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Abstract. We give a combinatorial interpretation of a matrix identity on Catalan
numbers and the sequence (1, 4, 42, 43, . . .) which has been derived by Shapiro,
Woan and Getu by using Riordan arrays. By giving a bijection between weighted
partial Motzkin paths with an elevation line and weighted free Motzkin paths, we
find a matrix identity on the number of weighted Motzkin paths and the sequence
(1, k, k2, k3, . . .) for k ≥ 2. By extending this argument to partial Motzkin paths
with multiple elevation lines, we give a combinatorial proof of an identity recently
obtained by Cameron and Nkwanta. A matrix identity on colored Dyck paths is
also given, leading to a matrix identity for the sequence (1, t2 + t, (t2 + t)2, . . .).
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1 Introduction

This paper is motivated by the following matrix identity obtained by Shapiro et
al. [12] in their study of the moments of a Catalan triangle [5, 9, 16]:




1
2 1
5 4 1
14 14 6 1
42 48 27 8 1

· · · . . .







1
2
3
4
5
...




=




1
4
42

43

44

...




, (1.1)

where the entries in the first column of the matrix are the Catalan numbers Cn =
1

n+1

(
2n
n

)
and ai,j (the entry in the ith row and jth column) is then determined by

the following recurrence relation for j ≥ 2:

ai,j = ai−1,j−1 + 2ai−1,j + ai−1,j+1. (1.2)
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Another proof of the above identity is given by Woan et al. [17] while computing
the areas of parallelo-polyominos via generating functions.

The first result of this paper is a combinatorial interpretation of the identity
(1.1) in terms of Dyck paths.

This work was motivated by the question of finding a matrix identity that
extends the sequence (1, 4, 42, 43, . . .) to (1, k, k2, k3, . . .) in (1.1). The following
matrix identity was proved by Cameron and Nkwanta [4] that arose in a study
of elements of order 2 in Riordan groups [1, 10, 11, 14]:




1
3 1
11 6 1
45 31 9 1
197 156 60 12 1

· · · . . .







1
3
7
15
31
...




=




1
6
62

63

64

...




, (1.3)

where the entry ai,j (ith row and jth column) in the above matrix satisfies the
recurrence relation

ai,j = ai−1,j−1 + 3ai−1,j + 2ai−1,j+1 (1.4)

for j ≥ 2 and the ai,1 is the ith little Schröder number si (sequence A001003 in
[13]), which counts little Schröder paths of length 2i. A little Schröder path is a
lattice path starting at (0, 0) and ending at (2n, 0) and using steps H = (2, 0),
U = (1, 1) and D = (1,−1) such that no step is below the x-axis and there are
no peaks at level one. Imposing this condition gives us little Schröder numbers
while without it we would have the large Schröder numbers.

For k = 3, we obtain the following matrix identity on Motzkin numbers:




1
1 1
2 2 1
4 5 3 1
9 12 9 4 1

· · · . . .







1
2
3
4
5
...




=




1
3
32

33

34

...




, (1.5)

where the first column is the sequence of Motzkin numbers, and the matrix A =
(ai,j)i,j≥1 is generated by the following recurrence relation:

ai,j = ai−1,j−1 + ai−1,j + ai−1,j+1.
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For k = 5, we find the following matrix identity:




1
3 1
10 6 1
36 29 9 1
137 132 57 12 1

· · · . . .







1
2
3
4
5
...




=




1
5
52

53

54

...




, (1.6)

where the first column is the sequence A002212 in [13], which has two interpreta-
tions, the number of 3-Motzkin paths or the number of ways to assemble benzene
rings into a tree [8]. Recall that a 3-Motzkin path is a lattice path from (0, 0) to
(n, 0) that does not go below the x-axis and consists of up steps U = (1, 1), down
steps D = (1,−1), and three types of horizontal steps H = (1, 0). The above
matrix A = (ai,j)i,j≥1 is generated by the first column together with the following
recurrence relation:

ai,j = ai−1,j−1 + 3ai−1,j + ai−1,j+1.

