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Abstract

Given two polynomials, we find a convergence property of the GCD of the rising factorial
and the falling factorial. Based on this property, we present a unified approach to computing
the universal denominators as given by Gosper’s algorithm and Abramov’s algorithm for
finding rational solutions to linear difference equations with polynomial coefficients.
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1 Introduction

Let N be the set of nonnegative integers, K be a field of characteristic zero, K(n) be the
field of rational functions over K, and K[n] be the ring of polynomials over K. We assume
that subject to normalization the gcd (greatest common divisor) of two polynomials always
takes a value as a monic polynomial, namely, polynomials with the leading coefficient being
1. Recall that a nonzero term tn is called a hypergeometric term over K if there exists a
rational function r ∈ K(n) such that

tn+1

tn
= r(n).

If r(n) = a(n)/b(n), where a(n), b(n) ∈ K[n], then the function a(n)/b(n) is called a rational
representation of the rational function r(n). If gcd(a(n), b(n)) = 1 holds, then a(n)/b(n) is
called a reduced rational representation of r(n).

Gosper’s algorithm [7] (also see [6, 8, 9, 15, 18, 19, 20, 17]) has been extensively studied
and widely used to prove hypergeometric identities. Given a hypergeometric term tn, Gosper’s
algorithm is a procedure to find a hypergeometric term zn satisfying

zn+1 − zn = tn, (1.1)

if it exists, or confirm the nonexistence of any solution of (1.1). The key idea of Gosper’s
algorithm lies in a representation of rational functions called Gosper representation; i.e.,
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writing the rational function r(n) in the following form:

r(n) =
a(n)

b(n)

c(n + 1)

c(n)
,

where a, b and c are polynomials over K and

gcd(a(n), b(n + h)) = 1 for all h ∈ N.

Petkovšek [13] has realized that a Gosper representation becomes unique, which is called the
Gosper-Petkovšek representation, or GP representation, for short, if we further require that
b, c are monic polynomials such that

gcd(a(n), c(n)) = gcd(b(n), c(n + 1)) = 1.

In the same paper, Petkovšek also gave an algorithm to compute GP representations;
subsequently we will call it the “GP algorithm”. In [12], Paule and Strehl gave a derivation
of Gosper’s algorithm by using the GP representation. In [11], equipped with the Greatest
Factorial Factorization (GFF), Paule presented a new approach to indefinite hypergeometric
summation which leads to the same algorithm as Gosper’s, but in a new setting. In [10],
Lisoněk and et al., gave a detailed study of the degree setting for Gosper’s algorithm.

Finding rational solutions is important in computer algebra because many problems can
be reduced to rational solutions. For example, we may consider the generalization of Gosper’s
algorithm. Given a linear difference equation

d
∑

m=0

pm(n)y(n + m) = p(n), (1.2)

where p0(n), p1(n), . . . , pd(n), p(n) ∈ K[n] are given polynomials such that p0(n) 6= 0, pd(n) 6=
0, a polynomial g(n) ∈ K[n] is called a universal denominator for (1.2) if and only if for
every solution y(n) ∈ K(n) to (1.2) there exists a f(n) ∈ K[n] such that y(n) = f(n)/g(n).
Once a universal denominator is found, then it is easy to find the rational solutions of the
linear difference equation (1.2) by finding the polynomial solutions using the techniques in
[2, 4, 13]. Abramov [2] developed an algorithm to find a universal denominator of (1.2) which
relies on all the coefficients p0(n), p1(n), . . . , pd(n), p(n). In [3], an improved version is given
which requires only two coefficients p0(n) and pd(n). Compared with the simplicity of the
output of Abramov’s algorithm, the justification is quite involved. Recall that the dispersion
dis(a(n), b(n)) of the polynomials a(n), b(n) ∈ K[n] is the greatest nonnegative integer k (if
it exists) such that a(n) and b(n + k) have a nontrivial common divisor, i.e.,

dis(a, b) = max{k ∈ N | deg gcd(a(n), b(n + k)) ≥ 1}.

If k does not exist then we set dis(a, b) = −1. Observe that dis(a(n), b(n)) can be com-
puted as the largest nonnegative integer root of the polynomial R(h) ∈ K[h] where R(h) =
Resn(a(n), b(n + h)).

