Combinatorial Proof of the Inversion Formula on the Kazhdan-Lusztig R-Polynomials

William Y.C. Chen ${ }^{1}$, Neil J.Y. Fan ${ }^{2}$, Alan J.X. Guo ${ }^{3}$, Peter L. Guo ${ }^{4}$
Harry H.Y. Huang ${ }^{5}$, Michael X.X. Zhong ${ }^{6}$
${ }^{1,3,4,5,6}$ Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
${ }^{2}$ Department of Mathematics
Sichuan University, Chengdu, Sichuan 610064, P.R. China
${ }^{1}$ chen@nankai.edu.cn, ${ }^{2}$ fan@scu.edu.cn, ${ }^{3}$ aalen@mail.nankai.edu.cn
${ }^{4}$ lguo@nankai.edu.cn, ${ }^{5}$ hhuang@cfc.nankai.edu.cn
${ }^{6}$ michaelzhong@mail.nankai.edu.cn

Abstract

In this paper, we present a combinatorial proof of the inversion formula on the Kazhdan-Lusztig R-polynomials. This problem was raised by Brenti. As a consequence, we obtain a combinatorial interpretation of the equi-distribution property due to Verma stating that any nontrivial interval of a Coxeter group in the Bruhat order has as many elements of even length as elements of odd length. The same argument leads to a combinatorial proof of an extension of Verma's equi-distribution to the parabolic quotients of a Coxeter group obtained by Deodhar. As another application, we derive a refinement of the inversion formula for the symmetric group by restricting the summation to permutations ending with a given element.

Keywords: Kazhdan-Lusztig R-polynomial, inversion formula, Bruhat order
AMS Classification: 05A19, 05E15, 20F55

1 Introduction

Let (W, S) be a Coxeter system. For $u, v \in W$, let $R_{u, v}(q)$ be the Kazhdan-Lusztig R-polynomial indexed by u and v. The following inversion formula was obtained by Kazhdan and Lusztig [8]:

$$
\begin{equation*}
\sum_{u \leq w \leq v}(-1)^{\ell(w)-\ell(u)} R_{u, w}(q) R_{w, v}(q)=\delta_{u, v}, \tag{1.1}
\end{equation*}
$$

where \leq is the Bruhat order and ℓ is the length function, see also Humphreys [6]. The aim of this paper is to present a combinatorial interpretation of this formula. This problem was raised by Brenti [3].

To give a combinatorial proof of (1.1), we start with Dyer's combinatorial description of the R-polynomials in terms of increasing Bruhat paths [5]. Then we reformulate the inversion formula in terms of V-paths. For $u \leq w \leq v$, by a V-path from u to v with bottom w we mean a pair $\left(\Delta_{1}, \Delta_{2}\right)$ of Bruhat paths such that Δ_{1} is a decreasing path from u to w and Δ_{2} is an increasing path from w to v. We construct an involution on V-paths. This leads to a combinatorial proof of (1.1).

We give two applications of the involution. First, we restrict the involution to V-paths from u to v with maximal length. This induces an involution on the interval $[u, v]$ with $u<v$, which leads to a combinatorial proof of the equi-distribtution property that any nontrivial interval $[u, v]$ has as many elements of even length as elements of odd length. This property was proved inductively by Verma [12], which was used to deduce the Möbius function of the Bruhat order. Other proofs of the Möbius function formula for the Bruhat order can be found in [2, 4, 9, 11]. Recently, Jones [7] found a combinatorial proof for the equi-distribution property by constructing an involution on the intervals of a Coxeter group W. When W is finite, Jones [7] showed that this involution agrees with the construction of Rietsch and Williams [10] in their study of discrete Morse theory and totally nonnegative flag varieties.

The idea that we have used to prove Verma's equi-distribution can also be applied to Deodhar's [4] extension to parabolic quotients. For $J \subseteq S$, let W_{J} be the parabolic subgroup of W generated by J, and let W^{J} be the quotient of W consisting of minimal representatives of the left cosets of W_{J} in W, that is,

$$
W^{J}=\{w \in W \mid \ell(w s)>\ell(w) \text { for any } s \in J\} .
$$

The quotient W^{J} forms a subposet of W in the Bruhat order. For $u \leq v \in W^{J}$, let

$$
[u, v]^{J}=[u, v] \cap W^{J}
$$

and let

$$
K_{J}(u, v)=\left\{w \in[u, v]^{J} \mid[w, v]^{J}=[w, v]\right\} .
$$

When $u<v$, Deodhar [4] showed that $K_{J}(u, v)$ contains as many elements of even length as elements of odd length, from which the Möbius function of the Bruhat order on W^{J} can be easily deduced. When $J=\emptyset$, Deodhar's assertion reduces to Verma's euqidistribution. The Möbius function on W^{J} was rederived by Björner and Wachs [2] with the aid of topological techniques, and by Stembridge [11] by an algebraic approach. We construct an involution on $K_{J}(u, v)$ that leads to a simple combinatorial interpretation of Deodhar's equi-distribution.

