文章编号: 1000-4750(2014)07-0015-08

-种基于四边形面积坐标的四结点平面参变量单元

李 根,黄林冲

(中山大学工学院应用力学与工程系,广州 510275)

摘 要:基于四边形面积坐标和广义协调原理,通过投影技术,并引入 0~1 区间上可连续变化的罚因子 β,构造 了一款具有统一格式的四结点平面参变量单元 AQGβ6-I。通过 4 组数值算例测试了单元性能,并将计算结果与许 多著名单元对比表明: β=0时,单元退化为原始格式,具有原始单元的全部优良性能; β=1时,单元可以精确 通过强分片检验,此时性能与许多著名单元基本相当,显著优于传统平面四结点等参单元(Q4); β=0.5 时,单元 兼具较好的抗网格畸变能力和收敛速度。单元的构造方式对缓解一个有限元难题(通过常分片检验的四结点单元在 弯曲问题中表现欠佳,而在弯曲问题中表现非常好的单元无法通过强分片检验)提供了有益思路。 关键词: 四边形面积坐标; 广义协调; 四结点四边形单元; 分片检验; 网格畸变; 有限元 中图分类号: TB115 文献标志码: A doi: 10.6052/j.issn.1000-4750.2013.01.0056

A 4-NODE PLANE PARAMETERIZED ELEMENT BASED ON QUADRILATERAL AREA COORDINATE

LI Gen, HUANG Lin-chong

(Department of Applied Mechanics and Engineering, School of Engineering, Sun Yat-sen University, Guangzhou 510275, China)

Abstract: A 4-node plane parameterized element named AQG β 6-I is constructed based on quadrilateral area coordinate, a generalized conforming principle and projection technique with variable $\beta \in [0,1]$. The element performance has been tested by four numerical examples and compared with many famous elements. The results show that: when $\beta = 0$ the element degenerates into its original formulation with all excellent performances; when $\beta = 1$ the element can accurately pass strong patch test, its performance is same as that of many famous elements and significantly better than a bilinear-displacement quads isoparametric element (Q4); when $\beta = 0.5$ the element is both well insensitive to distortion and convergence speed. It has also provided a useful method to alleviate a finite element trouble (The 4-node element has poor performance in bending problem but can pass the strong patch test. Conversely, it has excellent performance in bending problem but cannot pass the strong patch test).

Key words: quadrilateral area coordinate; generalized conforming; 4-node quadrilateral element; patch test; mesh distortion; finite element

有限单元法自产生以来,经过半个多世纪的发 展,特别是随着电子计算技术不断提高,其理论和 应用都取得了长足进展。有限单元法已经成为当今 科学与工程计算、虚拟工程与设计中最为主要和重 要的技术基础之一。构造优良性能单元是研究者们 一直以来不懈追求的目标,对于优良性能的单元格 式要求包括^[1-2]:

1) 网格畸变不敏感。

 2) 避免材料性质敏感(稳健性要求)。如:平面 应变条件下材料不可压缩时的体积锁定。

3) 避免剪切锁定(寄生剪应变),具有良好的弯曲行为性能。

收稿日期: 2013-01-17; 修改日期: 2013-09-09

基金项目:国家自然科学基金项目(51309261, 51108472, 41030747);广东省自然科学基金项目(S2013040016764, S2011040005172, S2012010010446);中山大学青年教师起步项目(39000-1188140)

通讯作者: 李 根(1982-), 男, 辽宁沈阳人, 讲师, 博士, 主要从事岩土工程数值方法研究(E-mail: badboy955@163.com).

作者简介:黄林冲(1981-),男,湖北咸宁人,副教授,博士,主要从事隧道与地下工程结构安全与防灾减灾研究(E-mail:hlinch@mail.sysu.edu.cn).