We may prove the above identities (1.5) and (1.6) by using the method of Riordan
arrays. So the natural question is how to find a matrix identity for the sequence
(1, k, k2, k3, . . .). We need the combinatorial interpretation of the entries in the
matrix in terms of weighted partial Motzkin paths, as given by Cameron and
Nkwanta [4]. To be precise, a partial Motzkin path, also called a Motzkin path
from (0, 0) to (n, k) in [4], is just a Motzkin path but without the requirement of
ending on the x-axis. A weighted partial Motzkin path is a partial Motzkin path
with the weight assignment that the horizontal steps are endowed with a weight
k and the down steps are endowed with a weight t, where k and t are regarded
as positive integers. In this sense, weighted Motzkin paths are a generalization of
k-Motzkin paths in the sense of 2-Motzkin paths and 3-Motzkin paths [2, 7, 13].

We also introduce the notion of weighted free Motzkin path which is a lat-
tice path consisting of Motzkin steps without the restrictions that it has to end
with a point on the x-axis and that it cannot go below the x-axis. We then give
a bijection between weighted free Motzkin paths and weighted partial Motzkin
paths with an elevation line, which leads to a matrix identity involving the num-
ber of weighted partial Motzkin paths and the sequence (1, k, k2, k3, . . .). The
idea of the elevation operation is also used by Cameron and Nkwanta in their
combinatorial proof of the identity (1.1) in a more restricted form. By extending
the argument to weighted partial Motzkin paths with multiple elevation lines,
we obtain a combinatorial proof of an identity recently derived by Cameron and
Nkwanta, in answer to their question.

We also give a generalization of the matrix identity (1.3) and give a combina-
torial proof by using colored Dyck paths.
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2 Riordan arrays

In this section, we give a brief introduction to the notion of Riordan arrays
[10, 11, 14]. Let us use (1.1) and (1.3) as examples. Start with two generating
functions g(x) = 1 + g1x + g2x

2 + · · · and f(x) = f1x + f2x
2 + · · · with f1 6= 0.

Let H = (hi,j)i,j≥0 be the infinite lower triangular matrix with nonzero entries
on the main diagonal, where hi,j = [xi]g(x)(f(x))j for i ≥ j, namely, hi,j equals
the coefficient of xi in the expansion of the series g(x)(f(x))j. If an infinite
lower triangular matrix H can be constructed in this way from two generating
functions g(x) and f(x), then it is called a Riordan array and is denoted by
H = (g(x), f(x)) = (g, f).

Suppose we multiply the matrix H = (g, f) by a column vector (a0, a1, . . .)
T

and get a column vector (b0, b1, . . .)
T . Let A(x) and B(x) be the generating func-

tions for the sequences (a0, a1, . . .) and (b0, b1, . . .) respectively. Then it follows
quickly that

B(x) = g(x)A(f(x)).

This allows us to switch easily between the matrix form and generating functions.

For the matrix identity (1.1), let g(x) be the generating function for Catalan
numbers (1, 2, 5, 14, . . .):

g(x) =
1− 2x−√1− 4x

2x2
.

Let f(x) = xg(x). From the recurrence relation (1.2) one may derive that
the generating function for the sequence in the jth (j ≥ 1) column in the
matrix in (1.1) equals g(xg)j−1. Let H be the Riordan array (g, xg). Since
the generating function of (1, 2, 3, 4, . . .) equals A(x) = 1

(1−x)2
, it follows that

B(x) = g(x)A(xg(x)) = 1
1−4x

is the generating function for the right hand side of
(1.1). Thus we obtain the identity (1.1).

