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Abstract. The double Schur function is a natural generalization of the factorial
Schur function introduced by Biedenharn and Louck. It also arises as the sym-
metric double Schubert polynomial corresponding to a class of permutations called
Grassmannian permutations introduced by A. Lascoux. We present a lattice path
interpretation of the double Schur function based on a flagged determinantal defi-
nition, which readily leads to a tableau interpretation similar to the original tableau
definition of the factorial Schur function. The main result of this paper is a combi-
natorial treatment of the flagged double Schur function in terms of the lattice path
interpretations of divided difference operators. Finally, we find lattice path repre-
sentations of formulas for the symplectic and orthogonal charactesgfan) and
so2n+ 1) based on the tableau representations due to King and El-Shakaway, and
Sundaram. Based on the lattice path interpretations, we obtain flagged determinan-
tal formulas for these characters.

AMS Classification: 05E05, 05E10, 17B10, 17B35, 20C30.

Keywords: Double Schur function, flagged double Schur function, symplectic char-
acters, orthogonal characters.

1. Introduction

Since their introduction by Lascoux and Schitzenberger in 1982 [25], Schubert polynomials have been
extensively studied by combinatorialists [22,24,26,40,41] and remain a thriving subject for new insights
and challenges. The notion of Schubert polynomials has been further extended to two sets of variables
by Lascoux, called double Schubert polynomials which are related to Chern classes [22], and have been
recently studied, for example, in [1,8,9,12,13,36]. We are concerned with a class of double Schubert
polynomials also singled out by Lascoux — the symmetric double Schubert polynomials, which we call
the double Schur function in comparison with the supersymmetric Schur function. The double Schur
function can be viewed as a generalization of the factorial Schur function introduced by Biedenharn and
Louck [2,3]. The factorial Schur function can be obtained from the double Schur function by specializing
the variable seY = {y1,Y2,...,Ym} to the value se{0,1,...,m—1}. M. Mendez [29, 30] developed an
umbral calculus for symmetric functions including the factorial Schur function and the double Schur
function. Molev and Sagan [32] have recently obtained the Littlewood-Richardson rule for the factorial
Schur function.

Ouir first result is a lattice path interpretation of the double Schur function based on a flagged de-
terminantal formula derived from a formula of Lascoux for the symmetric double Schubert polynomial.
We start with the definition of the double Schubert polynomial. Such a lattice path construction easily
translates into the tableau definition as a natural generalization of the original tableau defintion of the
factorial Schur function [7]. Different approaches to the double Schur function have been developed by
Goulden and Greene [17], and Macdonald [27]. The double Schur function can be defined in terms of
a Jacobi-Trudi type determinant, called the multi-Schur function, and it can also be defined in terms of
divided difference operators. We take the approach of establishing a nonintersecting lattice path expla-
nation of the determinantal definition of the double Schur function, and then translate the lattice path
formulation into tableau notation. Although it has been a standard practice to construct lattice paths
based on a certain kind of binomial type determinant, the origins of the lattice paths corresponding to the
double Schur function are not on a horizontal line as in the usual cases; whereas the origins we choose



lie slightly off the diagonal and the destinations turn out to be on a vertical line. In our construction, the
content function of a tableau comes into play in a quite natural way.

The main result in this paper is a combinatorial treatment of the divided difference operators which
can be used to compute the double Schur function from a monomial. We present a combinatorial inter-
pretation of such divided difference operators acting on a dominant double Schubert polynomial. With
such a lattice path representation, one easily arrives at the operator definition, the tableau interpretation
and the determinantal formula of the double Schur function. Our combinatorial approach also extends to
the flagged double Schur function.

Finally, we obtain lattice path representations of the tableau definitions of the symplectic and or-
thogonal characters affpn(A, X) and son11(A,X) based on the tableau representations of King and
El-Sharkaway [20], and Sundaram [39]. Based on such lattice path correspondence, we obtain two
flagged determinantal formulas for these characters.

2. The Double Schur Function

Let us start with the classical defintion of double Schubert polynomials in terms of divided difference
operators. Given a functiofi(xs, Xz, ..., X,), the transposition operatsris defined by

S f(X].vXZa s 7Xn) - f(X17 s 7Xi+1axia s 7Xn)7
and the divided difference operai@ris given by

3f— f—sf  f(.. %X, -) = F X%, )
| - - .

Xi — Xi+1 Xi—Xi+1

The double Schubert polynomial is then defined as the action of a series of divided difference operators
on the following maximal double Schubert polynomial:

AXY)= [T 06—)).

i+j<n
whereX = {X1,%2,...,X} andY = {y1,¥2,...,¥n}. Given a permutatiow € S,, let
G(w) = [{j:i < j andw(i) > w(j)}.

