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Abstract. Let 𝑑𝑖(𝑚) denote the coefficients of the Boros-Moll polynomials. Moll’s
minimum conjecture states that the sequence {𝑖(𝑖+1)(𝑑2𝑖 (𝑚)−𝑑𝑖−1(𝑚)𝑑𝑖+1(𝑚))}1≤𝑖≤𝑚

attains its minimum at 𝑖 = 𝑚 with 2−2𝑚𝑚(𝑚 + 1)
(
2𝑚
𝑚

)2
. This conjecture is stronger

than the log-concavity conjecture proved by Kauers and Paule. We give a proof of
Moll’s conjecture by utilizing the spiral property of the sequence {𝑑𝑖(𝑚)}0≤𝑖≤𝑚, and
the log-concavity of the sequence {𝑖!𝑑𝑖(𝑚)}0≤𝑖≤𝑚.
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1 Introduction

The objective of this note is to give a proof of Moll’s conjecture on the minimum value
of a sequence involving the coefficients of the Boros-Moll polynomials which arise in
the evaluation of the following quartic integral, see, [1–6, 11]. It has been shown that
for any 𝑎 > −1 and any nonnegative integer 𝑚,∫ ∞

0

1

(𝑥4 + 2𝑎𝑥2 + 1)𝑚+1
𝑑𝑥 =

𝜋

2𝑚+3/2(𝑎+ 1)𝑚+1/2
𝑃𝑚(𝑎),

where

𝑃𝑚(𝑎) = 2−2𝑚
∑
𝑘

2𝑘
(
2𝑚− 2𝑘

𝑚− 𝑘

)(
𝑚+ 𝑘

𝑘

)
(𝑎+ 1)𝑘. (1.1)

Write 𝑃𝑚(𝑎) as

𝑃𝑚(𝑎) =
𝑚∑
𝑖=0

𝑑𝑖(𝑚)𝑎𝑖. (1.2)

The polynomials 𝑃𝑚(𝑎) are called the Boros-Moll polynomials. By (1.2), 𝑑𝑖(𝑚) can be
expressed as

𝑑𝑖(𝑚) = 2−2𝑚

𝑚∑
𝑘=𝑖

2𝑘
(
2𝑚− 2𝑘

𝑚− 𝑘

)(
𝑚+ 𝑘

𝑘

)(
𝑘

𝑖

)
. (1.3)
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From the above formula (1.3) one sees that the coefficients 𝑑𝑖(𝑚) are positive. Boros
and Moll [3,4] have proved that for 𝑚 ≥ 2 the sequence {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 is unimodal and
the maximum entry appears in the middle, that is,

𝑑0(𝑚) < 𝑑1(𝑚) < ⋅ ⋅ ⋅ < 𝑑[𝑚2 ]−1(𝑚) < 𝑑[𝑚2 ]
(𝑚) > 𝑑[𝑚2 ]+1(𝑚) > ⋅ ⋅ ⋅ > 𝑑𝑚(𝑚).

Moll [11] conjectured that the sequence {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 is log-concave for 𝑚 ≥ 2. Kauers
and Paule [9] have proved this conjecture by using a computer algebra approach. Chen
and Xia [8] have shown that the sequence {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 satisfies the strongly ratio
monotone property which implies the log-concavity and the spiral property. Chen
and Gu [7] have proved that the sequence {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 satisfies the reverse ultra log-
concavity. They have also proved that the sequence {𝑖!𝑑𝑖(𝑚)}0≤𝑖≤𝑚 is log-concave.

In fact, Moll [10,12] proposed a stronger conjecture than the log-concavity conjec-
ture. He formulated his conjecture in terms of the numbers 𝑏𝑖(𝑚) as defined by

𝑏𝑖(𝑚) =
𝑚∑
𝑘=𝑖

2𝑘
(
2𝑚− 2𝑘

𝑚− 𝑘

)(
𝑚+ 𝑘

𝑘

)(
𝑘

𝑖

)
. (1.4)

Clearly, 𝑏𝑖(𝑚) = 22𝑚𝑑𝑖(𝑚) and the log-concavity of 𝑑𝑖(𝑚) is equivalent to that of 𝑏𝑖(𝑚).

Conjecture 1.1. Given 𝑚 ≥ 2, for 1 ≤ 𝑖 ≤ 𝑚,

(𝑚+ 𝑖)(𝑚+ 1− 𝑖)𝑏2𝑖−1(𝑚) + 𝑖(𝑖+ 1)𝑏2𝑖 (𝑚)− 𝑖(2𝑚+ 1)𝑏𝑖−1(𝑚)𝑏𝑖(𝑚),

attains its minimum at 𝑖 = 𝑚 with 22𝑚𝑚(𝑚+ 1)
(
2𝑚
𝑚

)2
.

We will give a proof of the above conjecture by using the spiral property of {𝑑𝑖(𝑚)}0≤𝑖≤𝑚

and the log-concavity of {𝑖!𝑑𝑖(𝑚)}0≤𝑖≤𝑚.