Let us consider the matrix identity (1.3). Let g(x) be the generating function
for the little Schröder numbers which is

g(x) =
1− 3x−√1− 6x + x2

4x2
, (2.1)

and let f(x) = xg(x). Note that the generating function for the sequence
(1, 3, 7, 15, . . .) equals A(x) = 1

(1−x)(1−2x)
. From the recurrence relation (1.4) one

may verify that the matrix in (1.3) is indeed the Riordan array (g, xg). Therefore,
the generating function for the right hand side of (1.3) equals g(x)A(xg(x)) =

1
1−6x

, which implies (1.3).

Using the same method, we can verify the matrix identities (1.5) and (1.6).
Since we are going to establish a general bijection for weighted Motzkin paths,
we omit the proofs here.
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3 Dyck path interpretation of (1.1)

In this section, we present a combinatorial interpretation of the matrix identity
(1.1) by using Dyck paths. A Dyck path of length 2n is a path going from the
origin (0, 0) to (2n, 0) using up steps U = (1, 1) and down steps D = (1,−1) such
that no step is below the x-axis [6, 15]. The number of Dyck paths of length 2n
equals the Catalan number Cn.

For a Dyck path P , the points on the x-axis except for the initial point are
called return points. In this sense, the ending point is always a return point.
Formally speaking, a composition of a Dyck path P is a sequence of Dyck paths
(P1, P2, . . . , Pj) such that P = P1P2 . . . Pj. For a composition (P1, P2, . . . , Pj) of a
Dyck path P , its length is meant to be the length of P and j is called the number
of segments. We may choose certain return points to cut off a Dyck path into a
composition. We use the convention that the ending point is always a cut point.
Clearly, a Dyck path with one segment is an ordinary Dyck path.

Lemma 3.1 For j ≥ 2, we have the following recurrence relation:

di,j = di−1,j−1 + 2di−1,j + di−1,j+1, (3.1)

where di,j is the number of compositions of Dyck paths of length 2i that contain
j segments.

Proof. Let (P1, P2, . . . , Pj) be a composition of a Dyck path P of length 2i. Con-
sider the following cases for P1. Case 1: P1 = UD. Then we can get a composition
of length 2(i − 1) with j − 1 segments: (P2, . . . , Pj). Case 2: P1 = QUD and
Q is not empty. Then we get a composition (Q,P2, . . . , Pj) of length 2(i − 1)
with j segments. Case 3: P1 = UQD and Q is not empty. We get a composition
(Q,P2, . . . , Pj) of length 2(i− 1) with j segments. Case 4: P1 = Q1UQ2D, where
Q1 and Q2 are not empty. Then we get a composition (Q1, Q2, P2, . . . , Pj) of
length 2(i− 1) with j + 1 segments. Adding up the terms in the above cases, we
obtain the desired recursion (3.1).

From Lemma 3.1 one sees that the entry ai,j in the triangular matrix of the
identity (1.1) can be explained as the number of compositions of Dyck paths of
length 2i that contain j segments. We remark that this combinatorial interpre-
tation can also be derived from the generating function of the entries in the jth
column of the matrix in (1.1). The following formula for ai,j, essentially a ballot
number, has been derived by Cameron and Nkwanta [4]:

ai,j =
j

i

(
2i

i− j

)
.

Let us rewrite the matrix identity (1.1) as follows:

i∑
j=1

jai,j = 4i−1. (3.2)
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A different combinatorial formulation of the above identity is given by Callan [3].

We are now ready to give a combinatorial proof of the above identity. Clearly,
4n is the number of sequences of length n on four letters, say, {1, 2, 3, 4}. The term
jai,j suggests that we should specify a segment in a composition as a distinguished
segment. We may use a star ∗ to mark the distinguished segment. We call a
composition with a distinguished segment a rooted composition of a Dyck path.
Then jai,j equals the number of rooted compositions of Dyck paths of length 2i
that contain j segments.

Theorem 3.2 There is a bijection φ between the set of rooted compositions of
Dyck paths of length 2i and the set of sequences of length i− 1 on four letters.