Then
c(w) = (ca(w), -+, Ca(W))

is called the code ofv or the inversion code of,, andl(w) = S ; ci(w) is called the length ofv. Note
that the codes of permutations nelements are in one-to-one correspondence with sequearges- a,

on the sef0,1,...,n— 1} such thatg; < n—i. Double Schubert polynomials, denoted®y(X,Y), can
be defined as polynomials ofiandY indexed by an inversion codeof a permutation om elements,
or equivalently by a permutatiow in S,. The following constructive definition of double Schubert
polynomials is given by Lascoux [23, 24].



Definition 2.1 Given an inversion code= (i4,...,in) of a permutation v& S,, the polynomials, (X,Y)
is constructed by the following procedure. Let K be the inversion code of the longest permutgition w
Sy, hamely, w=n(n—1)---21and K= (n—1,n—2,...,0). Then the polynomial

Gu,(X,Y) = Bk (X,Y) = AX,Y).

Suppose £ (i, ...,in) is aninversion code of w such thatt i 1. Then the double Schubert polynomial
corresponding to the inversion code

"= (i1, ., ik-1, ki1, ik — Lyiks2, - - - in), (1)

is given by
S (X,Y) =0kS(X,Y).

Suppose thatv is the permutation with inversion codeas in the above definition. Then the per-
mutationw’ corresponding td’ in (1) can be obtained frow by transposing the elements in theh
and (k+ 1)-th positions. Thus, we may compute the Schubert polyno@ij@K,Y) for any inversion
codel as successive actions on the maximal double Schubert polyn&Xal’). It can be verified
that the above definition is indeed equivalent to the original definition in terms of reduced words on
transpositions. Given any inversion coldet can be reached from the code of the longest permutation
by the lowering operations in the above definition. Note that after each step the length of the resulting
code decreases by one. Note that the procedure to arrive at an inversion code from that of the longest
permutation may not be unique. However, because of the braid relations:

0i-0; = 0j-0; forl|i—j|>1,
0i-0i41-0i = 0iy1-0i-0i11, forall i,

the double Schubert polynomial is uniquely defined (see also [26]). In general, we may use the standard
route as described below. Let (i,i, - ,in) be the inversion code @f € S,, thatisix < n—k. Then we

can obtain5, (X,Y) fromA(X,Y) = 6k (X,Y), whereK is the inversion code of the longest permutation

of §,. If i1 = n—k, then we have

01(02(- -+ (Ok-1A(X,Y)))) = Giy n-2, ki1, k k-1, 2, 1, 0(X,Y),
and ifi; =n—1 # n— 2, then we have
02(03(- - (01-16i; n-2,-21,0(X,Y)))) = Gisign-3. 1411 1-1--,1,0(X,Y).
Iterating this process, we may compigg(X,Y). For example, Let = (1, 2, 0, 0) for n= 4. We have
G1,2(X,Y) = 03(01(02A(X,Y))).
Consider next the class of permutationsf S, such that the inversion code wfis a non-decreasing
sequence by disregarding any string of zeros at the right-hand exfe/pfSuch permutations are called

Grassmannian permutations. Moreover, a permutation in this class is called Grassmannian permutation
of shape



wherem < n, andA is the reverse of the sequencd phamely,
AM=im>im1>--->i1>0.

A symmetric double Schubert polynomial is defined as a double Schubert polynomial indexed by the
inversion code of a Grassmannian permutation, or by a parfition

A different perspective of the symmetric double Schubert polynomials is to view them as supersym-
metric Schur functions iX andY, although these two classes are not quite the same. However, they share
a common feature of the supersymmetric complete functioXfer{xs,xz,...} andY = {y1,y,...}:

(1-yt)

WX -¥) = 1] = 5 e () @

where]t"] f (t) means the coefficient ¢f in f(t), e,_x(—Y) denotes the elementary symmetric function
en—k(—Y1,—Yo,...) andhy(X) denotes the ordinary complete symmetric functioXirt is important to
note that if we change the signs of every variabl¥ jthenh,(X +Y) coincides with the supersymmetric
function used by Golden and Greene [17] in the notaitip(X,Y). Itis necessary in the context of double
Schubert polynomials to defifg (X —Y) as in (2) for which the variables i carry the minus signs in

the numerator. If we sgt =i — 1, thenhp(X,Y) becomes the factorial complete symmetric function as
defined in [7].
Let| = (i1,i2,...,im), im > 0, be an inversion code of a Grassmannian permutatienS,. Then
S (X,Y) can be expressed as the following determinant:
hiy (Xm —Yi,) hipr1(Xm—=Yipe1) - higrma(Xm—Yiom-1)
R I A O A R
hi, mia(Xm—Yi,)  hipomi2(Xm—Yigr1) - hiy(Xm—Yiprm-1)

