
X3DOM AS CARRIER OF THE VIRTUAL HERITAGE

Yvonne Jung, Johannes Behr, Holger Graf

Fraunhofer Institut für Graphische Datenverarbeitung, Darmstadt, Germany
{yjung, jbehr, hgraf}@igd.fhg.de

Figure 1. With MeshLab exported model of an old statue visualized via X3DOM in the same HTML page on 3 different platforms:

iPhone App using WebKit extensions; Internet Explorer C++ based X3D plugin; WebGL-based implementation on Nokia N900.

KEY WORDS: 3D Internet, Declarative 3D in Web-Bowser, X3DOM, Virtual Heritage, Cultural Heritage, WebGL

ABSTRACT:

Virtual Museums (VM) are a new model of communication that aims at creating a personalized, immersive, and interactive way to

enhance our understanding of the world around us. The term “VM” is a short-cut that comprehends various types of digital creations.

One of the carriers for the communication of the virtual heritage at future internet level as de-facto standard is browser front-ends

presenting the content and assets of museums. A major driving technology for the documentation and presentation of heritage driven

media is real-time 3D content, thus imposing new strategies for a web inclusion. 3D content must become a first class web media

that can be created, modified, and shared in the same way as text, images, audio and video are handled on the web right now. A new

integration model based on a DOM integration into the web browsers‟ architecture opens up new possibilities for declarative 3D

content on the web and paves the way for new application scenarios for the virtual heritage at future internet level. With special

regards to the X3DOM project as enabling technology for declarative 3D in HTML, this paper describes application scenarios and

analyses its technological requirements for an efficient presentation and manipulation of virtual heritage assets on the web.

1. INTRODUCTION

The trend in using more multimedia technologies in our

everyday life has also an impact on digital heritage and its

overall value chain from digitisation, processing, and

presentation within VM platforms. Moreover, 3D interactive

content being the information carrier of the future, still requires

dedicated research efforts to enable a seamless process chain of

integration, composition and deployment. In recent years 3D

enhanced environments and 3D content are more and more seen

as a provider for the understanding of complex causalities,

advanced visual cognitive stimulus and easy interaction. Hence,

complex causalities within the VH (Virtual Heritage)

information space have to be adapted to the visitors‟ or users‟

cognitive capabilities allowing them personalised access to the

heritage. The combination of multiple media and diverse ICT

platforms have to actively support users in the understanding of

3D topics, providing new motivation in engaging the users

within either individual or collaborative digital culture

experiences. Thus, museums can make complex causalities

immersively available and leverage visitors or VH consumers to

a higher quality of experience of CH.

Coming along with 3D interactive content, we are facing a shift

in interaction and presentation paradigms for the access to the

Virtual Heritage. It still requires tremendous research activities

and we are facing several great challenges within information

pre-processing, concatenation and presentation being adaptively

supported by (de-facto) standard ICT solutions within the CH

(Cultural Heritage) domain. This encompasses hardware, e.g.

displays and its scalability, but also adaptive software solutions

to support a context change for interactive presentations with

the ultimate vision to “bridge the gap between heritage-driven

multi-media technologies and our natural environment”.

On the other side, the internet can be seen as one carrier of

future (learning) worlds in which socialising aspects combined

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

475

with motivating, easy to use, exhausting and understandable

information can be accessed, retrieved and refined. Connecting

modern rich media 3D technology with traditional web-based

environments, interesting new possibilities for self-regulated

and collaborative knowledge dissemination emerge (Jung,

2008). Here we need besides the acquisition and preparation of

heritage driven 3D content new methodologies and tools which

are able to comply with the requirements of highly dynamic

knowledge and information processing within its presentation.

This is required for several involved stakeholders, e.g. future

digital curators or non-professional visitors of the museum at

any age. New workflows for rich media content creation have to

be elaborated for enabling e.g. digital curators to easily prepare

and provide 3D heritage driven media on the web. Research

activities should therefore focus on how to produce and

elaborate sustainable and standardised solutions covering the

overall content preparation pipeline for 3D content on the web.

Building on the lessons learned in web technology and its

applications, we reflect on how to embed heritage driven

multiple media content into browser front-ends. Major attention

on the conceptual design has been devoted to:

 re-usable application environments allowing the

integration of standardised media archiving formats,

 extensibility with respect to the web browser as major

interoperable deployment platform,

 declarative heritage-driven 3D content for easy

authoring and content concatenation.