4) 粗网格下的高精度。

5) 简单、实用和高效。

20 世纪 60 年代 Taig^[3]和 Irons^[4]提出的等参坐 标方法现在已经被广泛地用于有限单元的构造,但 也出现了形形色色的问题。为了克服等参坐标的缺 点,近年来,一种新型自然坐标系统-四边形面积坐 标(QAC)方法^[5-8]被提出,以此为基础的单元被相继 构建^[1,9-10],由于其在许多方面的优良表现而被广 泛关注^[11-13]。其中, 文献[1]基于退化型(极限型) 分区势能原理并结合四边形面积坐标工具提出一 个平面广义协调单元(AQG6-I)。基于广义协调的方 法使单元完备性保持,协调性折中,因此单元具有 很强的抗畸变能力,但是却无法通过强分片检验, 只能通过弱分片检验从而达到收敛, Shi^[14]对广义协 调元的收敛性给予过严格证明。但是,一般对通过 弱分片检验达到收敛的单元来说,需要非常精细的 网格化分才能保证足够的计算精度。因而,此类非 协调单元在工程应用中不具有实用性[2]。

本文在 AQG6-I 单元格式的基础上通过投影技 术并引入 0~1 区间上可连续变化的罚因子 β ,构造 了一个具有统一格式的参变量单元 AQG β 6-I(原单 元为 β =0时的特例),通过罚因子调整可以达到收 敛性与计算精度较好结合,并在 β =1时可以精确 通过强分片检验。全文按如下结构:首先给出单元 的理论基础,包括分区势能原理和四边形面积坐 标。然后给出单元 AQG β 6-I 的构造过程。接下来通 过4 个算例,并与其它单元算得结果对比,详细测 评单元基本力学性能以及罚因子 β 取值意义。最 后,就单元的一些问题展开讨论。

1 变分基础

如图1所示,对于有限单元域Ω, e单元被其 它单元所包围,整个区域Ω的分区势能泛函可表示 为:

$$\prod = \prod_{p} -\sum_{e} (H_{p}^{(e)}) \tag{1}$$

式中: \sum_{e} 表示对所有子区域单元求和; 附加项 $H_{p}^{(e)}$

代表子域边界位移附加约束项, 写为矩阵形式:

$$H_{p}^{(e)} = \oint_{\partial \Gamma_{e}} \boldsymbol{T}^{\mathrm{T}} (\boldsymbol{u} - \tilde{\boldsymbol{u}}) \mathrm{d} \boldsymbol{\Gamma}$$
(2)

式中: T 表示边界力向量; u 表示位移向量; \tilde{u} 为 交界位移; $\partial \Gamma_e$ 表示单元边界。

若将附加能量方程式(2)看作加权残值方程,则

T可以看作是权函数。如果对任意权函数恒有:

$$H_p^{(e)} \equiv 0 \tag{3}$$

则等价于边界精确协调条件。式(2)即为单元边界条件的等效积分形式。对于加权残值方程,如选取不同的权函数,则对应不同物理意义的协调条件,广义协调^[10]的思想即源于此。因此建立广义协调条件时,可基于常用经典作法:配点法、子域法、最小二乘法、伽辽金法、力矩法。

对于存在内部附加自由度单元:
$$u = u_a + u_\lambda$$
 (4)

式中: u_q 表示位移向量; u_λ 表示附加位移向量。 于是,式(2)可表示为:

$$H_{p}^{(e)} = H_{qp}^{(e)} + H_{\lambda p}^{(e)}$$
(5)

其中:

$$H_{qp}^{(e)} = \oint_{\partial \Gamma} \boldsymbol{T}^{\mathrm{T}} (\boldsymbol{u}_{q} - \tilde{\boldsymbol{u}}) \mathrm{d} \boldsymbol{\Gamma}$$
(6)

$$H_{\lambda p}^{(e)} = \oint_{\partial \Gamma_e} \boldsymbol{T}^{\mathrm{T}} \boldsymbol{u}_{\lambda} \mathrm{d} \boldsymbol{\Gamma}$$
(7)