whereXy = {X1,X2, ..., Xm} andYm = {y1,¥2,...,Ym}-
The above determinant can be recast in terms of the divided difference operator as:

whered = (j1, j2,.-Jm) = (imn+ M—1ip-1+m—2,--- i;) and
m Jjk

&;3(X,Y) =k|j|1l|1(xk—y|)-

The above double Schubert polynomial is called a dominant double Schubert polynomial [24, 26]. If
we setY = 0, then the above definition @, (X,Y) reduces to the following expression of the Schur
function:

S\ (X) = (Om-10m 2...01) - (Om_10m_2...02) -+ (Bm_1) X, M 12 M2y,

We remark that the product of operators in the above equation is an important special case in the theory
of Schubert polynomials for the longest permutatignin Sq:

4



as described in Definition 2.1.

Lascoux introduced the Lagrange operatgmwhich extends a polynomial in one variable, sayto
a symmetric function imm variablesxy, Xo, ..., Xm:

L f(X1) :.i f(xi)/|;|(xi —X;).
i= £

The Lagrange operatds, can be expressed in terms of divided difference operators:
Lm= amfl amfz te a1-

The above operatdr,, coincides with the classical higher order divided difference operator, and is de-
noted byA with parametersxi, X, ...,Xm| in [7]. Moreover, the producdm_10m-2---0;, denoted by
L™, can also be regarded as a Lagrange operator extending a polynomitd amsymmetric function in
Xi, Xit1,---,%Xm. Itisimportant to mention that the divided difference operator corresponding to the reduc-
tion from the longest permutation to the identity permutation can be written as the product of Lagrange
operators:

(Om-10m-2...01) - (Om-10m-2...02) -+ (Om-1) = L7'LS --- Ly 5.
The action of the above operator can be expressed in terms of determinants. For any polyinial
f(X1,%2,...,%Xm), we have

(Om-10m_2...01) - (Om-10m_2...02) - (Om_1) F(X) = Zm(—l)lcﬂ f9(X)/A(X), (4)

wheref9(X) denotes the action of the permutatioon the indices of the variables, . . . ,Xyn, andA(X)
is the Vandermonde determinantin X, . . ., Xm:

AX) = []06 - ).
i<]

The above formula can be understood as the equivalence between the alternant definition of the Schur
function and the Jacobi-Trudi identity as described by Stanley [37], or in [7] for the case of the factorial
Schur function.

We employ the following notation as in [17, 27]:

(V)n= [T x—W): 5)
1<i<n
and extend to .
XY)jin = !_I (X—Yk)- (6)

If we setf = L1 (Xm—k+1|Y)i+k—1 in (4), then we are led to the following expression given by
Lascoux [24] in the terminology of symmetric double Schubert polynomials:

det((m |Y>m+imm>
mxm

S1(X,Y) = AKX ,




wherel is the inversion code of a Grassmannian permutation. If we rewrite the above formula in terms
of a partitionA = (A1,A2,...,Am),

det((xi !Y)A,-er—j) .
AX) !

then we arrive at the 6th variation of the Schur function as given by Macdonald [26] as a natural gener-
alization of the factorial Schur function.

S)\(X,Y) =

Note that the above divided difference operator definition of the double Schur function differs from
the divided difference operator definition based the maximal double Schubert polydgiijal). Nev-
ertheless, the equivalence of the two can be viewed as a duality between the operators and the polynomi-
als. The proof of this equivalence can be found in [24, 26].

The factorial Schur function can be obtained from the double Schur function, or the symmetric double
Schubert polynomial by specifying toi — 1. On the other hand, the factorial Schur function possesses
almost the same properties as the double Schur function because parani®rs.dn the factorial
Schur function basically play a role as indeterminatey-, .... The idea of using lattice path methods
for the factorial Schur function was first pointed out in [7] because of the binomial type property of the
entries in the Jacobi-Trudi formula, and later explicitly given by Goulden-Hammel [18], Goulden and
Greene [17]. However, as we shall see, there is still something to be said about such a general idea,
particularly about the origins of lattice paths, as we shall see in the next section.