The main result of this paper is the discovery of a convergence property of the GCD of
rising factorial of a polynomial b(n) and the falling factorial of another polynomial a(n). By
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using the limit of the GCD sequence, we may transform a rational difference equation into
a polynomial difference equation. The convergence argument yields a new and streamlined
approach to the explicit formula for Abramov’s universal denominator. Note that this explicit
formula can be used to compute rational solutions of a linear difference equation (1.2). In
addition, we derive Abramov’s universal denominator from Barkatou’s explicit formula. The
relation between Barkatou’s approach and Abramov’s algorithm has been discussed in detail
by Weixlbaumer [16].

2 The Convergence Property

The main idea of this paper is the following convergence property of a GCD sequence. It
turns out that this simple observation plays a fundamental role in finding rational solutions of
linear difference equations, and it can be viewed as a unified approach to several well-known
algorithms.

Theorem 2.1. Let a(n) and b(n) be two nonzero polynomials in n and let

k0 = dis(a(n − 1), b(n)) = max{k ∈ N | deg gcd(a(n − 1), b(n + k)) ≥ 1}. (2.1)

Define

Gk(n) = gcd(b(n)b(n + 1) . . . b(n + k − 1), a(n − 1)a(n − 2) . . . a(n − k)). (2.2)

Then the sequence G1(n), G2(n), . . . converges to Gk0+1(n).

Proof. For all k > k0 we have

gcd(a(n − 1), b(n + k)) = · · · = gcd(a(n − k − 1), b(n + k)) = 1. (2.3)

Note that

Gk+1(n) = gcd(b(n)b(n + 1) . . . b(n + k), a(n − 1)a(n − 2) . . . a(n − k − 1)).

This implies that
Gk(n) = Gk+1(n),

for all k > k0. Moreover, one sees that once (2.3) is satisfied for k > k0, it is also satisfied for
k + 1. It follows that

Gk(n) = Gk+1(n) = Gk+2(n) = · · · ,

for all k > k0, and this completes the proof.

Using the above convergence property of the sequence Gk(n), we are led to a simple
approach to Gosper’s algorithm without resorting to the Gosper representation or GP rep-
resentation of rational functions. Given a hypergeometric term tn and suppose that there
exists a hypergeometric term zn satisfying equation (1.1), then by using (1.1) we find

r(n)y(n + 1) − y(n) = 1, (2.4)

where r(n) = tn+1/tn and y(n) = zn/tn are rational functions of n, see [15].
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Theorem 2.2. Let r(n) and y(n) in equation (2.4) be in terms of their reduced rational

representations:

r(n) =
a(n)

b(n)
, y(n) =

f(n)

g(n)
. (2.5)

Then

g(n) | Gk0+1(n),

where k0 and Gk(n) are defined in Theorem 2.1.

Proof. Using (2.5) in (2.4) gives

a(n)g(n)f(n + 1) − b(n)g(n + 1)f(n) = b(n)g(n)g(n + 1). (2.6)

From the above relation, we immediately get that

g(n) | b(n)g(n + 1) and that g(n + 1) | a(n)g(n).

Using these two relations repeatedly we obtain

g(n) | b(n)b(n + 1) . . . b(n + k − 1)g(n + k),

g(n) | a(n − 1)a(n − 2) . . . a(n − k)g(n − k),

for all k ∈ N. Since K has characteristic zero,

gcd(g(n), g(n + k)) = gcd(g(n), g(n − k)) = 1,

for all large enough k. It follows that

g(n) | b(n)b(n + 1) . . . b(n + k − 1), (2.7)

g(n) | a(n − 1)a(n − 2) . . . a(n − k), (2.8)

for all large enough k. Therefore
g(n) | Gk(n),

for all large enough k. The rest of the proof follows when k goes to infinity in this equation
and by Theorem 2.1.

The next step is simply to set

g(n) = Gko+1(n) (2.9)

in equation (2.6) as in the GFF algorithm of Paule. If equation (2.6) can be solved for
f ∈ K[n], then

zn =
f(n)

g(n)
tn

is a hypergeometric solution of (1.1); Otherwise no hypergeometric solution of (1.1) exists.
Note that the solution f(n) may not be coprime to g(n). However, it is clear that this does
not affect the solution of y(n). Indeed, the polynomials f(n) and g(n) can be recovered from
the solution of y(n) after dividing the greatest common factors.
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Algorithm 2.3.
INPUT: r(n) ∈ K(n) such that tn+1/tn = r(n) for large enough n in N.