As a second application, we find a refinement of the inversion formula when W is the symmetric group S_{n}. For a permutation $w \in S_{n}$, we write $w=w(1) w(2) \cdots w(n)$,
where $w(i)$ denotes the element in the i-th position. Let u and v be two permutations in S_{n} such that $u<v$ in the Bruhat order. For $1 \leq k \leq n$, let $[u, v]_{k}$ denote the set of permutations in the interval $[u, v]$ that end with k, that is,

$$
[u, v]_{k}=\{w \in[u, v] \mid w(n)=k\} .
$$

By using a variation of the involution, we show that the summation

$$
\sum_{w \in[u, v]_{k}}(-1)^{\ell(w)-\ell(u)} R_{u, w}(q) R_{w, v}(q)
$$

equals zero or a power of q up to a sign.

2 An involution on V-paths

Our combinatorial proof of the inversion formula is based on an equivalent formulation of (1.1) in terms of the \widetilde{R}-polynomials. Let (W, S) be a Coxeter system. For $u, v \in W$ with $u \leq v$, the \widetilde{R}-polynomials $\widetilde{R}_{u, v}(q)$ were introduced by Dyer [5], which are connected to the R-polynomials via the following relation

$$
R_{u, v}(q)=q^{\frac{\ell(v)-\ell(u)}{2}} \widetilde{R}_{u, v}\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)
$$

see also Björner and Brenti [1]. Thus the inversion formula (1.1) can be restated as

$$
\begin{equation*}
\sum_{u \leq w \leq v}(-1)^{\ell(w)-\ell(u)} \widetilde{R}_{u, w}(q) \widetilde{R}_{w, v}(q)=\delta_{u, v} \tag{2.1}
\end{equation*}
$$

To give a bijective proof of (2.1), we need a combinatorial interpretation of the \widetilde{R}-polynomials due to Dyer [5] in terms of increasing Bruhat paths of a Coxeter group. For a Coxeter system (W, S), let

$$
T=\left\{w s w^{-1} \mid s \in S, w \in W\right\}
$$

be the set of reflections. The Bruhat graph $B G(W)$ of W is a directed graph whose nodes are the elements of W such that there is an arc from u to v if $v=u t$ for some $t \in T$ and $\ell(u)<\ell(v)$. We use $u \xrightarrow{t} v$ to denote the arc from u to v, where t is the reflection such that $v=u t$. An increasing path in the Bruhat graph is defined based on the reflection ordering on the positive roots of W. Let Φ be the root system of W, and Φ^{+}be the positive root system. A total ordering \prec on Φ^{+}is called a reflection ordering if for any $\alpha \prec \beta \in \Phi^{+}$and two nonnegative real numbers λ, μ such that $\lambda \alpha+\mu \beta \in \Phi^{+}$, then we have $\alpha \prec \lambda \alpha+\mu \beta \prec \beta$. Since positive roots in Φ^{+}are in one-to-one correspondence with reflections, a reflection ordering induces a total ordering on the reflection set T.

Let $\Delta=u_{0} \xrightarrow{t_{1}} u_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{r}} u_{r}$ be a path from u to v, where $u_{0}=u$ and $u_{r}=v$. We say that Δ is increasing if $t_{1} \prec t_{2} \prec \cdots \prec t_{r}$, and Δ is decreasing if $t_{1} \succ t_{2} \succ \cdots \succ t_{r}$.

Let $\ell(\Delta)$ denote the length of Δ, that is, the number of arcs in Δ. Dyer [5] showed that for any fixed reflection ordering \prec on T, we have

$$
\begin{equation*}
\widetilde{R}_{u, v}(q)=\sum_{\Delta} q^{\ell(\Delta)} \tag{2.2}
\end{equation*}
$$

where the sum ranges over increasing Bruhat paths from u to v with respect to \prec, see also Björner and Brenti [1]. By definition, the reverse of a reflection ordering is also a reflection ordering. So (2.2) can be restated as

$$
\widetilde{R}_{u, v}(q)=\sum_{\Delta^{\prime}} q^{\ell\left(\Delta^{\prime}\right)}
$$

where the sum ranges over decreasing Bruhat paths from u to v with respect to \prec.
By a V-path from u to v with bottom w, we mean a pair $\left(\Delta_{1}, \Delta_{2}\right)$ of Bruhat paths such that Δ_{1} is a decreasing path from u to w and Δ_{2} is an increasing path from w to v. The sign of a V-path $\left(\Delta_{1}, \Delta_{2}\right)$ is defined as

$$
\operatorname{sgn}\left(\Delta_{1}, \Delta_{2}\right)=(-1)^{\ell\left(\Delta_{1}\right)}
$$