3. A Lattice Path Interpretation

There is some advantage of using the index of the double Schur function as an inversion code, instead of
a partition. With respect to the factorial Schur function, the number of parts including zero components
is important when it is used as an index, although for the ordinary Schur function the zero components
can be ignored. For this reason, the usage of Gelfand pattern in the physics literature is a good way to
avoid such an ambiguity. Therefore, we use a sequence instead of a partition to index a double Schur
function. As a first step to give a lattice path interpretation of the double Schur fur@tiofY), we

prefer the following variation of (3), which can be regarded as a triangulation or a flagged form. As we
shall see, such a flagged form leads to nice properties for constructing the corresponding lattices:

hi,(En-1—Yiy)  hipp1(Enc1—Yier1) -+ higen-1(En-1—Yi 1n-1)
det 'h.il‘—l(En—z —Yi,) h.izl(En—Z —Yip+1) .h.in‘+n—2(En—2 —Yip+n-1) ’ (1)
hi,—n+1(Eo—Yi;) hi,—ny2(Eo—Yip+1) -+ hi (Bo—Yi,4n-1)

whereE; = X\ X = {Xi11,---Xn}.

The transformation from the determinant (3) to (1) easily follows from a property of the multi-Schur
function [24, 26]:

Lemma 3.1 LetJ= (j1,]2,..., Jn) be a sequence of integers, and lgt X., X, and ¥,..., Y, be sets of
variables. Then the multi-Schur function

S(X1—Y1,...,. % —Yn) = det(hjk+k| (X — Yk)>

nxn
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can also be rewritten as the determinant
det<hjk+k—l (X« —Yk—Dnj )>
nxn

for any family Oy, D1, ...,Dn_1 of variables such thaD;| < i.

We now proceed to give a lattice path realization of the flagged determinant (1). As usual, a lattice
path in the plane is a pathfrom an origin to a destination in which every step is either going up (vertical
step) or going right (horizontal step). The weight of each step is defined as follows:

1. For a vertical step fronfi, j) to (i, j + 1), the weight isq — yi ;.
2. For a horizontal step frorti, j) to (i+1, j), the weight is 1.

3. The weight of a patl® is the product of the weights of the steps in the path, denoted By.

For a set of path®,P,,...,Py,, the weight is defined to be the product of all the weights. Let
A= (A1,A2,...,An) andB = (B1,By,...,Bmy) be sequences of lattice points, we say {RatP., ..., Py)
is a group of nonintersecting lattice paths fréxwto B if R’s are nonintersecting ang is a lattice
path with originA; and destinatiorB;. Moreover, we usev(A, B) to denote the sum of weights of all
nonintersecting lattices paths frofito B. We now can state the first theorem of this paper:

Theorem 3.2 Let | = (iy,ip,...,im) be a non-decreasing sequence. Then the double Schur function
S (X,Y) can be evaluated by (&, B) for Ax = (k,—k+1) and B = (M, im_kt1 —k+1).

For the first step in proving the above theorem, we need to give a lattice path interpretation of the
entries in the determinant (1). They are the supersymmetric functions, and we may express them as the
action of divided difference operators on the polynoniglx; — Y,) which turns out to be a product
(x1—Yy1)--- (X2 —yn). This leads to a lattice path interpretation of the entries in the determinant.

Lemma 3.3 (Lascoux [24]) For the complete double Schur functiof(xy —Y), we have

Lrhn(Xl —Y) =L (Xl‘Y)n = hn—r+l(>(r —Y). (2)

Proof. While the following identity is straightforward to verify, it is a fundamental idea in dealing with
divided differences of generating functions:

1 1

0; =t. . 3
'1—tx; (1—1tx)(1—txXi41) 3

Iterating the same argument, we arrive at the following identity:

ner(l_tY) —re1 Her(l_ty)
L/h Y)=1", L) =" = Y K -Y
rhn(X1 ) =[t"] r< 1 xt [t Macicr (1 tx) n—r+1(Xr ),

which completes the proof. 1



As a critical case of the above lemma, we have the following relation, as noted in [24]:

n

hn(X1 —Yn) = Z)(—l)nfixilen—i(ﬁ, oy ¥n) = (X —Y1) - (X1 = Yn).

Note that if we sey; =i — 1, thenh, (X3 — Yn) turns out to the factoriglx; ),. With the above formula for
hn(x1 — Yn) and the formula foh,_;+1(X —Yy), we may obtain the following lattice path interpretation
of the functionhy(Xn — Ynim-1):

Lemma 3.4 The double complete symmetric functigr(X%, — Ynrm-1) can be described by the sum of
weights over lattice paths froifi, 0) to (n,m).