Proof. We recursively define a map φ from rooted compositions of a Dyck path P
of length 2i to sequences of length i−1 on {1, 2, 3, 4}. For i = 1, P is unique, and
the sequence is set to be the empty sequence. We now assume that i > 1. Let
(P1, . . . , P

∗
t , . . . , Pj) be a rooted composition of P with P ∗

t being the distinguished
segment.

We have the following cases.

1. P1 = UD and t = 1. Then we set φ(P ) = 1 φ(P ∗
2 , P3, . . . , Pj).

2. P1 = UD and t 6= 1. Then we set φ(P ) = 2 φ(P2, . . . , P
∗
t , . . . , Pj).

3. P1 = QUD and Q is a nonempty Dyck path. Set φ(P ) = 3 φ(Q∗, P2, . . . , Pj)
if t = 1 and set φ(P1, . . . , Pj) = 3 φ(Q,P2, . . . , P

∗
t , . . . , Pj) if t > 1.

4. P1 = Q1UQ2D, where Q1 and Q2 are nonempty Dyck paths. Then we set

φ(P1, . . . , Pj) = 1 φ(Q1, Q2, P2, . . . , P
∗
t , . . . , Pj) if t > 1,

φ(P ) = 1 φ(Q1, Q
∗
2, P2, . . . , Pj) if t = 1.

5. P1 = UQD and Q is a nonempty Dyck path. Then we set

φ(P ) = 4 φ(Q,P2, . . . , P
∗
t , . . . , Pj) if t > 1,

φ(P ) = 4 φ(Q∗, P2, . . . , Pj) if t = 1.

In order to show that φ is a bijection, we construct the reverse map of φ. Let
w = w1w2 . . . wi−1 be a sequence of length i − 1 on {1, 2, 3, 4}. If i = 1, then
it corresponds to UD. We now assume that i > 1. Suppose that w2w3 . . . wi−1

corresponds to a rooted composition (R1, R2, . . . , Rm) of a Dyck path P of length
2(i − 1) with Rk being the distinguished segment. We proceed to find a rooted
composition (P1, P2, . . . , Pj) with Pt being the distinguished segment such that
φ(P1, P2, . . . , Pj) = w1φ(R1, R2, . . . , Rm).

If w1 = 2, we have P1 = UD and (P2, P3, . . . , Pj) = (R1, R2, . . . , Rm). It
follows that t = k + 1 and j = m + 1. Thus we can recover (P1, P2, . . . , Pj).

6



For the case w1 = 3, we have P1 = R1UD and t = k. Also, we can recover
(P2, . . . , Pj) from (R2, . . . , Rm). For the case w1 = 4, we have t = k, P1 = UR1D,
and (P2, . . . , Pj) = (R2, . . . , Rm).

It remains to deal with the situation w1 = 1, which involves Cases 1 and 4
of the bijection. If k = 1, then we have t = 1, P1 = UD and (P2, . . . , Pj) =
(R1, . . . , Rm). If k = 2, then we have t = 1, P1 = R1UR2D and (P2, . . . , Pj) =
(R3, . . . , Rm). If k > 2, then we have t = k−1, P1 = R1UR2D and (P2, . . . , Pj) =
(R3, . . . , Rm). Thus, we have shown that φ is a bijection.

An example of the bijection φ is given in Fig. 1, where normal vertices are
drawn with solid dots, return points that cut the Dyck paths into segments are
drawn with open circles, and the distinguished segment is marked with a ∗ on its
last return step.

∗ ←→ 2 ∗ ←→

23 ∗ ←→ 234 ∗ ←→ 2341 ∗ ←→ 2341

Figure 1: The bijection φ.