Thus, in this paper, we first review suitable techniques for the

web-based visualisation of heritage-driven objects before

presenting our solution. Nowadays, most 3D rendering systems

for web-based applications follow the traditional browser-

plugin-based approach, which has two major drawbacks. On the

one hand, plugins are not installed by default on most systems

and the user has to deal with security and incompatibility issues.

On the other hand, such systems define an application and event

model inside the plugin that is decoupled from the HTML

page's DOM content, thereby making the development of

dynamic web-based 3D content difficult.

2. RELATED WORK

Besides the aforementioned browser plugins, Java3D (Sun,

2007) – a scene-graph system that incorporates the VRML/X3D

(Web3D, 2008) design – was one of the first means for 3D in

the browser. However, it never really was utilized for the web

and today Java3D is no longer supported by Sun at all. The

open ISO standard X3D in contrast provides a portable format

and runtime for developing interactive 3D applications. X3D

evolved from the old VRML standard, describes an abstract

functional behaviour of time-based, interactive 3D multimedia

information, and provides lightweight components for storage,

retrieval and playback of real-time 3D graphics content that can

be embedded into any application (Web3D, 2008). The

geometric and graphical properties of a scene as well as its

behaviour are described by a scene-graph (Akenine-Möller et

al., 2008). Since X3D is based on a declarative document-based

design, it allows defining scene description and runtime

behaviour by simply editing XML without the need for dealing

with low-level C/C++ graphics APIs, which not only is of great

importance for efficient application development but also

directly allows its integration into a standard web page. Further,

using X3D means that all data are easily distributable and

sharable to others. Despite proprietary rendering systems that all

implement their own runtime behaviour, X3D allows

developing portable 3D applications.

The X3D specification (Web3D, 2008) includes various internal

and external APIs and has a web-browser integration model,

which allows running plugins inside a browser. Hence, there

exist several X3D players available as standalone software or as

browser plugin. The web browser holds the X3D scene

internally and the application developer can update and control

the content using the Scene Access Interface (SAI), which is

part of the standard and already defines an integration model for

DOM nodes as part of SAI (Web3D, 2009), though there is

currently no update or synchronization mechanism. To alleviate

these issues, with the X3DOM framework (Behr et al., 2009) a

DOM-based integration model for X3D and HTML5 was

presented to allow for a seamless integration of interactive 3D

content into HTML pages. The current implementation is

mainly based on WebGL (Khronos, 2010), but the architecture

also proposes a fallback model to allow for more powerful

rendering backends, too (Behr et al., 2010), which will be

explained in the next section. More information can be found

online at http://www.x3dom.org/.

To overcome the old plugin-model, Khronos promotes WebGL

as one solution for hardware accelerated 3D rendering in the

web. The imperative WebGL API (WebGL, 2010) is a

JavaScript (Crockford, 2008) binding for OpenGL ES 2.0

(Munshi et al., 2009) that runs inside a web browser, thereby

allowing for native 3D in the web. The very first WebGL

implementation was available in late September 2009 with a

Mozilla Firefox 3.7 pre-alpha build. Since then, most other

browsers like Apple WebKit, Google Chrome and Opera

(except Microsoft‟s IE) followed with WebGL-enabled

developer (and now beta) builds. By utilizing OpenGL ES 2.0

as basis, it was possible to define the WebGL specification in a

platform independent manner, since on the one hand OpenGL

2.1 (the current standard for desktop machines) is a superset of

ES 2.0. And on the other hand, most recent smartphones, like

the iPhone or the Nokia N900, already have chips being

conformant to that standard – even more, since the latest

firmware update early June 2010, the built-in web browser of

the Nokia N900 now also natively supports WebGL (and

thereby X3DOM – compare Figure 1).