Proof. By Lemma 3.3, we have
hm(%n — Yaim-1) = Lo (%|Y)ntm-1-
Iterating the following identity [7]:

(Xa|Y)mi1 — (%|Y)mi1

= (X1 =) (X2—W), 4)
X1 —X2 O_Z_m 1<1<k k+2§|I_§|m+1
it follows that
it +r—1
Pm(Xn — Ynem-1) = z ( ( |_| (X — Yt)> > ) (5)
i1+ Fip=m \1<r<n \t=ig+--+ir_1+r
which is the sum of the weights over all lattice paths frahyD) to (n,m). 1

In general, all the entries in the determinant (1) can be interpreted by lattice paths. Here we only
consider those nonzero entries.

Lemma 3.5 Suppose thaiH- j > 0and j< k. Then the following entry

Pyt (%0 \ Xt j -k = Yirk-1) (6)
equals the sum of weights of all lattice paths from- j —k+ 1, —(n+ j —K)) to (n, ix+k—n).

In the notation of divided differences, the function (6) can be expressed as

L2+j—k+1 (Xn+j—k+1’Y)ik+k—1-

We are now ready to give an involutional proof of Theorem 3.2 in the spirit of the Gessel-Viennot method-
ology [15, 16].

Proof of Theorem 3:2Recall thatAy = (I, - + 1), B = (m,ip_111— 1 +1). Letm=mmyTe-- T, be a
permutation or{1,2,...,m}. Suppose tha® is a lattice path from# to By, 1 <| < m. The sign of the
configuration(Py, P, ..., Py) is defined to be the sign of the permutatimn/Ve need to find the smallest
index j such thaP; intersects with a patR, (j < k). We choosé to be the smallest ®; intersects with
more than one path. Letbe the intersection point & andP. Then we may switch the segments from
vto Py andPr,, leading to lattice path@Py, ..., PJ‘, ...,P%,...,Pm). This construction is a sign-reversing
and weight preserving involution. It is illustrated in Figures 1 and 2. |
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Figure 1: Before the involution

Figure 2: After the involution.



Once the lattice path interpretation of the determinant (1) is obtained, it is straightforward to translate
it into a Young tableau representation as given by Biedenharn and Louck for the factorial Schur function
[2, 3], and for the double Schur function as given by Goulden and Greene [17] and Macdonald [27].

Theorem 3.6 Let | = (iy,i2,---,im) be a code of a Grassmannian permutation, and (A1,A2,...,An)
be a partition withAx = im+1-k, 1 < k< m. Then the double Schur functi@h(X,Y) equals the func-
tion 5,(X,Y) defined on column strict tableaux T ¢f,2,...,m} of shape\ with the following weight
function

(X7 () = YT (@)+C())>

where T(a) is the entry of T in the celt, and Qa) is the content ofi which equals i if o falls in the
i-th row and j-th column.

Proof. For any column strict tableali with shapeA on the set{1,2,...,m}, we associate it with a
sequencéPy, Py, - - -, Py) of nonintersecting paths such thi&thas originA = (k, —k+ 1) and destination

Bk = (M Ax+ 1—K). Let us consider thi-th row of T. If the first cell isu (u > k), then we draw a line
from (u,—k+1) to (u,—k+2). Suppose that the second cell in #hh row isv, then we may draw a
line from (v, —k+ 2) to (v,—k+ 3), and so on. Thus, we havwe vertical lines and we can add some
horizontal lines to get a pat from (k, —k+ 1) to (m,Ax — k+ 1). Moreover, these pathg, P, ..., Py

are nonintersecting because the tabl€as column strict. The above procedure is reversible. Hence we
obtain a bijection.

A cell a in thek-th row andl-th column has contett— k and corresponds to théh vertical step in
B from (T (a),—k+1) to (T (a),—k+1 + 1), this step has weight

XT (o) = YT (a)—k+l = XT(a) — ¥T(a)+C(a)-

It follows that

rL(XT(O() —Yr(@+c@) =[] WP,
ac

k
wherew(F) is the weight off. This completes the proof. |

It is worth mentioning the following formula of Pragacz and Thorup [34] for the supersymmetric
Schur function indexed by a partition= (A1,...,A}):

A S RIS

I xI

where

S0¢/Y) = ] DY x - ()

and—Y = {—y1,—VY2,...}. As noted in [17,27], although the double Schur function is different from the
supersymmetric Schur function, the two have a common tableau representation when weXesibehd
Y to the following infinite sets:

X= {"'7X*25 X_1, X0, X1, X2, } and Y = {"'ay*Za y*lv yOa ylv y2a }

10



4. The Flagged Double Schur Function

In this section, we introduce the notion of a flagged double Schur function, which falls into the more
general framework of determinantal forms studied by Lascoux [22]. The flagged form of the ordinary
Schur function was introduced by Lascoux and Schiitzenberger [25]. Gessel observed that the tableau
definition of the Schur function could be extended to the flagged Schur function, and a detailed study
was later carried out by Wachs [41]. The flagged version of the supersymmetric Schur function has been
studied by Goulden and Hammel [18,19]. Our main idea is to use lattice paths to characterize the actions
of divided difference operators, and then to turn the lattice paths into flagged determinantal formulas. To
this end, we start with the divided difference operator definition of the flagged double Schur function,
and then establish the lattice path interpretation.