OUTPUT: a hypergeometric solution zn of (1.1) if it exists, otherwise “no hypergeometric

solution of (1.1) exists”.

(1) Decompose r(n) into a/b where a, b are two relatively prime polynomials.

(2) Compute k0 as in (2.1).

(3) If k0 ≥ 0 then compute g(n) = Gko+1(n), where Gk(n) is defined as in (2.2), otherwise

g(n) = 1.

(4) If equation (2.6) can be solved for f ∈ K[n] then return zn = f(n)
g(n) tn; Otherwise return

“no hypergeometric solution of (1.1) exists”.

Let us take an example from [15]:

Example 2.4. Let tn = (4n + 1) · n!
(2n+1)! , then

r(n) =
tn+1

tn
=

4n + 5

2(4n + 1)(2n + 3)
.

Hence a(n) = 4n + 5, b(n) = 2(4n + 1)(2n + 3) and then k0 = 0. Note that for all k > k0,

equation (2.3) is satisfied. From (2.9), g(n) = n + 1
4 . By (2.6), f(n) is a polynomial which

satisfies

2f(n + 1) − 4(2n + 3)f(n) = (2n + 3)(4n + 1).

The polynomial f(n) = − 1
2(2n + 1) is a solution of this equation. Therefore,

zn =
f(n)

g(n)
tn = −2

n!

(2n)!
.

We remark that the argument for the relations (2.7) and (2.8) is used by Petkovšek [13].
Moreover, the products on the right hand sides of (2.7) and (2.8) can be written in the
notation of rising or falling factorials as introduced by Paule [11].

3 Connections to Gosper’s and Abramov’s Algorithms

We will show how Theorem 2.2 is related to Gosper’s algorithm and Abramov’s algorithm
for finding rational solutions of linear difference equations with polynomial coefficients [3].

Abramov’s Algorithm (general order d): Consider the difference equation

pd(n)y(n + d) + . . . + p0(n)y(n) = p(n) (3.1)

with given p0(n), p1(n), . . . , pd(n), p(n) ∈ K[n] such that p0 and pd are nonzero. Abramov
gave the following algorithm to compute a universal denominator G(n) for (3.1): Define

N = dis(pd(n − d), p0(n)) = max{k ∈ N | deg gcd(pd(n − d), p0(n + k)) ≥ 1}. (3.2)
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If N = −1 set G(n) = 1, i.e., in this case all rational solutions are polynomials. If N ≥ 0,
define

AN+1(n) = pd(n − d), BN+1(n) = p0(n), (3.3)

and for i = N down to i = 0 do:

di(n) = gcd(Ai+1(n), Bi+1(n + i)), (3.4)

Ai(n) =
Ai+1(n)

di(n)
and Bi(n) =

Bi+1(n)

di(n − i)
. (3.5)

If we use the notation of the falling factorial of a polynomial introduced in [11] by

[f(x)]k = f(x)f(x − 1) · · · f(x − k + 1),

then Abramov’s universal denominator of (3.1) can be written as

G(n) = [d0(n)]1[d1(n)]2 · · · [dN (n)]N+1. (3.6)

There is also an explicit formula for Abramov’s universal denominator (3.6), namely,

G(n) = gcd([p0(n + N)]N+1, [pd(n − d)]N+1). (3.7)

It can be seen that (3.6) is equivalent to Theorem 3 in Abramov-Petkovšek-Ryabenko [1]. A
generalized form of (3.7) can be found in Barkatou [5]. For completeness, we give a proof of
the fact that the presentations (3.6) and (3.7) indeed coincide with each other. To this end
we will follow the survey of Weixlbaumer [16].

First of all, based on the definition of N and the fact that Ai |Ai+1 and Bi |Bi+1, it
follows that for 0 ≤ i ≤ N + 1, we have

gcd(Ai(n), Bi(n + k)) = 1 for all k > N. (3.8)

Moreover, from (3.4) and (3.5), for 0 ≤ i ≤ N it follows that

gcd(Aj(n), Bj(n + i)) = 1 for 0 ≤ j ≤ i. (3.9)

Therefore,

G(n) = gcd([p0(n + N)]N+1, [pd(n − d)]N+1)

= gcd([BN+1(n + N)]N+1, [AN+1(n)]N+1)

= gcd

(

[

BN+1(n + N)

dN (n)

]N+1

,

[

AN+1(n)

dN (n)

]N+1
)

· [dN (n)]N+1

= [dN (n)]N+1 · gcd([BN (n + N)]N+1, [AN (n)]N+1).