WebGL (WebGL, 2010) describes an additional 3D rendering

context for the HTML5 <canvas> element (W3C, 2009a) by

exposing the rendering API via new JavaScript objects and

methods acting on the canvas object. The 3D rendering context

is then acquired via gl = canvas.getContext('webgl'). If the

returned gl object is defined and not null, the web browser

supports WebGL – in this case the gl object provides all API

calls. As mentioned, WebGL is based on the OpenGL ES 2.0

standard (Munshi et al., 2009), an OpenGL dialect that was

developed for embedded and portable devices such as mobile

phones with less powerful graphics chips. In contrast to

standard desktop OpenGL (Shreiner et al., 2006) it has no

support for the old fixed function pipeline (i.e., no matrix stack

etc.) but is instead completely based on GLSL shaders (Rost,

2006). Thereby it is comparable to the OpenGL 3.x/4.x standard

with the exception that more advanced features like transform

feedback or geometry shaders that require rather recent GPUs

are not supported. Another drawback is the fact that the web-

developer has to deal with low-level graphics concepts (maths,

GLSL-shaders, attribute binding, and so on). Moreover,

JavaScript scene housekeeping can soon lead to performance

issues, and there is still no uniform notion of metadata or

semantics for the content possible.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

476

http://www.x3dom.org/

During the last year, WebGL-based libraries such as WebGLU

(DeLillo, 2009), which mimics the old OpenGL fixed-function

pipeline by providing appropriate concepts, emerged as well as

rendering frameworks building on top of WebGL by providing

a JavaScript-based API. For instance GLGE (Brunt, 2010) is a

scene-graph system that masks the low-level graphics API calls

of WebGL by providing a procedural programming interface.

Likewise, SpiderGL (Di Benedetto et al., 2010) provides

algorithms for 3D graphics, but on a lower level of abstraction

and without special structures like the scene-graph. These

libraries are comparable to typical graphics engines as well as to

other JavaScript libraries like jQuery (cp. http://jquery.com/),

but none of them seamlessly integrates the 3D content into the

web page in a declarative way nor do they connect the HTML

DOM tree to the 3D content. In this regard, the aforementioned

jQuery aims at simplifying HTML document traversing, event

handling, and Ajax interactions, thereby easing the development

of interactive web applications in general. However, using

libraries like SpiderGL forces the web developer to learn new

APIs as well as graphics concepts. But when considering that

the Document Object Model (DOM) of a web page already is a

declarative 2D scene-graph of the web page, it seems natural to

directly utilize and extend the well-known DOM as scene-graph

and API also for 3D content.

3. GETTING DECLARATIVE (X)3D INTO HTML5

Generally spoken, the open source X3DOM framework and

runtime was built to support the ongoing discussion in both, the

Web3D and W3C communities, of how an integration of

HTML5 and declarative 3D content could look like, and allows

including X3D (Web3D, 2008) elements directly as part of an

HTML5 DOM tree (Behr et al., 2009; Behr et al., 2010). The

proposed model thereby follows the original W3C suggestion to

use X3D for declarative 3D content in HTML5 (W3C, 2009b):

“Embedding 3D imagery into XHTML documents is the domain

of X3D, or technologies based on X3D that are namespace-

aware”. Figure 2 relates the concepts of X3DOM to SVG,

Canvas and WebGL.

Figure 2. SVG, Canvas, WebGL and X3DOM relation.

3.1 DOM Integration

In contrast to other approaches, X3DOM integrates 3D content

into the browser without the need to forge new concepts, but

utilizes today's web standards and techniques, namely HTML,

CSS, Ajax, JavaScript and DOM scripting. Figure 3 shows a

simple example, where a 3D box is embedded into the 2D DOM

tree using X3DOM. Though HTML allows declarative content

description already for years, this is currently only possible for

textual and 2D multimedia information.

Hence, the goal is to have a declarative, open, and human-

readable 3D scene-graph embedded in the HTML DOM, which

extends the well-known DOM interfaces only where necessary,

and which thereby allows the application developer to access

and manipulate the 3D content by only adding, removing or

changing the DOM elements via standard DOM scripting – just

as it is nowadays done with standard HTML elements like

<div>, , or <canvas> and their corresponding

CSS styles. Thus, no specific plugins or plugin interfaces like

the SAI (Web3D, 2009) are needed, since the well-known and

excellently documented JavaScript and DOM infrastructure are

utilized for declarative content design. Obviously, this seamless

integration of 3D contents in the web browser integrates well

with common web techniques such as DHTML and Ajax.