Let A = (A1,A2,...,Am) be a partition with\y > A > --- > Ay > 0 and letb = (by, by, ..., by) be
a sequence of nondecreasing positive integers. The flagged Schur function with\slraghélagb is
defined as

SA(b) = det(h)\ifiﬂ(bi))mxma
wherehy _i.j(bi) = hy _igj (X1, X2, -+, Xg)-

In [41], Wachs gave a combinatorial definition of the flagged Schur function in terms of column strict
tableaux. LetZ (A,b) be the set of all column strict tableatixof shape\ such that the elements in the
i-th row of T do not exceedh;. Then we have

s\(b) = w(T),
TeTT\b)

wherew(T) = [Maet XT(q)-

We define the flagged double Schur function as follows.
Definition 4.1 Given a partitionA and a flag b, the flagged double Schur function is given by

Sp(X=Y) = det<h)\i—i+j (Ko, — Yai+bi—i )>

mxm

Note that if seb; = b, = - - - = by, then the flagged double Schur function reduces to the double Schur
function. We now shift our attention to a divided difference definition of the flagged Schur function, and
then pursue a lattice path interpretation based on the divided difference operators. Given a partition
with m positive parts, and a fldgof lengthm, seta; = A; +bj — i, and

Lb = Lby.....bm = (0,100, -2 - 01) (O, 10b,-2 - 02) - - (Oby 10,2 - Om).

Then we have a lattice path interpretation for the actiobyf. , . on the polynomial
(X[Y)a = (Xa]Y)a; (X2[Y)a, - - (Xm|Y ) e,

from which one may easily recover the tableau definition and the determinantal definition of the flagged
double Schur function. Hence we arrive at the conclusion that the divided difference definition of the
flagged double Schur function coincides with the determinantal definition and the tableau definition.

11



Theorem 4.2 The polynomial b, . p,((X1|Y)a, (X2]Y)a, - -+ (Xm|Y)a,,) €quals the sum of weights of all
sequences$Py, P, --- ,Py) of nonintersecting paths such thatias origin (i, —i + 1) and destination
(bi,)\i —i+1).

Before we present a proof of the theorem, we make some remarks.

e The above lattice path represenation gives the following determinantal formula:

Lby,...bm (XY )ay (%2[Y)ap - (X[ Y )am) = €L, —iis j (X0 \ Xj—1) = Vi 41 -i) Jmxm.

By Lemma 3.1, we may rewrite it as our first definition:

det<h)\i_i+j(xbi —Y)\i-s—bi—i))

mxm

e The above lattice path representation can also be translated into the following tableau notation:

S\p(X—Y) = Z w(T),
TeT(Ab)

whereT (A, b) is the set of column strict tableau of shapsuch that the elements in tih row do
not exceed;, and

wW(T) = rL(XT(u) — YT (a)+C(a));

aec

with C(a) being the content function as before.

We restate the identity (4) in terms of lattice paths.

Lemma 4.3 Let P be the vertical segment fromm, k) to (m, p). Then the action od, on the weight of
P yields the sum of weights of all lattice paths from k) to (m+1, p—1).

Using the above lemma, we may have the following rule for computing the actigq. of

Lemma 4.4 (Pairing Lemma) Let (A1,Az,...,An) be a sequence of the lattice points with=A(m,k;),
and let B= (By,By,...,By) be a sequence of lattices points with B (m, p) and B = (m+ 1,t;) for
i >2 Suppose pkyi>ky>--->ky p—1>tr>--- >ty and k <t fori > 2. Then we have

OmW(A,B) = w(A B),

where B is obtained from B by replacing;Bvith (m+1,p—1).
Proof. First, we note that ifv(A, B) contains a factor that is symmetricig andxm; 1, then this factor can
be regarded as a constant when applying the opedgtove proceed to show that what really matters

for the operatoby, is the segment of the path frof to B; that is above the horizontal line=t, + 1.
The polynomialw(A, B) can be computed by the following procedure. Suppggsel > k;. Then every
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path fromA; to B, must have the segment frofm+ 1,k; — 1) to (m+ 1,t3), andw(A, B) must contain
the factor

(Xm‘Y)[mklymtz] (Xm+1|Y)[m+k1.,m+tz]v (l)
which is symmetric i, andxmn.1. If ko > t3, then every path frond\; to Bz automatically does not
intersect with any path frorA, to B,. By Lemma 4.3 or Lemma 3.4, the weights of such paths contribute
to the factor

h(Xm, Xmi-1,Y) )

which is again symmetric iR, andxm. 1. If ko < t3+ 1, we may repeat the above process to get a factor
in the form of (1). Iterating the above process, one may have factors symmetsi@imX. 1.