2 Proof of Moll’s Minimum Conjecture

As pointed out by Moll [12], his conjecture implies that {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 is log-concave
for 𝑚 ≥ 2. To see this, we may employ a recurrence relation to reformulate his
conjecture by using the three terms 𝑑𝑖−1(𝑚), 𝑑𝑖(𝑚) and 𝑑𝑖+1(𝑚). Recall that Kauers
and Paule [9] and Moll [12] have independently derived the following recurrence relation
for 1 ≤ 𝑖 ≤ 𝑚,

𝑖(𝑖− 1)𝑑𝑖(𝑚) = (𝑖− 1)(2𝑚+ 1)𝑑𝑖−1(𝑚)− (𝑚+ 2− 𝑖)(𝑚+ 𝑖− 1)𝑑𝑖−2(𝑚). (2.1)

Note that we have adopted the convention that 𝑑𝑖(𝑚) = 0 for 𝑖 < 0 or 𝑖 > 𝑚. From
(2.1) and the relation 𝑑𝑖(𝑚) = 2−2𝑚𝑏𝑖(𝑚), it follows that

(𝑚+ 𝑖)(𝑚+ 1− 𝑖)𝑏2𝑖−1(𝑚) + 𝑖(𝑖+ 1)𝑏2𝑖 (𝑚)− 𝑖(2𝑚+ 1)𝑏𝑖−1(𝑚)𝑏𝑖(𝑚)

= 𝑖(𝑖+ 1)
(
𝑏2𝑖 (𝑚)− 𝑏𝑖+1(𝑚)𝑏𝑖−1(𝑚)

)
.

Thus, Moll’s conjecture can be restated as follows.
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Theorem 2.1. Given 𝑚 ≥ 2, for 1 ≤ 𝑖 ≤ 𝑚, 𝑖(𝑖+1) (𝑑2𝑖 (𝑚)− 𝑑𝑖+1(𝑚)𝑑𝑖−1(𝑚)) attains

its minimum at 𝑖 = 𝑚 with 2−2𝑚𝑚(𝑚+ 1)
(
2𝑚
𝑚

)2
.

Chen and Xia [8] have shown that the Boros-Moll polynomials satisfy the ratio
monotone property which implies the log-concavity and the spiral property.

Theorem 2.2. Let 𝑚 ≥ 2 be an integer. The sequence {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 is strictly ratio
monotone, that is,

𝑑𝑚(𝑚)

𝑑0(𝑚)
<

𝑑𝑚−1(𝑚)

𝑑1(𝑚)
< ⋅ ⋅ ⋅ < 𝑑𝑚−𝑖(𝑚)

𝑑𝑖(𝑚)
<

𝑑𝑚−𝑖−1(𝑚)

𝑑𝑖+1(𝑚)
< ⋅ ⋅ ⋅ <

𝑑𝑚−[𝑚−1
2 ](𝑚)

𝑑[𝑚−1
2 ](𝑚)

< 1,

𝑑0(𝑚)

𝑑𝑚−1(𝑚)
<

𝑑1(𝑚)

𝑑𝑚−2(𝑚)
< ⋅ ⋅ ⋅ < 𝑑𝑖−1(𝑚)

𝑑𝑚−𝑖(𝑚)
<

𝑑𝑖(𝑚)

𝑑𝑚−𝑖−1(𝑚)
< ⋅ ⋅ ⋅ <

𝑑[𝑚2 ]−1(𝑚)

𝑑𝑚−[𝑚2 ]
(𝑚)

< 1.

As a consequence of Theorem 2.2, the spiral property of {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 can be stated
as follows.

Corollary 2.3. (Chen and Xia [8]) For 𝑚 ≥ 2, the sequence {𝑑𝑖(𝑚)}0≤𝑖≤𝑚 is spiral,
that is,

𝑑𝑚(𝑚) < 𝑑0(𝑚) < 𝑑𝑚−1(𝑚) < 𝑑1(𝑚) < 𝑑𝑚−2(𝑚) < ⋅ ⋅ ⋅ < 𝑑[𝑚2 ]
(𝑚). (2.2)

Chen and Gu [7] have shown that {𝑖!𝑑𝑖(𝑚)}0≤𝑖≤𝑚 is log-concave. This property can
be recast in the following form.

Theorem 2.4. For 𝑚 ≥ 2 and 1 ≤ 𝑖 ≤ 𝑚− 1,

𝑖𝑑2𝑖 (𝑚) > (𝑖+ 1)𝑑𝑖+1(𝑚)𝑑𝑖−1(𝑚). (2.3)

We are now ready to present a proof of Theorem 2.1.