Observe that

gcd(BN (n + N), [AN (n)]N+1)

= gcd(BN (n + N), AN (n)) [by (3.8)]

= 1, [by (3.9)]
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and similarly,
gcd([BN (n + N − 1)]N , AN (n − N)) = 1.

Consequently,

gcd([BN (n + N)]N+1, [AN (n)]N+1) = gcd([BN (n + N − 1)]N , [AN (n)]N ).

In the same manner one can successively split off the factors

[dN−1(n)]N , . . . , [d0(n)]1

until one arrives at (3.6), which completes the proof of the equality of (3.6) and (3.7).

Next we remark that Theorem 2.2 follows from Abramov’s algorithm, strictly speaking,
the universal denominator given by Abbramov’s algorithm. Equation (2.4) is equivalent to

a(n)y(n + 1) − b(n)y(n) = b(n), (3.10)

which is (3.1) with d = 1, p1(n) = a(n), p0(n) = −b(n), and p(n) = b(n). From (3.7),
Abramov’s algorithm gives the following universal denominator of (3.10)

G(n) = gcd([a(n − 1)]N+1, [b(n + N)]N+1). (3.11)

where N = k0 by (2.1). Using (2.2) we have that G(n) = Gk0+1(n), hence Theorem 2.2
determines the same universal denominator as Abramov’s algorithm.

Next we show that Abramov’s algorithm delivers a Gosper representation for r(n) =
tn+1/tn if r(n) = a(n)/b(n) is the reduced rational representation of r(n). From (3.5) we
obtain that a(n − 1) = AN+1(n) = dN (n)AN (n), and by iteration,

a(n) = d0(n + 1) d1(n + 1) . . . dN (n + 1) A0(n + 1). (3.12)

Analogously, (3.5) implies that

b(n) = −d0(n) d1(n − 1) . . . dN (n − N) B0(n). (3.13)

Consequently, in view of representation (3.6) for G(n), one obtains that

a(n)

b(n)
= −

G(n + 1)

G(n)

A0(n + 1)

B0(n)
. (3.14)

Note that in (3.10) w.l.o.g. we can assume that gcd(a(n), b(n)) = 1, which then implies

gcd(A0(n + 1), B0(n)) = 1. (3.15)

But more is true. Namely, by (3.9)

gcd(A0(n + 1), B0(n + i + 1)) = 1 for 0 ≤ i ≤ N,

i.e.,
gcd(A0(n + 1), B0(n + i)) = 1 for 1 ≤ i ≤ N + 1, (3.16)

and by (3.8),
gcd(A0(n + 1), B0(n + k + 1)) = 1 for all k > N,
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i.e.,
gcd(A0(n + 1), B0(n + k)) = 1 for all k > N + 1. (3.17)

Finally, combining (3.15), (3.16) and (3.17) into one condition results in

gcd(A0(n + 1), B0(n + h)) = 1 for all h ≥ 0. (3.18)

Hence the right hand side of (3.14) is a Gosper representation for a(n)/b(n).

Example 3.1. Let tn = (n+2)
n! , then

r(n) =
tn+1

tn
=

a(n)

b(n)
,

where a(n) = n + 3, b(n) = (n + 1)(n + 2). From Abramov’s algorithm, we have N = 1.
By using Abramov’s algorithm with AN+1(n) = A2(n) = a(n − 1) = n + 2 and BN+1(n) =
B2(n) = b(n) = (n + 1)(n + 2), we obtain that A0(n) = 1, B0(n) = n + 2, and the universal

denominator G(n) = (n + 1)(n + 2). Note that

gcd(G(n + 1), B0(n)) = n + 2.

This means that the Gosper representation (3.14) in general is not the GP representation for

a(n)/b(n).

As explained in Paule [11], also the GP algorithm [13] for finding a GP representation of
r(n) = a(n)/b(n) computes a universal denominator for (3.10), namely as follows.

