

Pk(u, v) has at most one fixed point. Moreover, Ω has a fixed point if and only if [u, v]

is an S-interval and k = u(m) or k = v(m), where m is the smallest integer such that

u(m) 6= v(m).

Proof. To prove that Ω has at most one fixed point, assume that (∆1,∆2) ∈ Pk(u, v) is

a V -path that is fixed by Ω. We proceed to show that (∆1,∆2) is uniquely determined.

Let ∆1 = u0
t1−→ u1

t2−→ · · · ti−→ ui and ∆2 = v0

t′1−→ v1

t′2−→ · · ·
t′j−→ vj. By the construction

of Ω, we see that t1, . . . , ti and t′1, . . . , t
′
j are all boundary transpositions. Assume that

t1 = (p1, n), . . . , ti = (pi, n) and t′1 = (p′1, n), . . . , t′j = (p′j, n). Since ∆1 and ∆2 are

Bruhat paths, we see that

u(n) > u(p1) > · · · > u(pi) = k = w(n) > w(p′1) > · · · > w(p′j). (3.2)

Noting that t1 � t2 � · · · � ti and t′1 ≺ t′2 ≺ · · · ≺ t′j, we find that n > p1 > · · · > pi
and p′1 < · · · < p′j < n.

By (3.2) together with the relation w = u (p1, n) · · · (pi, n), it is easily seen that

{p1, . . . , pi} ∩ {p′1, . . . , p′j} = ∅.

This yields that w(p′1) = u(p′1), . . . , w(p′j) = u(p′j), and so (3.2) becomes

u(n) > u(p1) > · · · > u(pi) = k = w(n) > u(p′1) > · · · > u(p′j). (3.3)

Observe that

{p1, . . . , pi} ∪ {p′1, . . . , p′j} ∪ {n} = D(u, v).

In view of (3.3), we deduce that given u, v and k, the values of i, j as well as the

elements p1, . . . , pi, p
′
1, . . . , p

′
j are uniquely determined. In other words, the V -path

(∆1,∆2) is uniquely determined.

It remains to prove that Ω has a fixed point if and only if [u, v] is an S-interval and

k = u(m) or k = v(m). By the above argument, we see that if Ω has a fixed point,

then [u, v] is an S-interval and k = u(pi) = v(p′1). Since m = min{pi, p′1}, we obtain

that k = u(m) if pi < p′1 and k = v(m) if pi > p′1. Conversely, if [u, v] is an S-interval,

it is easy to construct a V -path in Pk(u, v) fixed by Ω, where k = u(m) or k = v(m).

This completes the proof.

We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.2, we only need to consider the case when

[u, v] is an S-interval and k = u(m) or k = v(m). In this case, we have∑
w∈[u,v]k

(−1)`(w)−`(u)R̃u,w(q)R̃w,v(q) = (−1)`(∆1)q`(∆1)+`(∆2),

9



where (∆1,∆2) is the unique V -path in Pk(u, v) that is fixed by Ω. Evidently,

`(∆1) + `(∆2) = |D(u, v)| − 1.

It is also clear that

`(∆1) = |{j ∈ D(u, v) |u(j) > k}|.
Hence the proof is complete.
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