For the case whena + 1 < k;, we first take out the factaw(Aq,B;), and then we may use the above
argument to show that the rest factorsag\, B) are symmetric ing, andxm;1. For each case, we may
apply Lemma 4.3 to reach the desired conclusion. |

We can now prove Theorem 4.2.

Proof of Theorem 4.20e begin with them vertical linesPy, P, - - - , Py, whereR is from A = (i, -1+ 1)

to Bi = (i, —i+1). Recall thata; = A\j +bj —i. Consider the action dy, on (X|Y)s. By Lemma
4.3,0m(X]Y)a equals the sum of weights of all lattice paths frérto B’ whereB' is obtained fronB by
replacingB; with (m-+ 1, a,,—m). Next consider the action of,;1 o0ndn (X|Y)a. For any group of paths
(Q1,Q2,...,Qm) from Ato B, 01 affects only the area between the lines m+ 1 andx = m+2. We

may assume that the points(@;, Qo, . ..,Qm) on the linex= m+ 1 andx = m+ 2 satisfy the conditions

in Lemma 4.4, otherwise the action éf.1 on the weight of these paths leads to zero. Repeating the
same argument, it follows thafr (X|Y), equals the sum of weights of all lattice paths (automatically
nonintersecting) from to

(1,a), (2,a2—1), (m—21,an-1—m+2), -+, (b, Am—m+1). 3)

We continue with the action @y,_; on the weight of a set of nonintersecting lattice path fryno
the destination points (3), and we may still apply Lemma 4.4. lterating the same argument, we get the
desired lattice path interpretation lof(X|Y)a. 1

SettingY = 0 in Theorem 4.2, we arrive at the following corollary for the ordinary flagged Schur
function.

Corollary 4.5 Given a flag b= (b1,by,...,by) and a partitionA with m parts, let a= A; + by —i. Then
Ly by, b G157 - - - X2m) equals the sum of weights of all nonintersecting path®®- - - , P, such that
R has origin(i, —i + 1) and destinatior{b;, A —i+1).

From this corollary, we obtain the following determinantal formula:

det(hxi_iﬂ- (Xp, \ij1)>

By Lemma 3.1, we may rewrite the above formula as follows:

det(h)\ii+j(xbi)> ;

mxm

mxm

which coincides with the definition of the flagged Schur funct(b) given by Wachs [41].
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5. Flagged Determinantal Formulas for Sympletic and Orthogonal Characters

Compared with previous lattice path approaches to the double Schur function by Goulden-Greene [17],
Krattenthaler [21] and Molev [31], the construction given in the present paper easily leads to the flagged
determinantal formula. Moreover, without additional effort these paths can also be translated into a
tableau representation. We find another application of this idea to the symplectic and orthogonal char-
acterssp(2n) andso(2n+ 1) by giving new flagged determinantal formulas for these two kinds of char-
acters. They have been studied via various approaches, see, for example, [11, 39]. Fulmek and Kratten-
thaler [11] give a proof for the determinant expression

(A, X) = ot B 100 By X) Py 12050 )

rxr

wherehn(X) = hn(x1,X; 1, %2, % 1, -+, %0, X7 1) is the ordinary complete symmetric function, and the first
expression gives the entries of the first row and the second for the remaining rows.

5.1 The Symplectic Characters

The symplectic charactesgyy(A, X) can also be expressed usingg2/mplectic tableau introduced by
King and El-Sharkaway in [20].

Definition 5.1 A semi-standard tableau T of shapés called a2n-symplectic tableau if its entries are
elements of1,2,--- ,2n} and they obey the additional constraint

Tij > 2i—1.
Let S, be the set oBn-symplectic tableau, then

spn(A, X) = X,
T

where Te S, XT = Ly 2 =2,

Lemma 5.2 Given a partitionA = (Ag,---,Ar), r < n, there is a bijection betweef),) and the set of
nonintersecting lattice path®, P, ...,P ) such that Pis from A= (2i —1,—i+ 1) to Bi = (2n,A\j —i +
Hforl<i<r.

Proof. For a pathP, let us considefl ;. We can draw a vertical line froni(j, j —i) to (T j,j —i+1)
and complete the path fromi(2 1, —i + 1) to (2n,A; —i + 1) by adding horizontal lines.

