
AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING 
AIRBORNE FULL WAVEFORM LIDAR DATA

B. Hu *, D. Gumerov, J.-G. Wang

Dept. of Earth and Space Science and Engineering, York University, Toronto, ON, M3J1P3, Canada - (baoxin, damirg,
jgwang)@yorku.ca

Commission VI, WG VI/4

KEY WORDS:  Remote Sensing, full waveform LiDAR, DEM generation, Morphology, integration. 

ABSTRACT:

In this study, full waveform LiDAR data were exploited to improve the generation of a large-scale digital elevation model (DEM). 
Building on the methods of progressive generation of triangulation irregular network (TIN) model reported in the literature, we 
proposed an integrated approach. In this method, echo detection, terrain identification, and TIN generation were performed 
synergically and iteratively, instead of their separate determinations as in most DEM generation methods. This method started with a 
TIN model made up of terrain points detected using a morphological opening operation and a curve matching method. For any given 
TIN facet, the full waveforms of the return associated with the laser pulses interacting with this TIN facet were examined near the 
surface for any terrain echoes. The TIN was then updated using the newly detected terrain points. These processes were iterated until 
no new terrain points were identified. The developed method was tested on a data set collected by a Riegl LMS Q-560 scanner over a 
study area near Sault Ste. Marie, Ontario, Canada (463356N, 832518W). The results demonstrated that 30% more terrain points 
were identified under shrubs and trees using this integrated approach, compared with the commonly used Gaussian decomposition
method. The DEMs generated by the developed method exhibited more details in the terrain for two test sites than those obtained by 
using the TerraScan software.  

                                                                
* Corresponding author.  

1. INTRODUCTION

An accurate digital elevation model (DEM) is critical to many 
applications ranging from transportation planning, landform 
monitoring to forest and water resource management, etc. 
Although technologies, such as aerial photogrammetry, have 
been available in the past to generate DEMs, the use of airborne 
discrete LiDAR (Light Detection And Ranging) data 
revolutionizes the generation of the digital representation of a 
terrain surface in terms of accuracy, resolution, and cost. A 
discrete LiDAR instrument can record more than one echoes 
backscattered from a surface object, and measure its 3-D
coordinate together with on-board position and navigation 
sensors. Research indicates that the vertical accuracy of the 
DEM generated from LiDAR data can reach up to 15 cm for 
open, flat, and hard surface (Su and Bork, 2006). The accuracy 
tends to be deteriorated on the vegetated landscapes, such as 
those under shrubs and trees.

The increasing availability of the new generation small footprint 
full waveform airborne LiDAR system provides a good 
opportunity to improve the DEM generation. It is able to record 
the entire waveform of each received pulse. The shape of a 
waveform can be analyzed to achieve high multi-target
resolution and range accuracy (Chauve et al., 2007). In addition, 
the waveform parameters, such as pulse width and back scatter 
cross-section, can be used to improve the separation between 
terrain and vegetation, a crucial step in DEM generation
(Wagner et al., 2008). However, the classification of terrain 
points is very difficult in a dense natural forest using only 
waveform parameters (Wagner et al., 2008). Based on these 
findings, Lin and Mills (2009) proposed a novel routine to 
integrate the pulse width information into the progressive 

densification filter developed by Axelsson (2000), and this 
approach was demonstrated to be more effective to remove low 
vegetation points and be able to generate more accurate DEM, 
compared with the traditional methods. Nonetheless, in their 
method (Lin and Mills, 2009), pulse information needed to be 
derived based on the Gaussian decomposition method (Lin et al., 
2008, and Reitberger et al., 2008), before the integrated filter 
process. Weak echoes from the terrain may not be detected
using the Gaussian decomposition method (to be demonstrated 
in Section 3), but they are very important to increase DEM 
accuracy in densely vegetated terrain. As a result, in order to 
fully exploit the information in full waveform data and 
especially to detect weak returns backscattered by the bare 
terrain, an integrated approach was proposed in this study to 
progressively carry out echo detection, terrain points’
identification, and triangulation irregular network (TIN)
generation. 

2. FULL WAVEFORM DATA

The full waveform LiDAR data used in this study were acquired 
over a study area near Sault Ste. Marie, Ontario, Canada 
(463356N, 832518W) by a Riegl LMS Q-560 scanner at 
the flying height of 250 m above the mean terrain in July 2009.
The LiDAR data collection configuration resulted in a point 
density of about 20 point m-2. The nominal footprint is about 15
cm. The aerial imagery of the test site is shown in Figure 1 and 
it covers various natural and man-made objects including trees 
of various species, dense low-vegetation, and houses etc. The 
terrain itself varies from 220 to 410 m above the mean sea level. 
The full waveform data collected were first geo-referenced 
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using the on-board Global positioning and navigation system 
and the vertical accuracy of each sample point was about 15 cm.

Figure 1: The true color composite imagery of the test area. 
Sites A and B were used to evaluate the generated DEM. 