The length of a Bruhat path from u to w has the same parity as $\ell(w)-\ell(u)$, see, e.g., Björner and Brenti [1]. It follows that

$$
\operatorname{sgn}\left(\Delta_{1}, \Delta_{2}\right)=(-1)^{\ell(w)-\ell(u)}
$$

and so (2.1) can be rewritten as

$$
\begin{equation*}
\sum_{u \leq w \leq v}(-1)^{\ell(w)-\ell(u)} \widetilde{R}_{u, w}(q) \widetilde{R}_{w, v}(q)=\sum_{\left(\Delta_{1}, \Delta_{2}\right)} \operatorname{sgn}\left(\Delta_{1}, \Delta_{2}\right) q^{\ell\left(\Delta_{1}\right)+\ell\left(\Delta_{2}\right)}=\delta_{u, v}, \tag{2.3}
\end{equation*}
$$

where the second sum ranges over V-paths from u to v.
We now define an involution Φ on V-paths, which preserves the length, but reverses the sign of a V-path. This leads to a combinatorial proof of (2.3).

An Involution Φ on V-Paths: For $u<v$, let $\left(\Delta_{1}, \Delta_{2}\right)$ be a V-path from u to v with bottom w. Write

$$
\Delta_{1}=u_{0} \xrightarrow{t_{1}} u_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{i}} u_{i} \text { and } \Delta_{2}=v_{0} \xrightarrow{t_{1}^{\prime}} v_{1} \xrightarrow{t_{2}^{\prime}} \cdots \xrightarrow{t_{j}^{\prime}} v_{j},
$$

where $u_{0}=u, u_{i}=v_{0}=w$ and $v_{j}=v$. The V-path $\Phi\left(\Delta_{1}, \Delta_{2}\right)=\left(\Delta_{1}^{\prime}, \Delta_{2}^{\prime}\right)$ is constructed according to the following two cases.
Case 1: $u=w$ or $t_{i} \succ t_{1}^{\prime}$. Set

$$
\Delta_{1}^{\prime}=u_{0} \xrightarrow{t_{1}} u_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{i}} u_{i} \xrightarrow{t_{1}^{\prime}} v_{1} \quad \text { and } \Delta_{2}^{\prime}=v_{1} \xrightarrow{t_{2}^{\prime}} \cdots \xrightarrow{t_{j}^{\prime}} v_{j} .
$$

Case 2: $v=w$ or $t_{i} \prec t_{1}^{\prime}$. Set

$$
\Delta_{1}^{\prime}=u_{0} \xrightarrow{t_{i}} u_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{i-1}} u_{i-1} \quad \text { and } \quad \Delta_{2}^{\prime}=u_{i-1} \xrightarrow{t_{i}} v_{0} \xrightarrow{t_{1}^{\prime}} v_{1} \xrightarrow{t_{2}^{\prime}} \cdots \xrightarrow{t_{j}^{\prime}} v_{j} .
$$

It turns out that the involution Φ yields a simple combinatorial interpretation of the following parity property of Verma [12].

Theorem 2.1 (Verma [12]) Let (W, S) be a Coxeter system and $u<v \in W$. Then the interval $[u, v]$ has the same number of elements of odd length as elements of even length.

Indeed, for $u<v \in W$, there exists a unique maximal increasing (or, decreasing) Bruhat path from u to $v[5]$. Thus, for any $w \in[u, v]$ there is a unique maximal V-path from u to v with bottom w. So the maximal V-paths from u to v are in one-to-one correspondence with elements in the interval $[u, v]$. Restricting the involution Φ to the maximal V-paths from u to v induces an involution on the interval $[u, v]$, which reverses the parity of the length of each element in $[u, v]$. This proves Theorem 2.1.

The above argument also serves as a combinatorial interpretation of the following equi-distribution due to Deodhar [4]. Let us recall the common notation as mentioned in Introduction. For $J \subseteq S$, let

$$
W^{J}=\{w \in W \mid \ell(w s)>\ell(w) \text { for any } s \in J\}
$$

For $u \leq v \in W^{J}$, let

$$
[u, v]^{J}=[u, v] \cap W^{J}
$$

and let

$$
K_{J}(u, v)=\left\{w \in[u, v]^{J} \mid[w, v]^{J}=[w, v]\right\} .
$$

Theorem 2.2 (Deodhar [4]) Let (W, S) be a Coxeter system, and $J \subseteq S$. Then, for $u<v \in W$, the set $K_{J}(u, v)$ has the same number of elements of odd length as elements of even length.