Furthermore, semantics integration can be achieved with the

help of the X3D metadata concept for creating mash-ups (i.e. a

recombination of existing contents) and the like or for being

able to index and search 3D content.

Figure 3. Simple example showing how the 3D content is

declaratively embedded into an HTML page using X3DOM.

3.2 Interaction and Events

Most visible HTML tags can react to mouse events, if an event

handler was registered. The latter is implemented either by

adding a handler function via element.addEventListener() or by

directly assigning it to the attribute that denotes the event type,

e.g. onclick. Standard HTML mouse events like “onclick”,

“onmouseover”, or “onmousemove” are also supported for 3D

objects alike. Within the X3DOM system we also propose to

create a new 3DPickEvent type, which extends the W3C

MouseEvent IDL interface (W3C, 2000) to better support 3D

interaction. The new interface is defined like follows:

interface 3DPickEvent : MouseEvent {

 readonly attribute float worldX;

 readonly attribute float worldY;

 readonly attribute float worldZ;

 readonly attribute float localX;

 readonly attribute float localY;

 readonly attribute float localZ;

 readonly attribute float normalX;

 readonly attribute float normalY;

 readonly attribute float normalZ;

 readonly attribute float colorRed;

 readonly attribute float colorGreen;

 readonly attribute float colorBlue;

 readonly attribute float colorAlpha;

 readonly attribute float texCoordS;

 readonly attribute float texCoordT;

 readonly attribute float texCoordR;

 object getMeshPickData (in DOMString vertexProp);

};

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

477

http://jquery.com/

Figure 4. Three examples of on-site mobile Augmented Reality (AR) Cultural Heritage applications.

This allows the developer to use the 2D attribute (e.g. screenX)

and/ or the 3D attributes (e.g. worldX or localX) if the vertex

semantics are given appropriately (in this case the positions).

The getMeshPickData() method additionally can be used to

access generic vertex data. This way, the 2D/ 3D event now

bubbles, as expected from standard HTML events, through the

DOM tree and can be combined with e.g. a typical 2D event on

the X3D element as is shown in the following code fragment:

<shape>

 <appearance>

 <material id="mat" diffuseColor="red"></material>

 </appearance>

 <box onclick="document.getElementById('mat').

 setAttribute('diffuseColor', 'green');">

 </box>

</shape>

3.3 Animations

There are several possibilities to animate virtual objects (e.g. for

showing an ancient device in action etc.), ranging from

updating attributes in a script every frame over standard X3D

interpolator nodes up to using CSS-3D-Transforms und CSS-

Animations, which are currently given as W3C working draft

and only implemented in WebKit based web-browsers such as

Apple Safari and Google Chrome. While X3D interpolators are

supported by current Digital Content Creation (DCC) tools – an

important point when processing the raw data and exporting to

other formats – and are also able to animate vertex data (e.g.

coordinates or colors), CSS animations are easily accessible

using standard web techniques. The following code fragment

shows an example on how to use CSS-3D-Transforms to update

Transform nodes for animating their child nodes.

<style type="text/css">

 #trans {

 -webkit-animation: spin 8s infinite linear;

 }

 @-webkit-keyframes spin {

 from { -webkit-transform: rotateY(0); }

 to { -webkit-transform: rotateY(360deg); }

 }

</style>

...

 <transform id="trans">

 <transform

 style="-webkit-transform: rotateY(45deg);">

 ...

 </transform>

 </transform>

...

3.4 HTML Profile and Render Backend

As mentioned, X3DOM is based upon the concepts of X3D,

which defines several profiles, such as the interchange profile,

that can be used as a 3D data format, and the immersive profile,

which also defines means for runtime and behaviour control

(Web3D, 2008). However, these profiles are not suitable for the

integration into the HTML DOM due to several reasons, which

are discussed in more detail in (Behr et al., 2009; Behr et al.,

2010). Thus, we propose an additional “HTML” profile that

basically reduces X3D to a 3D visualization component for

HTML5 just like SVG for 2D (cf. Figure 2), while all

interaction concepts are taken from standard DOM scripting. As

also mentioned in (Behr et al., 2010), the general goal here is to

utilize HTML, JavaScript, and CSS for scripting and interaction

in order to reduce complexity and implementation effort.