Petkovšek’s GP Algorithm: Compute N as in Abramov’s algorithm; i.e., N = k0 as in
(3.11). If N = −1 set u(n) = 1. If N ≥ 0 define

a0(n) = a(n), b0(n) = b(n), (3.19)

and for i = 1 up to i = N + 1 do:

δi(n) = gcd(ai−1(n), bi−1(n + i)), (3.20)

ai(n) =
ai−1(n)

δi(n)
and bi(n) =

bi−1(n)

δi(n − i)
. (3.21)

This determines a universal denominator by setting

u(n) = [δ1(n − 1)]1[δ2(n − 1)]2 · · · [δN+1(n − 1)]N+1 . (3.22)

Note that this algorithm essentially consists in running the loop in Abramov’s algorithm in
the REVERSE direction. (Note that also its initialization is slightly different, namely starting
with the pair (a(n), b(n)) instead of (a(n − 1), b(n))).

Finally, as above, from (3.21) and by using (3.22) one obtains that

a(n)

b(n)
=

u(n + 1)

u(n)

aN+1(n)

bN+1(n)
. (3.23)
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Petkovšek’s algorithm is designed in such a way that (3.23) is not only a Gosper represen-
tation, but also a GP representation for a(n)/b(n); see [13], [15], and also [11]. This means
that besides

gcd(aN+1(n), bN+1(n + h)) = 1, for all h ≥ 0. (3.24)

we also have that
gcd(u(n + 1), bN+1(n)) = 1, (3.25)

and
gcd(u(n), aN+1(n)) = 1. (3.26)

From (3.14) and (3.23) we get

u(n + 1)

u(n)

aN+1(n)

bN+1(n)
= −

G(n + 1)

G(n)

A0(n + 1)

B0(n)
. (3.27)

By Lemma 5.3.1 (see [15], p.82), we obtain that

u(n) | G(n),

which implies that the universal denominator given by GP algorithm is a factor of the uni-
versal denominator given by Abramov’s algorithm.

4 Rational Solutions of Linear Difference Equations

In this section we show how to deduce the explicit formula (3.7) for Abramov’s universal
denominator by using the convergence argument.

Theorem 4.1. Let p0(n) and pd(n) be two nonzero polynomials in n, and let N be defined

as in (3.2). Put

Gk(n) = gcd





k−1
∏

j=0

p0(n + j),

k−1
∏

j=0

pd(n − d − j)



 . (4.1)

Then the sequence G1(n), G2(n), . . . converges to GN+1(n).

Proof. For all k > N we have

gcd(p0(n), pd(n − d − k)) = · · · = gcd(p0(n + k), pd(n − d − k)) = 1. (4.2)

Note that

Gk+1(n) = gcd





k
∏

j=0

p0(n + j),

k
∏

j=0

pd(n − d − j)



 .

This implies that
Gk(n) = Gk+1(n),

for all k > N . Moreover, one sees that once (4.2) is satisfied for k > N , it is also satisfied for
k + 1. It follows that

Gk(n) = Gk+1(n) = Gk+2(n) = · · · ,
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for all k > N , and this completes the proof.

By using the convergence property of the sequence Gk(n), we can obtain the explicit
formula (3.7) for Abramov’s universal denominator. Our proof requires only lcm and gcd
computations.

Theorem 4.2. Given a linear difference equation

d
∑

m=0

pm(n)y(n + m) = p(n), (4.3)

where p0(n), p1(n), . . . , pd(n), p(n) ∈ K[n] are given polynomials such that p0(n) 6= 0, pd(n) 6=
0. Let f(n)/g(n) be the reduced rational representation of y(n), and N be the dispersion of

pd(n − d) and p0(n). Then

G(n) = gcd([p0(n + N)]N+1, [pd(n − d)]N+1),

as given by (3.7), is a universal denominator of rational solutions of (4.3).

Proof. From (4.3) it follows that

d
∑

m=0

pm(n)
f(n + m)

g(n + m)
= p(n). (4.4)

Letting
l(n) = lcm(g(n + 1), g(n + 2), . . . , g(n + d)), (4.5)

and multiplying equation (4.4) by l(n)g(n), we obtain

d
∑

m=0

pm(n)f(n + m)
l(n)

g(n + m)
g(n) = p(n)l(n)g(n). (4.6)

From (4.5), we have the following divisibility conditions:

g(n + m) | l(n) for m = 1, 2, . . . , d.