To construct an involution on $K_{J}(u, v)$, we recall a labeling on the edges of the poset $[u, v]^{J}$ introduced by Björner and Wachs [2], see also Björner and Brenti [1]. Let $v=$ $s_{1} s_{2} \cdots s_{q}$ be a given reduced expression of v. We read a maximal chain in $[u, v]^{J}$ from top to bottom. Let $v=w_{0} \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{r}=u$ be a maximal chain in $[u, v]^{J}$, where $r=\ell(v)-\ell(u)$. Then there is a unique sequence $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ of distinct integers such that for $1 \leq k \leq r, w_{k}$ has a reduced expression obtained from $s_{1} s_{2} \cdots s_{q}$ by deleting simple reflections indexed by $i_{1}, i_{2}, \ldots, i_{k}$. Label the edge from w_{k-1} to w_{k} by i_{k}. We denote the maximal chain with such a labeling by $v=w_{0} \xrightarrow{i_{1}} w_{1} \xrightarrow{i_{2}} \cdots \xrightarrow{i_{r}} w_{r}=u$, and say that the chain $v=w_{0} \xrightarrow{i_{1}} w_{1} \xrightarrow{i_{2}} \cdots \xrightarrow{i_{r}} w_{r}=u$ is increasing if $i_{1}<i_{2}<\cdots<i_{r}$, and it is decreasing if $i_{1}>i_{2}>\cdots>i_{r}$. The following theorem is due to Björner and Wachs [2], see also Björner and Brenti [1].

Theorem 2.3 (Björner and Wachs [2]) Let $u<v \in W^{J}$, and let $v=s_{1} s_{2} \cdots s_{q}$ be a given reduced expression of v. Then there is a unique increasing maximal chain from v to u in $[u, v]^{J}$.

We remark that when $J=\emptyset$, the proof of Theorem 2.3 can be employed to show that for any given reduced expression of v, there is a unique decreasing maximal chain from v to u in $[u, v]^{\emptyset}=[u, v]$.

We are now ready to present an involution Ψ on $K_{J}(u, v)$, which reverses the parity of the length. This leads to a combinatorial proof of Theorem 2.2.

An Involution Ψ on $K_{J}(u, v)$: Let $w \in K_{J}(u, v)$, and let $v=s_{1} s_{2} \cdots s_{q}$ be a fixed reduced expression of v. Since $[w, v]^{J}=[w, v]$, by the above remark, there exists a unique decreasing maximal chain $v=v_{0} \xrightarrow{i_{1}} v_{1} \xrightarrow{i_{2}} \cdots \xrightarrow{i_{m}} v_{m}=w$ from v to w in $[u, v]^{J}$. Let $w=s_{k_{1}} s_{k_{2}} \cdots s_{k_{p}}$ be the reduced expression of w obtained from $s_{1} s_{2} \cdots s_{q}$ by deleting the generators indexed by $i_{1}, i_{2}, \ldots, i_{m}$, that is, $1 \leq k_{1}<k_{2}<\cdots<k_{p} \leq q$ and $\left\{k_{1}, k_{2}, \ldots, k_{p}\right\}=\{1,2, \ldots, q\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$. Assume that $w=w_{0} \xrightarrow{k_{j_{1}}} w_{1} \xrightarrow{k_{j_{2}}}$ $\cdots \xrightarrow{k_{j_{t}}} w_{t}=u$ is the unique increasing maximal chain in $[u, w]^{J}$ with respect to the reduced expression $w=s_{k_{1}} s_{k_{2}} \cdots s_{k_{p}}$. Note that $1 \leq j_{1}<\cdots<j_{t} \leq p$. Then $\Psi(w)$ is defined according to the following two cases:

Case 1: $u=w$ or $i_{m}<k_{j_{1}}$. Set $\Psi(w)=v_{m-1}$;
Case 2: $v=w$ or $i_{m}>k_{j_{1}}$. Set $\Psi(w)=w_{1}$.
The following theorem shows that Ψ is an involution on $K_{J}(u, v)$. The proof relies on the following properties of the Bruhat order, see, for example, Björner and Brenti [1].

The Subword Property: Let $u, v \in W$. Then $u \leq v$ in the Bruhat order if and only if every reduced expression of v has a subword that is a reduced expression of u.