4 Weighted partial Motzkin paths

A Motzkin path of length n is a path going from (0, 0) to (n, 0) consisting of up
steps U = (1, 1), down steps D = (1,−1) and horizontal steps H = (1, 0), which
never goes below the x-axis. A (k, t)-Motzkin path is a Motzkin path such that
each horizontal step is weighted by k, each down step is weighted by t and each
up step is weighted by 1. The case k = 2, t = 1 gives the 2-Motzkin paths which
have been introduced by Barcucci et al. [2] and have been studied by Deutsch
and Shapiro [7]. The weight of a path is the product of the weights of all its
steps. Denote by |P | the weight of a path P . The weight of a set of paths is the
sum of the total weights of all the paths. For any step, we say that it is at level
k if the y-coordinate of its end point equals k.

In this section, we aim to establish the following matrix identity on weighted
Motzkin paths.

Theorem 4.1 Let M = (mi,j)i,j≥1 be the lower triangular matrix such that the
first column is the sequence of the total weight of (k − t − 1, t)-Motzkin paths of
length i− 1. Suppose that we have the following recurrence relation for j ≥ 2:

mi,j = mi−1,j−1 + (k − t− 1)mi−1,j + tmi−1,j+1. (4.1)
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Then we have

(mi,j)i,j≥1 ×




1
1 + t

1 + t + t2

...


 =




1
k
k2

...


 . (4.2)

Note that the special case of (4.2) for t = 1 has been derived by Aigner in [1]
by using sum coefficients. It is well known that the number of 2-Motzkin paths of
length n is given by the Catalan number Cn+1. It follows that the matrix identity
(1.1) is a special case of (4.2) for k = 4, t = 1. Denote by f(x) =

∑
n≥0 fnx

n the
generating function for the number of (3, 2)-Motzkin paths. Then it is easy to
find the functional equation for f(x):

f(x) = 1 + 3xf(x) + 2x2f 2(x).

It follows that

f(x) =
1− 3x−√1− 6x + x2

4x2
.

From the above generating function, one sees that the number of (3, 2)-Motzkin
paths of length n is the nth little Schröder number. Therefore, the matrix identity
(1.3) is a special case of (4.2) for k = 6, t = 2.

Let us rewrite the matrix identity (4.2) in the following form:

i∑
j=1

mi,j(1 + t + · · ·+ tj−1) = ki−1. (4.3)

The following combinatorial interpretation of the entries in the matrix in (4.2)
is due to Cameron and Nkwanta [4]. A partial (k, t)-Motzkin path is defined as
an initial segment of a (k, t)-Motzkin path. We say that a partial (k, t)-Motzkin
path ends at level j if its last step is at level j.

Lemma 4.2 ([4]) Let mi,j be the entries in the matrix in (4.2). Then mi,j equals
the total weight of partial (k − t− 1, t)-Motzkin paths of length i− 1 that end at
level j − 1.

Proof. Regarding the first column of the matrix M , one sees that a partial
(k− t− 1, t)-Motzkin path that ends at level zero is just a (k− t− 1, t)-Motzkin
path. Let ai,j denote the total weight of partial (k − t − 1, t)-Motzkin paths of
length i− 1 ending at level j − 1. Let P be a partial (k − t− 1, t)-Motzkin path
of length i− 1 that ends at level j − 1 (j > 1). By considering the last step of P
and its weight, one sees that ai,j satisfies the recurrence relation (4.1).

Let P be a partial (k−t−1, t)-Motzkin path ending at level j−1. We need the
notion of an elevated partial Motzkin path introduced by Cameron and Nkwanta
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←→

Figure 2: Elevation of a partial Motzkin path.

[4] in their combinatorial proof of the following identity which is a reformulation
of (3.2):

4n =
n∑

k=0

(k + 1)2

n + 1

(
2n + 2

n− k

)
.