Proof. First, it follows from (1.3) that

𝑚(𝑚+ 1)𝑑2𝑚(𝑚) = 2−2𝑚𝑚(𝑚+ 1)

(
2𝑚

𝑚

)2

. (2.4)

We now proceed to show that for 1 ≤ 𝑖 ≤ 𝑚− 1,

𝑖(𝑖+ 1)
(
𝑑2𝑖 (𝑚)− 𝑑𝑖+1(𝑚)𝑑𝑖−1(𝑚)

)
> 𝑚(𝑚+ 1)𝑑2𝑚(𝑚). (2.5)

We first consider the case 1 ≤ 𝑖 ≤ 𝑚− 2. By (2.3), we find that

𝑖(𝑖+ 1)
(
𝑑2𝑖 (𝑚)− 𝑑𝑖+1(𝑚)𝑑𝑖−1(𝑚)

)
> 𝑖(𝑖+ 1)𝑑2𝑖 (𝑚)− 𝑖2𝑑2𝑖 (𝑚) = 𝑖𝑑2𝑖 (𝑚). (2.6)
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Using the spiral property (2.2), we see that for 1 ≤ 𝑖 ≤ 𝑚− 2,

𝑖𝑑2𝑖 (𝑚) ≥ 𝑑21(𝑚) > 𝑑2𝑚−1(𝑚). (2.7)

Combining (2.6) and (2.7), we get

𝑖(𝑖+ 1)
(
𝑑2𝑖 (𝑚)− 𝑑𝑖+1(𝑚)𝑑𝑖−1(𝑚)

)
> 𝑑2𝑚−1(𝑚). (2.8)

On the other hand, by direct computation we may deduce from (1.3) that

𝑑𝑚−1(𝑚) =
2𝑚+ 1

2
𝑑𝑚(𝑚). (2.9)

By (2.8) and (2.9), we have for 1 ≤ 𝑖 ≤ 𝑚− 2,

𝑖(𝑖+ 1)
(
𝑑2𝑖 (𝑚)− 𝑑𝑖+1(𝑚)𝑑𝑖−1(𝑚)

)
>

(
2𝑚+ 1

2

)2

𝑑2𝑚(𝑚) > 𝑚(𝑚+ 1)𝑑2𝑚(𝑚), (2.10)

and hence (2.5) is true for 1 ≤ 𝑖 ≤ 𝑚 − 2. It remains to consider the case 𝑖 = 𝑚 − 1.
Again, by (1.3) we find that

𝑑𝑚−1(𝑚) = 2−𝑚−1(2𝑚+ 1)

(
2𝑚

𝑚

)
, (2.11)

𝑑𝑚−2(𝑚) = 2−𝑚−2 (𝑚− 1)(4𝑚2 + 2𝑚+ 1)

2𝑚− 1

(
2𝑚

𝑚

)
. (2.12)

From (2.4), (2.11) and (2.12), we deduce that

𝑚(𝑚− 1)
(
𝑑2𝑚−1(𝑚)− 𝑑𝑚(𝑚)𝑑𝑚−2(𝑚)

)
=𝑚(𝑚− 1)2−2𝑚

(
2𝑚

𝑚

)2 (
(2𝑚+ 1)2

4
− (𝑚− 1)(4𝑚2 + 2𝑚+ 1)

4(2𝑚− 1)

)

=
𝑚(4𝑚2 + 6𝑚− 1)

4(2𝑚− 1)
𝑚(𝑚− 1)2−2𝑚

(
2𝑚

𝑚

)2

>𝑚(𝑚+ 1)2−2𝑚

(
2𝑚

𝑚

)2

= 𝑚(𝑚+ 1)𝑑2𝑚(𝑚). (2.13)

Thus (2.5) holds for 𝑖 = 𝑚− 1, and so it holds for 1 ≤ 𝑖 ≤ 𝑚− 1. This completes the
proof.

We conclude with the following ratio monotonicity conjecture. If it is true, it would
imply that the sequence {𝑖(𝑖 + 1)(𝑑2𝑖 (𝑚) − 𝑑𝑖+1(𝑚)𝑑𝑖−1(𝑚))}1≤𝑖≤𝑚 is both spiral and
log-concave for 𝑚 ≥ 2.
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Conjecture 2.5. The sequence {𝑖(𝑖 + 1) (𝑑2𝑖 (𝑚)− 𝑑𝑖+1(𝑚)𝑑𝑖−1(𝑚))}1≤𝑖≤𝑚 is strongly
ratio monotone.

For example, for 𝑚 = 8, we have

𝑃8(𝑎) =
4023459

32768
+

3283533

4096
𝑎+

9804465

4096
𝑎2 +

8625375

2048
𝑎3 +

9695565

2048
𝑎4

+
1772199

512
𝑎5 +

819819

512
𝑎6 +

109395

256
𝑎7 +

6435

128
𝑎8.

Let 𝑐𝑖 = 𝑖(𝑖+ 1) (𝑑2𝑖 (8)− 𝑑𝑖+1(8)𝑑𝑖−1(8)) for 1 ≤ 𝑖 ≤ 8. One can verify that

𝑐8
𝑐1

<
𝑐7
𝑐2

<
𝑐6
𝑐3

<
𝑐5
𝑐4

< 1 and
𝑐1
𝑐7

<
𝑐2
𝑐6

<
𝑐3
𝑐5

< 1.
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