The Lifting Property: Suppose that $u<v \in W$, and $s \in S$ is a simple reflection. If $\ell(s v)<\ell(v)$ and $\ell(s u)>\ell(u)$, then $u \leq s v$ and $s u \leq v$. Similarly, if $\ell(v s)<\ell(v)$ and $\ell(u s)>\ell(u)$, then $u \leq v s$ and $u s \leq v$.

Theorem 2.4 The map Ψ is an involution on $K_{J}(u, v)$.

Proof. By the construction of Ψ, it suffices to show that for $w \in K_{J}(u, v), \Psi(w)$ also belongs to $K_{J}(u, v)$. This is trivial when $u=w$ or $i_{m}<k_{j_{1}}$. Now we consider the case when $v=w$ or $i_{m}>k_{j_{1}}$. Let $w^{\prime}=\Psi(w)$. Assume that $w=s_{1} \cdots \hat{s}_{i_{m}} \cdots \hat{s}_{i_{2}} \cdots \hat{s}_{i_{1}} \cdots s_{q}$ and $w^{\prime}=s_{1} \cdots \hat{s}_{k_{j_{1}}} \cdots \hat{s}_{i_{m}} \cdots \hat{s}_{i_{1}} \cdots s_{q}$, where for a simple reflection $s \in S$, \hat{s} means that s is missing. We aim to prove that $w^{\prime} \in K_{J}(u, v)$.

Suppose to the contrary that $w^{\prime} \notin K_{J}(u, v)$. Then there exists an element $w^{\prime \prime} \in$ $\left[w^{\prime}, v\right]$ such that $w^{\prime \prime} \notin\left[w^{\prime}, v\right]^{J}$. By definition, there exists $s \in J$ such that $\ell\left(w^{\prime \prime} s\right)<$ $\ell\left(w^{\prime \prime}\right)$. Since $\ell\left(w^{\prime} s\right)>\ell\left(w^{\prime}\right)$, the lifting property implies that $w^{\prime} s \leq w^{\prime \prime}$. Thus we have $w^{\prime} s \leq v$. Since $\ell(v s)>\ell(v)$, we see that $w^{\prime} s \neq v$. It follows that $w^{\prime} s<v$, that is,

$$
s_{1} \cdots \hat{s}_{k_{j_{1}}} \cdots \hat{s}_{i_{m}} \cdots \hat{s}_{i_{1}} \cdots s_{q} s<s_{1} s_{2} \cdots s_{q} .
$$

It is easily checked that $\hat{s}_{k_{j_{1}}} \cdots \hat{s}_{i_{m}} \cdots \hat{s}_{i_{1}} \cdots s_{q} s<s_{k_{j_{1}}} \cdots s_{q}$. By the lifting property,
we deduce that $s_{k_{j_{1}}} \cdots \hat{s}_{i_{m}} \cdots \hat{s}_{i_{1}} \cdots s_{q} s \leq s_{k_{j_{1}}} \cdots s_{q}$. Thus we have

$$
w s=s_{1} \cdots \hat{s}_{i_{m}} \cdots \hat{s}_{i_{1}} \cdots s_{q} s \leq s_{1} \cdots s_{q}=v
$$

which implies that $w s \in[w, v]$. On the other hand, it is obvious that $w s \notin[w, v]^{J}$. So we conclude that $w \notin K_{J}(u, v)$, contradicting the assumption that $w \in K_{J}(u, v)$. This completes the proof.

From the proof of Theorem 2.4, we see that for $w \in[u, v]^{J}, w \in K_{J}(u, v)$ if and only if there does not exist any $s \in J$ such that $w s \in[u, v]$. Notice that this characterization has been observed by Deodhar [4, Lemma 3].

3 A refinement of the inversion formula for S_{n}

In this section, we use a variation of the involution Φ to give a refinement of the inversion formula for the symmetric group S_{n}. We introduce the notion of an S-interval. Let u, v be two permutations in S_{n} with $u<v$. Let

$$
D(u, v)=\{1 \leq i \leq n \mid u(i) \neq v(i)\} .
$$

Suppose that $D(u, v)=\left\{i_{1}, i_{2}, \ldots, i_{j}\right\}_{<}$, that is, $D(u, v)=\left\{i_{1}, i_{2}, \ldots, i_{j}\right\}$ and $i_{1}<i_{2}<$ $\cdots<i_{j}$. Let $b_{1}<b_{2}<\cdots<b_{j}$ be the values of $u\left(i_{1}\right), u\left(i_{2}\right), \ldots, u\left(i_{j}\right)$ listed in increasing order. We say that $[u, v]$ is an S-interval if it satisfies the following conditions:
(1) $i_{j}=n$ and $u\left(i_{j}\right)=b_{j}$;
(2) The values in $\left\{b_{1}, b_{2}, \ldots, b_{j}\right\}$ that are greater than $u\left(i_{1}\right)$ appear in increasing order in u, whereas the values in $\left\{b_{1}, b_{2}, \ldots, b_{j}\right\}$ that are less than $u\left(i_{1}\right)$ appear in decreasing order in u;
(3) In the cycle notation, $v=\left(b_{1}, b_{2}, \ldots, b_{j}\right) u$, that is, v is obtained from u by rotating the elements $b_{1}, b_{2}, \ldots, b_{j}$ in u.