Let p be an integer with 0 ≤ p ≤ j − 1. The elevation of P with respect to the
horizontal line y = p is defined as follows. For p = 0, the elevation of P with
respect to y = 0 is just P itself. We now assume 0 < p ≤ j − 1. Note that there
are always up steps of P at levels j − 1, j − 2, . . . , 1. Therefore, for each level
from 1 to p, one can find a rightmost up step. Note that there are no other steps
at the same level to the right of the rightmost up step which is called an R-visible
up step with respect to the line y = p in the sense that it can be seen far away
from the right. The elevation of P with respect to the line y = p is derived from
P by changing the R-visible up steps up to level p to down steps by elevating
their initial points. The line y = p is called an elevation line.

Fig. 2 is an illustration of the elevation of a partial Motzkin path with respect
to the line y = 2.

We now introduce the notion of free Motzkin paths which are lattice paths
starting from (0, 0) and using up steps U = (1, 1), down steps D = (1,−1) and
horizontal steps H = (1, 0). Note that there is no further restriction so that
the paths may go below the x-axis. A free (k, t)-Motzkin path is a free Motzkin
path in which the steps are weighted in the same way as for (k, t)-Motzkin paths,
namely, an up step has weight one, a horizontal step has weight k and a down
step has weight t.

For a free Motzkin path P we may analogously define the L-visible down steps
as the down steps that are visible from the far left. It is clear that a complete
Motzkin path (a partial Motzkin path with ending point on the x-axis) has no
R-visible up steps. Similarly, a partial Motzkin path has no L-visible down steps.

We have the following summation formula for weighted free Motzkin paths.

Lemma 4.3 The sum of weights of free (k − t − 1, t)-Motzkin paths of length i
equals ki.

The proof of the above lemma is obvious because of the relation

(1 + k − t− 1 + t)i = ki.
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We are now led to establish a bijection for the identity (4.3).

Theorem 4.4 There is a bijection between the set of partial (k−t−1, t)-Motzkin
paths of length i with an elevation line and the set of free (k − t − 1, t)-Motzkin
paths of length i.

Proof. The bijection is just the elevation operation. The reverse map is also easy.
For a free Motzkin path, one can identify the L-visible down steps, if any, then
change these L-visible down steps to up steps by elevating their end points.

For a partial (k−t−1, t)-Motzkin path P with an elevation line y = p, suppose
that Q is the elevation of P with respect to y = p. It is clear that the weight of
Q equals tp|P |. If P ends at level j, then the possible elevation lines are y = 0,
y = 1, . . . , y = j. Summing over j, we arrive at a combinatorial interpretation of
the identity (4.3).

As a consequence of Theorem 4.4, we obtain the matrix identity (4.2).

5 An identity of Cameron and Nkwanta

In their study of involutions in Riordan groups, Cameron and Nkwanta [4] ob-
tained the following identity for m ≥ 0, and asked for a purely combinatorial
proof: (

n

m

)
4n−m =

n∑

k=0

k + 1

n + 1

(
k + m + 1

k −m

)(
2n + 2

n− k

)
.

It is clear that identity (3.2) is a special case of the above identity for m = 0.
To be consistent with our notation, we may rewrite the above identity in the
following form:

(
i− 1

m

)
4i−1−m =

i∑
j=1

j

i

(
j + m

2m + 1

)(
2i

i− j

)
. (5.1)

We now give a bijective proof of (5.1).

We recall that the number of partial 2-Motzkin paths of length i−1 ending at
level j−1 is given by ai,j = j

i

(
2i

i−j

)
. We now give a combinatorial interpretation of

the binomial coefficient
(

j+m
2m+1

)
. Let P be a partial 2-Motzkin path of length i−1

ending at level j − 1 with m marked R-visible up steps and m + 1 elevation lines
such that there is exactly one marked up step between two adjacent elevation
lines. Such a configuration can be represented as follows:

t1 | t2 ∗ t3 | t4 ∗ t5 | · · · | t2m ∗ t2m+1 | t2m+2,

where ti denotes the number of unmarked R-visible up steps. It is clear that we
have t1 + t2 + . . .+ t2m+2 = j−1−m, and the number of solutions of this equation
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∗
←→

Figure 3: Elevation of a partial 2-Motzkin path.

equals the number of ways to distribute j−1−m balls into 2m+2 boxes while a
box may have more than one ball. So this number equals the binomial coefficient(

j+m
2m+1

)
. This leads to the following Lemma.