The proposed “HTML” profile extends the X3D “Interchange”

profile and consists of a full runtime with animations,

navigation and asynchronous data fetching. On the one hand the

latter is used for media data like and <video>, which

can directly be used to e.g. parameterize Texture nodes. On the

other hand this is used for partitioning the scene data via an

XMLHttpRequest (XHR) within Inline nodes, since 3D data

can soon get very big, especially in the Virtual Heritage domain

as shown in Figure 7 (bottom row). However, X3D Script

nodes, Protos, and high-level pointing sensor nodes are not

supported, whereas explicit (GLSL) shader materials as well as

declarative materials – e.g. via the new CommonSurfaceShader

node presented in (Schwenk et al., 2010) – are supported both.

While the concept targets at native browser support, the system

design now supports different rendering and synchronization

backends through a powerful fallback model that matches

existing backends and content profiles (compare Figure 5). The

flexible open-source implementation of X3DOM already

provides various runtime/ rendering backends today. These

intermediate solutions are implemented through a WebGL-layer

(Behr et al., 2010), which supports WebGL, X3D/ SAI plugins,

and native implementations, since using WebGL is slower due

to JavaScript and not yet supported by all browsers. The current

release of X3DOM supports a native implementation (that is

closed source and only for the iOS platform right now),

WebGL, and partially X3D/ SAI plugins (like the InstantPlayer

ActiveX plugin that can be downloaded from

http://www.instantreality.org/). A comparison of these backends

is shown in Figure 1. Flash as an additional backend (see Figure

5) will be supported as soon as its 3D API layer (codename

“Molehill”) is available.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

478

http://www.instantreality.org/

Figure 5. Fallback model: depending on the X3DOM profile

and current browser environment, the system automatically

chooses the appropriate backend rendering system.

4. WORKFLOW FOR THE HERITAGE ON THE WEB

Besides presentation, i.e. the rendering and user interface part,

workflow issues must be considered, too, including tools and

tool-chains as well as content and media authoring. While

declarative representations help reducing the application

development and maintenance efforts, the content first needs to

be generated somehow. In general X3DOM is extremely helpful

for application- or domain-specific production pipelines. First

of all, the utilized format, namely X3D (Web3D, 2008), is an

open ISO standard that is a superset of the older VRML ISO

standard and which is supported by a large and growing number

of Digital Content Creation (DCC) tools. Second, the X3DOM

project itself provides a bundle of online- and offline-tools (e.g.

plugins and re-coder, see Figure 6) to ease the production and

processing of content items. Besides all these techniques the

project provides also software components, tutorials, and

examples on the web page, which explore and explain how to

get the data from a specific DCC Tool, e.g. Maya or 3ds Max

(Autodesk, 2011), into your 3D web application.

In virtual heritage, MeshLab (http://meshlab.sourceforge.net/) is

an important tool to process and manipulate mesh datasets,

which in addition can already export the 3D data into the X3D

format, including textures, vertex colors, etc. However, when

dealing with 3D scans the vast amount of data is an issue for

several reasons. WebGL only supports 64k indices per mesh

and therefore large models have to be split. X3DOM splits this

automatically if necessary, but besides the memory footprint,

loading the data, especially over the web, still takes time.

Hence, data reduction should be considered as well. While

progressive meshes and similar level-of-detail techniques are

applicable here, the original set of normals and colors of the

high-res mesh must be conserved for appropriate visual quality,

wherefore normal and color maps can be used.

Another issue in the content pipeline one need to think of is

annotations and metadata processing. A possible scenario here

is 3D content that shall be annotated with metadata to allow for

interlinking and concatenation with further information and

additional content like HTML sites, multimedia, etc.

Figure 6. Interactive tools to export and recode data for

X3DOM. MeshLab, as one major VH tool, can export X3D data

directly, which can be used without further manual adoptions.

5. APPLICATION SCENARIOS AND RESULTS

There already exist several applications that demonstrate the

capabilities of X3DOM. Some examples are discussed next in

the context of typical scenarios and uses cases.

5.1 Primitive Exploration

One of the most basic use cases one can think of here is the

examination of individual objects of the virtual heritage. In a

typical scenario the 3D object is presented to the user such that

he or she can examine it from all directions by simply moving

and rotating it (or the virtual camera respectively) around with

the mouse or a similar device. Concerning visualization this is a

rather simple scenario in that the 3D scene itself keeps static.