Because each step can be reversed, we obtain a bijection befygeand the nonintersecting lattice

paths. |
For example, i\ = (4, 3,2) andn = 3, the following Figure 3 is a symplectic tableau of shape
The corresponding lattice paths are shown in Figure 4.

We can now define the weight of a path to ensure that we can corap(@, X) by lattice paths:

14



Figure 3: A Symplectic tableau.

y (6,4)
6.2)
) (6,0)
°l (@0 X
(3-1) r
(5.-2)

Figure 4: Corresponding lattice paths.
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Definition 5.3 For each path, the weight of each step is given by the following rules

1. for the step from{2i — 1, j) to (2i — 1, ] + 1), the weight is
2. for the step fron(2i, j) to (2i, j + 1), the weight is x*;
3. for the step fronti, j) to (i+1, j), the weight isl.

Thus, the above weight assignment does lead to a lattice path interpretasgg, @f, X). Now
let us consider the paths frol to Bj, as in the above lemma, i.e& = (2i —1,—i+1) andB;j =
(2nAj—j+1). If Aj—j+ 1< —i+1, then set the weight to O; otherwise, the sum over all such

weighted paths becomes
h)\j+ifj (Xiaxi_l7xi+laxi__;_11’ Tt aXmXEl)'

Then we have the following theorem:
Theorem 5.4 We have the following formula for the symplectic characters

szn()\vx) = det(h)\j-i-i—j (Xi7xiil7xi+17xi;ll7 e 7Xn7XrTl))l’><I"

5.2 The Odd Orthogonal Characters

The charaterson1(A, X) can be interpreted in terms of a set of orthogonal tableau of shaps

denoted byO),) and introduced by Sundaram [39]. The Proctor tableaux [35] also leads to the same
character as the Sundaram tableaux, and a weight preserving bijection of these two classes of tableaux is
established by Fulmek and Krattenthaler [8]. Let us recall the definition of the Sundaram tableaux.

Definition 5.5 A semistandard tableau T of shapewith I(A) < n, is called a s@2n+ 1) tableau if its
entries are elements of
1<2<3<...<2n—-1<2n< oo,

and obey the additional constaints

1. Tj>2i—1,

2. for each row, there is at most one

Let O be the set of such tableau, then
802n+1()\,X) = ZXTa
T

where Te O, XT = zlnleI‘TixJ'ZZI*l‘*‘Ti,jIZH.

The following lemma gives a lattice path representation of odd orthogonal tableaux.
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Lemma 5.6 Given a partitionA = (Ay,---,Ar), r < n, there is a bijection betwee;,) and the set of
nonintersecting lattice path&,P,,...,P) where P has origin A = (2i — 1,—i+ 1) and destination
Bi = (2n+1i,Aj —i+ 1) such that for the region % 2n there is at most one vertical step onvkhich is
possibly from2n—+i,Aj —i) to (2n+i,Aj —i+1).

Proof. For each patf, let us consider the cellg, j) such thafT; j < . We can draw a vertical line

from (Tij,j—1i) to (Tij,j —i+1) in the lattice path. IfT; j = o, in which casg = A; by definition, then

we can draw a vertical line frof2n—+i,A; —i) to (2n+1i,A; — i+ 1). After the vertical lines are drawn,

the pathP, can be completed by adding horizontal lines. It is easy to see that this construction is in fact
a bijection. |

For a lattice path corresponding to an odd orthogonal tableau, its weight is given below:
1. for the step from(2i — 1, j) to (2i — 1, j + 1), the weight isq, if i <n;
2. for the step from(2i, j) to (2i, ] + 1), the weight is<i‘1, ifi <n;
3. for the step from(2n+i,A; —i) to (2n+i,A; —i + 1), the weight is 1;
4. for the step from(i, j) to (i+1, j), the weight is 1.

As for the case of symplectic characters, the above weight assignment yields a lattice path interpre-
tation of sony1(A, X). The set of lattice paths frol = (2i —1,—i+1) to Bj = (2n+ j,Aj — j + 1)
subject to the conditions in Lemma 5.6 gives the following function\for j +1 > —i+1:

h)\jJrifj (Xiaxi_laXiJrlaXi_Jrlla oo 7Xn7XrTl) + h)\jJrifjfl(Xi >Xi_1axi+l>xi_+11a e aXnaXle)- (1)

Then we have the following theorem:

Theorem 5.7 The orthogonal character sg.1(A, X) can be evaluated by the following determinant

det<h)\j+i—j (thiilvxi+1)xi;1]_7 R 7Xn7XrTl) + h)\j—i-i—j—l(xi?Xiila Xi+17xi:_117 s aXn)an)> .
rxr
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