3. METHODS

3.1 The general idea

Before going into details with the developed methodology, we 
would like to demonstrate the problem in DEM generation that 
was solved in this study. Figure 2 shows a recorded full 
waveform of the returns by a tree and the underneath terrain
(blue and green dots). The red curve in Figure 2 is the result of 
fitting 8 Gaussian functions (Reitberger et al., 2008) to the 
observations. By examining the path of the emitted laser pulse, 
we noticed that the weak echo circled in pink was backscattered 
by the bare terrain under the tree. However it was not detected 
by the Gaussian decomposition method. On the other hand, if 
the Gaussian decomposition was constrained to only the pink 
circle interval (green dots), the weak terrain echo (circled in 
pink) can be detected. The red curve in Figure 2 was the 
Gaussian fitting result to the dots in green. It is worthy to 
mention that different numbers of Gaussian functions were 
fitted to the observations, but none of them could pick up the 
echo within the pink circle. In addition, due to noise in the 
recorded full waveform data, peaks with low intensity (weak 
echoes) are usually screened out by a pre-determined threshold 
in order to avoid over fitting.

Based on the experiment illustrated in Figure 2, it is clear that if 
we know where along the recorded full waveform to look for a
weak echo, we can find it. As a result, an integrated approach 
was proposed in this study to progressively carry out echo 
detection, terrain points’ identification, and DEM generation. It 
was built on the algorithms by Axelsson (2000) and Lin and 
Mills (2009), as mentioned in the “introduction”. The diagram 
of the developed method is shown in Figure 3. In this method, 
each full waveform was first decomposed into several discrete 
echoes using the Gaussian decomposition method (Reitberger et 
al., 2008). The information of the last echo including the 
original recorded data and the results from the Gaussian 
decomposition (such as the echo position and its width) were 
used to generate the terrain points.  In the second step of this 
method, a series of morphological opening operations were 
employed to estimate the dominant sizes of objects within the 
scene of interest based on the locations of the last returns and 
generate candidates of terrain points. These points were further 
classified into terrain and non-terrain points based on the width, 
intensity, and shape of the last returns. A TIN model was built 
based on the identified terrain points and then used to guide the

Figure 2: An example of a returned full waveform of a laser 
pulse passing through a tree (dots), the modelled one by fitting 
the summation of 8 Gaussian functions to whole waveform (red 
line). The circled (pink) echo was returned by the terrain and 
the blue curve was the result by fitting one Gaussian function to 
this echo.

detection of the weak echoes backscattered by the terrain but 
undetected by the Gaussian decomposition method. To do this, 
for any given TIN facet, the full waveforms of the returns 
associated with the pulses passing through this TIN facet were 
examined near the surface for any terrain echoes. This process 
was identified as “seeded Gaussian decomposition” in the 
diagram shown in Figure 3. The newly detected last returns 
were then input to the module “morphological filtering” for the 
next iteration together with the terrain points. These processes 
were iterated until no further terrain points were detected. In the 
following, the key steps in the proposed method will be 
described in details. 
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Figure 3: The diagram of the developed method

3.1 Morphological filtering

Identification of the initial terrain points is a critical step in the 
developed method (Figure 3). As in most of filters for terrain 
points, a user-identified or pre-determined neighbourhood was 
examined in Axelsson (2000) and Lin and Mills (2009) and the 
lowest points was treated as initial terrain points. In this study, 
the morphological opening operations (Soille, 1999) were used 
to automatically identify the dominant object sizes in the scene 
of interest, which served as the basis for the neighbourhood 
determination. Morphological operations are usually used for 
data in raster format (imagery). In this study, they were adapted 
for the LiDAR data points.

A series of disk structuring elements (SEs) with diameters from 
0.25 m to 12 m was employed in the opening operations and
resulted in corresponding opened data clouds. In each opened
data set, objects fully containing the corresponding SE were
retained, whereas smaller ones were sifted. For each pair of
consecutive opened data, the mean of their differences was 
calculated by using the mean of the opened data with the 
smaller SE size as the minuend. The result can be viewed as the 
first derivative of the opened data with the smaller SE size. The 
first derivatives of the opened data for the test site (excluding 
the final one) are shown in Figure 4. Many local minima can be 
observed in Figure 4. A local minimum would occur wherever 
there was a big difference in object sizes between the opened 
data with two adjacent SE sizes. Therefore, the first derivatives 
of the opened data can reveal the size distribution or the scale 
range of the objects in this scene. As indicated from Figure 4,
the range in sizes of the objects is wide and it contains multiple
dominant size groups smaller than 10 m in diameter. Viewing 
Figure 1, one can see that the smaller size groups in Figure 4 
may represent trees in various sizes, while the large objects, 
such as houses, form the large size group. 

Figure 4: The first derivative of the morphologically opened 
data revealing the dominant object sizes in the scene. 

Based on the results obtained in Figure 4, the circle with the 
diameter of 10 m was used as the neighbourhood of each 
LiDAR point (in term of its horizontal position). If a LiDAR 
point was the lowest in its neighbourhood, it was considered as 
a candidate for terrain points. It is worthy to mention that the 
size of neighbourhood would be changed from iteration to 
iteration. In this study, it was reduced to 0.75 m on the second 
iteration.