Recall that for $u<v \in S_{n},[u, v]_{k}$ denotes the set of permutations in $[u, v]$ that end with k. The following theorem gives a refinement of the inversion formula for S_{n}.

Theorem 3.1 Assume that $u<v \in S_{n}$. Let m be the smallest index such that $u(m) \neq$ $v(m)$. If $[u, v]$ is an S-interval, and $k=u(m)$ or $k=v(m)$, then we have

$$
\sum_{w \in[u, v]_{k}}(-1)^{\ell(w)-\ell(u)} \widetilde{R}_{u, w}(q) \widetilde{R}_{w, v}(q)=(-1)^{r} q^{s-1}
$$

where $s=|D(u, v)|$ and

$$
r=|\{j \in D(u, v) \mid u(j)>k\}| ;
$$

Otherwise, we have

$$
\sum_{w \in[u, v]_{k}}(-1)^{\ell(w)-\ell(u)} \widetilde{R}_{u, w}(q) \widetilde{R}_{w, v}(q)=0
$$

For $1 \leq k \leq n$, let $P_{k}(u, v)$ denote the set of V-paths from u to v with bottoms contained in $[u, v]_{k}$. To prove Theorem 3.1, we shall construct an involution Ω on $P_{k}(u, v)$. The reflection set T of S_{n} consists of transpositions of S_{n}, that is,

$$
T=\{(i, j) \mid 1 \leq i<j \leq n\}
$$

For two permutations u, v in S_{n}, it is known that there is an arc from u to v in the Bruhat graph of S_{n} if $v=u(i, j)$ and $u(i)<u(j)$, see Björner and Brenti [1].

From now on, we choose the reflection ordering \prec on T to be the lexicographic ordering:

$$
\begin{equation*}
(1,2) \prec(1,3) \prec \cdots \prec(1, n) \prec(2,3) \prec \cdots \prec(n-1, n) . \tag{3.1}
\end{equation*}
$$

For a Bruhat path $\Delta=u_{0} \xrightarrow{t_{1}} u_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{r}} u_{r}$, let

$$
L(\Delta)=\left(t_{1}, t_{2}, \ldots, t_{r}\right)
$$

An Involution Ω on $P_{k}(u, v)$: Let $\left(\Delta_{1}, \Delta_{2}\right)$ be a V-path in $P_{k}(u, v)$ with bottom w. Write $\Delta_{1}=u_{0} \xrightarrow{t_{1}} u_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{i}} u_{i}$ and $\Delta_{2}=v_{0} \xrightarrow{t_{1}^{\prime}} v_{1} \xrightarrow{t_{2}^{\prime}} \cdots \xrightarrow{t_{j}^{\prime}} v_{j}$, where $u_{0}=u$, $u_{i}=v_{0}=w$ and $v_{j}=v$. Let $t=\min \left\{t_{i}, t_{1}^{\prime}\right\}$. Then the V-path $\Omega\left(\Delta_{1}, \Delta_{2}\right)=\left(\Delta_{1}^{\prime}, \Delta_{2}^{\prime}\right)$ is defined as follows. We consider three cases.