Here, Figure 7 shows some screenshots of the web-based

visualization of Cultural Heritage objects provided by the V-

MusT consortium. As can be seen, all geometric 3D objects are

visualized in the web-browser by simply utilizing our open-

source X3DOM framework for rendering the 3D content in real-

time. This is especially notable in that this is still almost raw

data stemming from 3D Laser scans, which is neither reduced

nor somehow otherwise prepared for real-time rendering.

Additionally, by extending the web page with some standard

JavaScript code for DOM scripting – where appropriate – the

user can also interactively manipulate the data using standard

2D GUI elements (e.g. buttons and sliders) as for instance

provided by the aforementioned JavaScript library jQuery. This

can be useful to vertically or horizontally translate a clipping

plane in order to cut away stratigraphic sequences and the like.

Furthermore, it is also possible to allow the user to directly

interact with an object by clicking on a certain point of interest

etc., which then for instance triggers a popup HTML element

containing some additional information. More concepts, though

in the context of e-learning, are presented in (Jung, 2008).

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

479

http://meshlab.sourceforge.net/

Figure 7. Virtual Heritage objects visualized with X3DOM. Top

row: a reconstructed 3D capitel of an abbey that can be freely

examined from all directions. Bottom row: the statue to the left

is a 63 MB 3D scan and the front of the church shown to the

right has 32 MB of vertex data.

Figure 8. Coform3D – a line-up of multiple scanned 3D objects

integrated with X3DOM and JavaScript into HTML.

Another, a bit more intricate application shows a line-up of 3D

objects, as it is done with images or videos today. Here, 3D is

used as just another medium alike. The 3D Gallery developed

within the 3D-COFORM project (http://www.3dcoform.eu/)

shows a line-up of over 30 virtual objects. Historian vases and

statues were scanned with a 3D scanner. This allows not only a

digital conservation of ancient artefacts but offers the possibility

for convenient comparison, too. The results have been exported

into the X3D file format. The application framework consists of

a HTML page with a table grid with 36 cells, each filled with a

thumbnail image of a virtual historical object. As soon as the

user clicks on a thumbnail, a second layer pops up inside our

HTML file showing the reconstructed object in 3D. The user

can now closer examine it or he can close the layer to return to

the grid again. Technically, we are opening a subpage with the

declared X3D content which is rendered by X3DOM. The

subpage is loaded inside an HTML iFrame within each layer

inside the main page. Figure 8 shows a screenshot.

5.2 Dynamic (Walkthrough) Scenarios

Other possible scenarios in CH embrace walkthrough worlds

and the inspection of larger models like ancient city models and

similar territories in virtual archaeology. With the Cathedral of

Siena (cp. Figure 9) a classical guided walkthrough scenario is

described in (Behr et al., 2001). Generally, floor plans (Figure

9, right) are a commonly used metaphor for navigation. This is

for two reasons: for one thing the plan allows the user to build a

mental model of the environment, and for another it prevents

him from getting lost in 3D space. In this regard, camera paths

with predefined animations are another frequently used means

for guided navigation. In X3DOM camera animations can be

easily accomplished by using one of the aforementioned

animation methods, like for instance X3D interpolators.

Figure 9.The famous Digital Cathedral of Siena (cf. Behr et al.,

2001): the left image shows the rendered 3D view of the

cathedral’s interior and a virtual guide, and the right image

shows the 2D user interface.

Alternatively, the scene author can only define some interesting

views and let the system interpolate between them. The

resulting smooth camera animations are implemented following

(Alexa, 2002). These animations are automatically generated if

one binds the camera, e.g. when switching between different

Viewpoint nodes (or cameras), which are part of the content.

The same method is also used to calculate the animation-path if

the current view is being resetted or if the current camera-view

shall be moved to the „show all‟ position.

As explained previously, it is furthermore possible to freely

navigate within the 3D scene in order to closely examine all

geometric objects. This is done using the “examine” navigation

mode. Besides this, the user can also walk or fly through e.g. a

reconstructed city model or an old building as shown in Figure

9. Like every X3D runtime, also the current WebGL-/ JS-based

implementation of X3DOM provides some generic interaction

and navigation methods. As already outlined, interactive objects

are handled by HTML-like events, while navigation can either

be user-defined or controlled using specific predefined modes.