Lemma 5.1 The summand in (5.1) counts partial 2-Motzkin paths of length i−1
ending at level j − 1 with m marked R-visible up steps and m + 1 elevation lines
such that there is exactly one marked step between two adjacent elevation lines.

We are now ready to give a combinatorial proof of the identity of Cameron
and Nkwanta. We recall that a 2-Motzkin path has two kinds of horizontal steps,
straight steps and wavy steps. We need to introduce the third kind of horizontal
steps – dotted steps. Therefore, the left hand side of (5.1) is the number of free
3-Motzkin paths of length i− 1 with exactly m dotted horizontal steps. We now
give the following bijection that leads to a combinatorial interpretation of (5.1).

Theorem 5.2 There is a bijection between partial 2-Motzkin paths of length i
with m marked R-visible up steps and m + 1 elevation lines such that there is
exactly one marked step between two adjacent elevation lines and free 3-Motzkin
paths of length i with exactly m dotted horizontal steps.

Proof. Suppose that P = P1U
∗P2U

∗ . . . PmU∗Pm+1 is a partial 2-Motzkin path
with m marked R-visible up steps and m + 1 elevation lines, then we get a free
3-Motzkin path by changing all the marked up steps to dotted horizontal steps
and applying the elevation operation for each Pk.

Conversely, given a free 3-Motzkin path P = P1 99K P2 99K · · ·Pm 99K Pm+1

with m dotted horizontal steps, where 99K denotes a dotted horizontal step, then
we can get a partial 2-Motzkin path by changing each dotted horizontal step to a
marked up step and the L-visible down steps of each Pk to up steps by elevating
their end points.

Fig. 3 is an illustration of the elevation operation with respect to multiple
elevation lines. We conclude this section by giving a more general identity. Let
ai,j,k be the number of partial k-Motzkin paths of length i − 1 ending at level
j − 1. Then we have

(
i− 1

m

)
ki−1−m =

i∑
j=1

ai,j,k−2

(
j + m

2m + 1

)
. (5.2)
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6 A Dyck path generalization of (1.3)

In this section, we give a Dyck path generalization of the matrix identity (1.3) on
the little Schröder numbers. A k-Dyck path is a Dyck path in which an up step is
colored by one of the k colors in {1, 2, . . . , k} if it is not immediately followed by
a down step. In this section, we aim to give the following generalization of (1.3).

Theorem 6.1 Let M = (mi,j)i,j≥1 be a lower triangular matrix with the first
column being the number of (t2 − t)-Dyck paths of length 2i. The other columns
of M are given by the following relation:

mi,j = mi−1,j−1 + (t2 − t + 1)mi−1,j + (t2 − t)mi−1,j+1. (6.1)

Then we have the following matrix identity:

(mi,j)i,j≥1 ×




1
t2 − (t− 1)2

t3 − (t− 1)3

...


 =




1
t2 + t

(t2 + t)2

...


 . (6.2)

The matrix identity (1.3) is a consequence of (6.2) by setting t = 2. By using
generating functions, one can verify that the number of 2-Dyck paths of length
2n equals the number of little Schröder paths of length n.

We now proceed to give a combinatorial proof of (6.2). To this end, we need
to give a combinatorial interpretation of the entries in the matrix M in (6.2).
We may define a composition of a k-Dyck path P as a sequence of k-Dyck paths
(P1, P2, . . . , Pj) such that P = P1P2 · · ·Pj, where j is the number of segments.

Lemma 6.2 Let ai,j be the number of compositions of (t2 − t)-Dyck paths of
length 2i with j segments. Then ai,j satisfies the recurrence relation (6.1).