Case 1: t is an internal transposition, that is, $t=(a, b)$ and $1 \leq a<b<n$. In this case, set $\left(\Delta_{1}^{\prime}, \Delta_{2}^{\prime}\right)=\Phi\left(\Delta_{1}, \Delta_{2}\right)$.
Case 2: t is a boundary transposition, that is, $t=(a, n)$ for some $a<n$, and there is an internal transposition among the transpositions $t_{1}, \ldots, t_{i}, t_{1}^{\prime}, \ldots, t_{j}^{\prime}$. Let \widetilde{t} be the smallest internal transposition among $t_{1}, \ldots, t_{i}, t_{1}^{\prime}, \ldots, t_{j}^{\prime}$. By the choice of the reflection ordering in (3.1), it is easy to check that \widetilde{t} belongs to either $\left\{t_{1}, \ldots, t_{i}\right\}$ or $\left\{t_{1}^{\prime}, \ldots, t_{j}^{\prime}\right\}$, but not both. So we have the following two subcases.
Subcase 1: \tilde{t} belongs to $\left\{t_{1}, \ldots, t_{i}\right\}$. Assume that $t_{i_{0}}=\widetilde{t}$, where $1 \leq i_{0} \leq i$. Let Δ_{1}^{\prime} be the path such that $L\left(\Delta_{1}^{\prime}\right)$ is the sequence obtained from $L\left(\Delta_{1}\right)$ by deleting $t_{i_{0}}$, and let Δ_{2}^{\prime} be the path such that $L\left(\Delta_{2}^{\prime}\right)$ is the sequence obtained from $L\left(\Delta_{2}\right)$ by inserting $t_{i_{0}}$ such that $L\left(\Delta_{2}^{\prime}\right)$ remains increasing.
Subcase 2: \widetilde{t} belongs to $\left\{t_{1}^{\prime}, \ldots, t_{j}^{\prime}\right\}$. Assume that $t_{j_{0}}^{\prime}=\widetilde{t}$, where $1 \leq j_{0} \leq j$. Let Δ_{2}^{\prime} be the path such that $L\left(\Delta_{2}^{\prime}\right)$ is the sequence obtained from $L\left(\Delta_{2}\right)$ by deleting $t_{j_{0}}^{\prime}$, and let Δ_{1}^{\prime} be the path such that $L\left(\Delta_{1}^{\prime}\right)$ is the sequence obtained from $L\left(\Delta_{1}\right)$ by inserting $t_{j_{0}}$ such that $L\left(\Delta_{1}^{\prime}\right)$ remains decreasing.

Case 3: The transpositions $t_{1}, \ldots, t_{i}, t_{1}^{\prime}, \ldots, t_{j}^{\prime}$ are all boundary transpositions. In this case, set $\left(\Delta_{1}^{\prime}, \Delta_{2}^{\prime}\right)=\left(\Delta_{1}, \Delta_{2}\right)$.

It is easy to verify that Ω is a length preserving involution on $P_{k}(u, v)$, and it is clear that Ω reverses the sign of $\left(\Delta_{1}, \Delta_{2}\right)$ unless $\left(\Delta_{1}, \Delta_{2}\right)$ is a fixed point. To prove Theorem 3.1, we also need the following property.

Proposition 3.2 Assume that $u<v \in S_{n}$ and $1 \leq k \leq n$. Then the involution Ω on $P_{k}(u, v)$ has at most one fixed point. Moreover, Ω has a fixed point if and only if $[u, v]$ is an S-interval and $k=u(m)$ or $k=v(m)$, where m is the smallest integer such that $u(m) \neq v(m)$.

Proof. To prove that Ω has at most one fixed point, assume that $\left(\Delta_{1}, \Delta_{2}\right) \in P_{k}(u, v)$ is a V-path that is fixed by Ω. We proceed to show that $\left(\Delta_{1}, \Delta_{2}\right)$ is uniquely determined. Let $\Delta_{1}=u_{0} \xrightarrow{t_{1}} u_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{i}} u_{i}$ and $\Delta_{2}=v_{0} \xrightarrow{t_{1}^{\prime}} v_{1} \xrightarrow{t_{2}^{\prime}} \cdots \xrightarrow{t_{j}^{\prime}} v_{j}$. By the construction of Ω, we see that t_{1}, \ldots, t_{i} and $t_{1}^{\prime}, \ldots, t_{j}^{\prime}$ are all boundary transpositions. Assume that $t_{1}=\left(p_{1}, n\right), \ldots, t_{i}=\left(p_{i}, n\right)$ and $t_{1}^{\prime}=\left(p_{1}^{\prime}, n\right), \ldots, t_{j}^{\prime}=\left(p_{j}^{\prime}, n\right)$. Since Δ_{1} and Δ_{2} are Bruhat paths, we see that

$$
\begin{equation*}
u(n)>u\left(p_{1}\right)>\cdots>u\left(p_{i}\right)=k=w(n)>w\left(p_{1}^{\prime}\right)>\cdots>w\left(p_{j}^{\prime}\right) \tag{3.2}
\end{equation*}
$$

Noting that $t_{1} \succ t_{2} \succ \cdots \succ t_{i}$ and $t_{1}^{\prime} \prec t_{2}^{\prime} \prec \cdots \prec t_{j}^{\prime}$, we find that $n>p_{1}>\cdots>p_{i}$ and $p_{1}^{\prime}<\cdots<p_{j}^{\prime}<n$.