3.2 Identification of terrain points

All of the points identified through morphological filtering were 
classified into terrain and non-terrain points. Several terrain 
points selected on an open ground were used as training 
samples. The curve of the last return corresponding to each 
candidate terrain points was compared with that of training 
points. The similarity measure used in this study for the curve 
match was the spectral angle mapper (SAM) commonly used in
hyperspectral remote sensing. The initial ground points 
identified are shown in Figure 5. Comparing with the image 
shown in Figure 1, it is clear that all of the ground points are 
near roads, river banks, and on the open areas. 

Figure 5: The initial ground points identified.

3.3 Seeded Gaussian decomposition

Based on the initial ground points (Figure 5), a TIN model was 
built. For any facet on the built TIN model, all of the laser 
pulses transmitted through this facet were identified. The point 
where the identified laser pulse interacted with the facet was 
used as the seed for the seeded Gaussian decomposition. For 
example, one of laser pulses passing through the pink facet in 
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the TIN model, along with its full waveform return, is shown in 
Figure 6. For this laser pulse, three peaks were detected from its 
returns (stars) by the Gaussian decomposition method and they 
were apparently backscattered by a tree above the terrain. The 
red dashed line shows the location of the seed in the full 
waveform. The seeded Gaussian decomposition fit a Gaussian 
function near the seed. An echo (green curve) was detected. 

Figure 6: The full waveform of the return of a laser pulse 
passing through a facet in the initial TIN model. The stars are 
the peaks of the echoes detected by the Gaussian decomposition 
method. The red line shows the location of the seed used for the 
seeded Gaussian decomposition, and the green curve is the 
result by fitting one Gaussian function to the points near the 
seed. 

After the seeded Gaussian decomposition, a number of new 
candidates of terrain points were detected and they were input 
to the module of “morphological filtering” for the next iteration.

4. RESULTS

To clearly demonstrate the results, two sites (shown in Figure 1) 
were used as examples. Figures 7 and 8 also show the new 
terrain points identified after the first iteration of the integrated 
process for these two sites. It is clear from Figures 7 and 8 that 
the terrain points were increased by more than 30% using the 
integrated approach developed in this study. Comparing 
between these two sites, more new points were detected for Site 
B than for Site A.  As shown in Figure 1, Site B consists of 
deciduous shrubs and there are more gaps within each shrub 
where a laser pulse can pass through. On the other hand, Site A 
is dominated by trees. For some of the trees, the leaves or 
needles are very dense so that there are hardly any gaps within 
the crown. As a result, it is reasonable that few new points were 
identified.  

Figure 7: The initial terrain points (black crosses) detected from 
the Gaussian decomposition method (performed over the whole 
waveform) and the new terrain points (blue circles) added using 
the integrated approach developed in this study for Site A.

Figure 8: The initial terrain points (black crosses) detected from 
the Gaussian decomposition method (performed over the whole 
waveform) and the new terrain points (blue circles) added using 
the integrated approach developed in this for Site B.

The DEMs (in the raster format) of Sites A and B generated 
using all of the points in Figures 7 and 8 are shown in Figures 9 
and 10. For comparison, the DEMs produced by the software 
TerraScan (http://www.terrasolid.fi/) with the input values of 10 
m, 4.0 degree and 1.0 m for “max building size”, “iteration 
angle”, and ‘iteration distance” respectively, are also shown in 
Figures 9 and 10 as well. One can see from Figures 9 and 10 
that even though the DEMs generated by both methods were 
similar, more terrain details can be observed in the DEM by the 
proposed method. This is because more terrain points were 
detected by the proposed method. Some of the added terrain
points were lower than the initial ones (detected by the 
Gaussian decomposition method) and some of them higher.
Visual inspection based on the aerial imagery indicated that the 
lower ones were indeed on the terrain. A ground survey was 
scheduled for this summer and the survey results will be used 
for further validation of generated DEMs.
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5. CONCLUSSION

The objective of this study is to investigate the effectiveness of 
the full waveform LiDAR data on the improvement of the 
generation of the large-scale DEM. An integrated approach was 
developed to incorporate the echo detection, terrain 
identification, and TIN model generation in an iterative process. 
In such a way, the built TIN model guided the echo detection in 
terms of its location and provided a constraint on the Gaussian 
decomposition method. As a result, the weak echo in a recoded 
full waveform that usually is generated by the terrain under 
vegetation is likely detected (as shown in Figure 6).  The 
preliminary results have demonstrated that this approach can 
increase the bare terrain points under trees and shrubs by more 
than 30%. The generated DEMs for two test sites exhibited 
more terrain details compared with those obtained by the 
software TerraScan. Quantitative accuracy evaluation of the 
generated DEM will be carried out in future work.  

Figure 9: The DEMs of Site A generated by the proposed 
method (right) and TerraScan (left). 

Figure 10: The DEMs of Site B generated by the proposed 
method (right) and TerraScan (left). 
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