Therefore, we added all standard X3D navigation modes, i.e.

“examine”, “walk”, “fly” and “lookAt”. The content creator is

free to activate them, for instance directly in the X3D(OM) code

with <navigationInfo type=’walk’>, or to alternatively write his

own application-specific navigation code. In the WebGL-based

implementation the modes use the fast picking code (required

for checking front and floor collisions) based on rendering the

required information into a helper buffer as described in (Behr

et al., 2010), which performs well even for larger worlds.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

480

http://www.3dcoform.eu/

5.3 (Mobile) On-Site AR Scenarios

Figure 4 shows some examples of on-site mobile Augmented

Reality CH applications. AR as a rapidly emerging technology

combined with the ubiquitous computing power of modern

mobile devices means having the desired information in ones

pocket. With the help of the video-see-through effect the

information – such as 2D images from former times as shown in

Figure 4 (right) or the 3D reconstruction of an old temple as

shown in Figure 10, which shows some results from

Archeoguide (cf. e.g. Vlahakis et al., 2002) – can be

superimposed onto the video image, or the real world

respectively, by using computer-vision-based tracking

techniques. Archeoguide is an example of an outdoor AR

system, that utilizes X3D for content description and runtime

behaviour, whereas the whole application logic is written in

JavaScript. The X3D scene consists of three different layers: the

video in the background, the 3D reconstruction of a temple that

does not exist anymore, and the user interface. For being able to

realize both, the tracking as well as the rendering part, the

aforementioned Mixed Reality framework Instant Reality is

used as basis.

Figure 10. Archeoguide – example of an outdoor AR system

(note the virtual temples and additional information that is

rendered on top of the real scene, where only ruines are left).

In this context the term Mixed Reality means to be able to bring

together (web-) content and location-based information directly

on site. Especially when producing content for (mobile) MR

applications, the unification of 2D and 3D media development

is an essential aspect. Other important factors for authoring and

rapid application development are declarative content

description, flexible content in general (not only for the cultural

heritage domain, but also for the industry etc.), and

interoperability – i.e., write once, run anywhere (web/ desktop/

mobile). In X3DOM this is achieved by utilizing the well-

known JavaScript and DOM infrastructure also for 3D in order

to bring together both, open architectures and declarative

content design known from web design as well as “old-school”

imperative approaches known from game engine development.

The app-independent visualization furthermore enables context

sensitive and on-demand information retrieval, which is even

more of interest for distributed content development using

available web standards. But when limiting oneself to the pure

WebGL-based JS layer of X3DOM, at the moment special apps

for handling the tracking part are still needed (e.g. by using

Flash or the InstantPlayer plugin), because access to the camera

image data is required but not yet supported in HTML5.

However, with the recently proposed <device> tag even this

might change in the near future.

6. CONCLUSIONS

We have presented a scalable framework for the HTML/X3D

integration, which on the one hand provides a single declarative

developer interface, that is based on current web standards, and

which on the other supports various backends through a

powerful fallback model for runtime and rendering modules.

This includes native browser implementations and plugins for

X3D as well as a purely WebGL-based scene-graph – hence

easing the deployment of 3D content and bringing it back to the

user's desktop or mobile device.

The benefit of our proposed model is the tight integration of

declarative (X)3D content directly into the HTML DOM tree

without the need to forge new concepts, but by using today's

(web) standards. Similar to images or videos today, 3D objects

become just another medium alike. As a thin layer between

HTML and X3D we deliver a connecting architecture that

employs well-known standards on both sides, such as the CSS

integration, thereby easing the users' access. Even more, by

building upon appropriate standards, we also give a perspective

towards more sustainable 3D contents.

7. ACKNOWLEDGEMENTS

Thanks to Daniel Pletinckx and VisualDimension for providing

some of the 3D assets and models.

8. REFERENCES

Akenine-Möller, T., Haines, E., Hoffmann, N., 2008. Real-Time

Rendering. AK Peters, Wellesley, MA, 3rd edition.