By (3.2) together with the relation $w=u\left(p_{1}, n\right) \cdots\left(p_{i}, n\right)$, it is easily seen that

$$
\left\{p_{1}, \ldots, p_{i}\right\} \cap\left\{p_{1}^{\prime}, \ldots, p_{j}^{\prime}\right\}=\emptyset
$$

This yields that $w\left(p_{1}^{\prime}\right)=u\left(p_{1}^{\prime}\right), \ldots, w\left(p_{j}^{\prime}\right)=u\left(p_{j}^{\prime}\right)$, and so (3.2) becomes

$$
\begin{equation*}
u(n)>u\left(p_{1}\right)>\cdots>u\left(p_{i}\right)=k=w(n)>u\left(p_{1}^{\prime}\right)>\cdots>u\left(p_{j}^{\prime}\right) . \tag{3.3}
\end{equation*}
$$

Observe that

$$
\left\{p_{1}, \ldots, p_{i}\right\} \cup\left\{p_{1}^{\prime}, \ldots, p_{j}^{\prime}\right\} \cup\{n\}=D(u, v)
$$

In view of (3.3), we deduce that given u, v and k, the values of i, j as well as the elements $p_{1}, \ldots, p_{i}, p_{1}^{\prime}, \ldots, p_{j}^{\prime}$ are uniquely determined. In other words, the V-path $\left(\Delta_{1}, \Delta_{2}\right)$ is uniquely determined.

It remains to prove that Ω has a fixed point if and only if $[u, v]$ is an S-interval and $k=u(m)$ or $k=v(m)$. By the above argument, we see that if Ω has a fixed point, then $[u, v]$ is an S-interval and $k=u\left(p_{i}\right)=v\left(p_{1}^{\prime}\right)$. Since $m=\min \left\{p_{i}, p_{1}^{\prime}\right\}$, we obtain that $k=u(m)$ if $p_{i}<p_{1}^{\prime}$ and $k=v(m)$ if $p_{i}>p_{1}^{\prime}$. Conversely, if $[u, v]$ is an S-interval, it is easy to construct a V-path in $P_{k}(u, v)$ fixed by Ω, where $k=u(m)$ or $k=v(m)$. This completes the proof.

We are now ready to complete the proof of Theorem 3.1.
Proof of Theorem 3.1. By Proposition 3.2, we only need to consider the case when [u, v] is an S-interval and $k=u(m)$ or $k=v(m)$. In this case, we have

$$
\sum_{w \in[u, v]_{k}}(-1)^{\ell(w)-\ell(u)} \widetilde{R}_{u, w}(q) \widetilde{R}_{w, v}(q)=(-1)^{\ell\left(\Delta_{1}\right)} q^{\ell\left(\Delta_{1}\right)+\ell\left(\Delta_{2}\right)}
$$

where $\left(\Delta_{1}, \Delta_{2}\right)$ is the unique V-path in $P_{k}(u, v)$ that is fixed by Ω. Evidently,

$$
\ell\left(\Delta_{1}\right)+\ell\left(\Delta_{2}\right)=|D(u, v)|-1
$$

It is also clear that

$$
\ell\left(\Delta_{1}\right)=|\{j \in D(u, v) \mid u(j)>k\}| .
$$

Hence the proof is complete.
Acknowledgments. We wish to thank the referee for valuable suggestions. This work was supported by the 973 Project and the National Science Foundation of China.

References

[1] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Grad. Texts in Math., Vol. 231, Springer, New York, 2005.
[2] A. Björner and M. Wachs, Bruhat order of Coxeter groups and shellability, Adv. Math. 43 (1982), 87-100.
[3] F. Brenti, Kazhdan-Lusztig and R-polynomials from a combinatorial point of view, Discrete Math. 193 (1998), 93-116.
[4] V.V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187-198.
[5] M.J. Dyer, Hecke algebras and shellings of Bruhat intervals, Compos. Math. 89 (1993), 91-115.
[6] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, No. 29, Cambridge Univ. Press, Cambridge, 1990.
[7] B.C. Jones, An explicit derivation of the Möbius function for Bruhat order, Order 26 (2009), 319-330.
[8] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algerbas, Invent. Math. 53 (1979), 165-184.
[9] M. Marietti, Algebraic and combinatorial properties of zircons, J. Algebraic Combin. 26 (2007), 363-382.
[10] K. Rietsch and L. Williams, Discrete Morse theory for totally non-negative flag varieties, Adv. Math. 223 (2010), 1855-1884.
[11] J.R. Stembridge, A short derivation of the Möbius function for the Bruhat order, J. Algebraic Combin. 25 (2007), 141-148.
[12] D.-N. Verma, Möbius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. École Norm. Sup. 4 (1971), 393-398.