Thus l(n)/g(n + m) are polynomials for m = 1, 2, . . . , d. From (4.6) we obtain

g(n) | p0(n) · lcm(g(n + 1), g(n + 2), . . . , g(n + d)). (4.7)

Similarly, multiplying equation (4.4) by l(n − 1)g(n + d) and then substituting n − d for n,
we obtain that

g(n) | pd(n − d) · lcm(g(n − 1), g(n − 2), . . . , g(n − d)). (4.8)

Shifting n by 1 in (4.7) yields

g(n + 1) | p0(n + 1) · lcm(g(n + 2), g(n + 3), . . . , g(n + d + 1)). (4.9)

Substituting (4.9) into (4.7) we see that g(n) divides

p0(n) · lcm(p0(n + 1) · lcm(g(n + 2), g(n + 3), . . . , g(n + d + 1)), g(n + 2), . . . , g(n + d)).
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So we can write

g(n) | p0(n)p0(n + 1) · lcm(g(n + 2), g(n + 3), . . . , g(n + d + 1)).

By induction we may derive for k ≥ 1,

g(n)
∣

∣

∣

k−1
∏

j=0

p0(n + j) · lcm(g(n + k), g(n + k + 1), . . . , g(n + k + d − 1)).

It follows that

g(n)
∣

∣

∣

k−1
∏

j=0

p0(n + j) · g(n + k)g(n + k + 1) . . . g(n + k + d − 1).

Since K has characteristic zero, there is a large enough k such that for any j ≥ k

gcd(g(n), g(n + j)) = 1.

It follows that

g(n)
∣

∣

∣

k−1
∏

j=0

p0(n + j),

for all large enough k. Analogously, from (4.8) we get

g(n)
∣

∣

∣

k−1
∏

j=0

pd(n − d − j),

for all large enough k. Therefore
g(n) | Gk(n),

for all large enough k, where Gk(n) is defined as in (4.1). Setting k to infinity in this equation,
by Theorem 4.1 we get

g(n) | GN+1(n) = gcd





N
∏

j=0

p0(n + j),
N
∏

j=0

pd(n − d − j)



 = G(n),

as desired.

From equation (4.4) we get

d
∑

m=0

pm(n) · f(n + m) ·

d
∏

j=0
j 6=m

g(n + j) = p(n) ·

d
∏

j=0

g(n + j). (4.10)

The next step is simply to set
g(n) = G(n),

in equation (4.10). If equation (4.10) can be solved for f ∈ K[n] then y(n) = f(n)/g(n) is a
solution of (4.3); otherwise (4.3) has no rational solutions.

11



Algorithm 4.3.
INPUT: nonzero polynomials p0(n), pd(n).
OUTPUT: a universal denominator g(n) of (4.3).

(1) Compute N = dis(pd(n − d), p0(n)) = max{k ∈ N | deg gcd(pd(n − d), p0(n + k)) ≥ 1}.

(2) If N ≥ 0 then compute g(n) = G(n), where G(n) is defined as in (3.7), otherwise

g(n) = 1.

Example 4.4. Find a rational solution of the equation

(n + 4)(2n + 1)(n + 2)y(n + 3) − (2n + 3)(n + 3)(n + 1)y(n + 2)

+n(n + 2)(2n − 3)y(n + 1) − (n − 1)(2n − 1)(n + 1)y(n) = 0. (4.11)

We have p0(n) = −(n − 1)(2n − 1)(n + 1), pd(n) = (n + 4)(2n + 1)(n + 2), then N = 2 and

then g(n) = (n − 1)(n + 1)n. By (4.10), f(n) is a polynomial which satisfies

n(2n + 1)(n + 2)(n + 1)f(n + 3) − n(2n + 3)(n + 3)(n + 1)f(n + 2) + n(2n − 3)

·(n + 3)(n + 2)f(n + 1) − (2n − 1)(n + 3)(n + 1)(n + 2)f(n) = 0.

The polynomial f(n) = Cn(2n − 3) is a solution of this equation. Thus

y(n) =
f(n)

g(n)
= C

(2n + 1)

(n2 − 1)

is a rational solution of (4.11).
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