The proof of the above lemma is similar to that of Lemma 3.1. Let us rewrite
(6.2) as follows: ∑

j≥1

mi,j(t
j − (t− 1)j) = (t2 + t)i−1. (6.3)

In order to deal with mi,j(t
j−(t−1)j) combinatorially, we introduce a coloring

scheme on a composition of a (t2 − t)-Dyck path with j segments. Suppose that
we have t colors c1, c2, . . . , ct. If we use these t colors to color the j segments such
that the first color c1 must be used, then there are tj−(t−1)j ways to accomplish
such colorings. We simply call such colorings t-feasible colorings.

Here is a bijection leading to a combinatorial proof of (6.3).

Theorem 6.3 There is a bijection between the set of compositions of (t2 − t)-
Dyck paths of length 2i with a t-feasible coloring on the segments and the set of
sequences of length i− 1 on t2 + t letters.
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Proof. The desired bijection σ is constructed as follows. Let (P1, P2, . . . , Pj) be
a composition of a (t2− t)-Dyck path P of length 2i with a t-feasible coloring on
the segments. We will use the following alphabet that contains t2 + t letters:

{αr, | 1 ≤ r ≤ t} ∪ {βs, | 1 ≤ s ≤ t− 1} ∪ {γk | 1 ≤ k ≤ t2 − t} ∪ {δ}. (6.4)

For i = 1, both the composition and the t-feasible coloring are unique. We
set the corresponding sequence to be empty. For i ≥ 2, we consider the following
cases:

1. P1 = UD, P1 is colored by cr (1 ≤ r ≤ t) and (P2, . . . , Pj) still has a
t-feasible coloring. Then we set σ(P1, . . . , Pj) = αrσ(P2, . . . , Pj).

2. P1 = UD, P1 is colored by c1 and (P2, . . . , Pj) does not inherit a t-feasible
coloring. Assume that P2 is colored by cs+1 (1 ≤ s ≤ t − 1). Then we
change the color of P2 to c1 and set σ(P1, . . . , Pj) = βsσ(P2, . . . , Pj).

3. P1 = UDQ, where Q is not empty. Then we set σ(P1, . . . , Pj) = δσ(Q,P2, . . . , Pj).

4. P1 = UQD, where Q is not empty and the first up step of P has color k
(1 ≤ k ≤ t2 − t). Then we set σ(P1, . . . , Pj) = γkσ(Q,P2, . . . , Pj).

5. P1 = UQ1DQ2, neither Q1 nor Q2 is empty and the first up step of P has
color k. Since k ranges from 1 to t(t−1), we may encode a color k by a pair
of colors (cp, cq) where p ranges from 1 to t and q ranges from 1 to t − 1.
Moreover, we may use (cr, βs) to denote a color k. Then we assign color cr

to Q1, pass the color of P1 to Q2, and set σ(P ) = βsσ(Q1, Q2, P2, . . . , Pj).

For each case, the resulting path is always a sequence of length i− 1.

In order to show that σ is a bijection, we proceed to construct the inverse map
of σ. Let S be a sequence of length i − 1 on the alphabet (6.4). If i = 1, then
we get the unique Dyck path UD and the unique composition with a t-feasible
coloring. Note that the up step in the Dyck path UD is not colored. We now
assume that i > 1. It is easy to check that Cases 1, 3, and 4 are reversible. It
remains to show that Cases 2 and 5 are reversible. In fact, we only need to ensure
that Case 2 and Case 5 can be distinguished from each other. For Case 2, either
j = 2 or (P3, . . . , Pj) does not have a t-feasible coloring. On the other hand, for
Case 5, (Q2, P2, . . . , Pj) is always nonempty and it has a t-feasible coloring. This
completes the proof.

We also have a combinatorial interpretation of the matrix identity (1.3) based
on little Schröder paths. The idea is similar to the proof given above, so the
details are omitted.
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