Alexa, M., 2002. Linear combination of transformations. In

Proc. SIGGRAPH '02, ACM, New York, USA, pp. 380-387.

Autodesk, 2011. Autodesk 3ds Max 2011.

http://area.autodesk.com/3dsmax2011/features.

Behr, J., Fröhlich, T., Knöpfle, C., Kresse, W., Lutz, B.,

Reiners, D., Schöffel, F., 2001. The Digital Cathedral of Siena -

Innovative Concepts for Interactive and Immersive Presentation

of Cultural Heritage Sites. In Bearman, David (Ed.): Intl. CH

Informatics Meeting. Proceedings: CH and Technologies in the

3rd Millennium. Mailand, pp. 57-71.

Behr, J., Eschler, P., Jung, Y., Zöllner, M, 2009. X3DOM - a

DOM-based HTML5/ X3D integration model. In Stephen

Spencer, editor, Proceedings Web3D 2009: 14th Intl. Conf. on

3D Web Technology, New York, USA, ACM, pp. 127–135.

Behr, J., Jung, Y., Keil, J., Drevensek, T., Eschler, P., Zöllner,

M., Fellner, D., 2010. A scalable architecture for the HTML5/

X3D integration model X3DOM. In Stephen Spencer, editor,

Proceedings Web3D 2010: 15th Intl. Conference on 3D Web

Technology, New York, USA, ACM Press, pp. 185-194.

Di Benedetto, M., Ponchio, F., Ganovelli, F., Scopigno, R.,

2010. SpiderGL: a JavaScript 3D graphics library for next-

generation WWW. Web3D 2010, New York, USA, ACM Press,

pp. 165-174.

Jung, Y., 2008. Building Blocks for Virtual Learning

Environments. In Cunningham, S. (Ed.) et al.; Eurographics:

WSCG 2008, Communications Papers. Plzen, University of

West Bohemia, pp. 137-143.

Brunt, P., 2010. GLGE. http://www.glge.org/.

Crockford, D., 2008. JavaScript: The Good Parts. O‟Reilly,

Sebastopol, CA.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

481

DeLillo, B., 2009. WebGLU JavaScript library.

http://github.com/OneGeek/WebGLU.

Khronos, 2011. WebGL specification, working draft.

https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/do

c/spec/WebGL-spec.html.

Munshi, A., Ginsburg, D., Shreiner, D., 2009. OpenGL ES 2.0

Programming Guide. Addison-Wesley, Boston.

Rost, R., 2006. OpenGL Shading Language. Addison-Wesley,

Boston, 2nd edition.

Schwenk, K., Jung, Y., Behr, J., Fellner, D., 2010. A Modern

Declarative Surface Shader for X3D. In ACM SIGGRAPH:

Proceedings Web3D 2010: 15th Intl. Conference on 3D Web

Technology. New York, ACM Press, pp. 7-15.

Shreiner, D., Woo, M., Neider, J., Davis, T., 2006. OpenGL

Programming Guide. Addison-Wesley, Boston, 5th edition.

Sun, 2007. Java3d. https://java3d.dev.java.net/.

Vlahakis, V., Ioannidis, N., Karigiannis, J., Tsotros, M.,

Gounaris, M., Stricker, D., Gleue, T., Dähne, P., Almeida, L.,

2002. Archeoguide: An Augmented Reality Guide for

Archaeological Sites. In IEEE Computer Graphics and

Applications 22 (5), pp. 52-60.

W3C, 2009a. Html 5 specification, canvas section.

http://dev.w3.org/html5/spec/Overview.html#the-canvas-

element.

W3C, 2009b. Html 5 specification draft, declarative 3D scenes

section. http://www.w3.org/TR/2009/WD-html5-

20090212/no.html#declarative-3d-scenes.

W3C, 2000. Document Object Model Events.

http://www.w3.org/TR/DOM-Level-2-

Events/events.html#Events-MouseEvent.

Web3D, 2008. X3D. http://www.web3d.org/x3d/specifications/.

Web3D, 2009. Scene access interface (SAI).

http://www.web3d.org/x3d/specifications/ISOIEC-FDIS-19775-

2.2-X3D-SceneAccessInterface/.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W16, 2011
ISPRS Trento 2011 Workshop, 2-4 March 2011, Trento, Italy

482