2 四边形面积坐标方法

四边形面积坐标具有一个重要的优点:它与直 角坐标之间的变换关系始终为线性的。这样,用面 积坐标表示的位移场插值函数对直角坐标的完备 次数不会随单元形状的畸变而改变,因此单元的精 度对网格畸变应该不敏感^[10]。对于四边形内一点 P它可以用四个坐标分量 $L_1 - L_4$ 表示^[5-6],如图 2 所示。

图 2 四边形面积坐标及其参数定义[1]

Fig.2 Definition of the quadrilateral area coordinates and the shape parameters^[1]

$$L_i = \frac{A_i}{A}, \quad i = 1, 2, 3, 4$$
 (8)

与等参坐标的关系可表示为:

$$\begin{cases} L_{1} = \frac{1}{4}(1-\xi)[g_{2}(1-\eta) + g_{3}(1+\eta)] \\ L_{2} = \frac{1}{4}(1-\eta)[g_{4}(1-\xi) + g_{3}(1+\xi)] \\ L_{3} = \frac{1}{4}(1+\xi)[g_{1}(1-\eta) + g_{4}(1+\eta)] \\ L_{4} = \frac{1}{4}(1+\eta)[g_{1}(1-\xi) + g_{2}(1+\xi)] \end{cases}$$
(9)

其中:

$$g_{1} = \frac{A_{\Delta 124}}{A}, \ g_{2} = \frac{A_{\Delta 123}}{A}, \ g_{3} = 1 - g_{1}, \ g_{4} = 1 - g_{2}, \\ 0 \le g_{i} \le 1$$
(10)

详细性质可参见文献[5-6]。

3 平面四结点参变量单元(AQGβ6-I) 格式

1) 单元位移。

如图 3 所示,为单元节点位移示意图。单元位 移可表示为:

$$\boldsymbol{u} = \begin{cases} \boldsymbol{u}^{e} \\ \boldsymbol{v}^{e} \end{cases} = \begin{cases} \boldsymbol{u}^{e}_{q} \\ \boldsymbol{v}^{e}_{q} \end{cases} + \begin{cases} \boldsymbol{u}^{e}_{\lambda} \\ \boldsymbol{v}^{e}_{\lambda} \end{cases} \approx \boldsymbol{N}_{q} \boldsymbol{u}_{q} + \boldsymbol{N}_{\lambda} \boldsymbol{u}_{\lambda} \quad (11)$$

其中:节点位移为 u_q ;附加位移为 u_λ ;形函数为 N_q ;内参形函数为 N_λ 。单元应变可表示为:

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_q + \boldsymbol{\varepsilon}_\lambda = \boldsymbol{B}_q \boldsymbol{u}_q + \boldsymbol{B}_\lambda \boldsymbol{u}_\lambda \tag{12}$$

其中: B_q 为单元几何矩阵; B_λ 为单元内部附加几 何矩阵,具体表达详见文献[1]。

图 3 平面四节点四边形单元 Fig.3 A four-node plane quadrilateral element

2) 形函数 N_i^q。

单元位移分量 u_q^e 和 v_q^e 具有相同形式,这里仅对 u_q^e 给予说明。假设基于四边形面积坐标的 u_q^e 由如 下二次多项式给出:

$$u_{q}^{e} = \alpha_{1} + \alpha_{2}(L_{3} - L_{1}) + \alpha_{3}(L_{4} - L_{2}) + \alpha_{4}(L_{3} - L_{1})(L_{4} - L_{2})$$
(13)
其中, $\alpha_{1} - \alpha_{4}$ 为待定常数。为了确定这四个常数可

以代入式(6),并应用点、周广义协调条件:

$$\begin{cases} \sum_{i=1}^{4} (u_q^e - \overline{u})_i = 0 \\ \sum_{i=1}^{4} (u_q^e - \overline{u})_i \xi_i \eta_i = 0 \\ \oint_{\partial \Gamma_e} n_x (u_q^e - \overline{u}) d\Gamma = 0 \\ \oint_{\partial \Gamma_e} n_y (u_q^e - \overline{u}) d\Gamma = 0 \end{cases}$$
(14)

最终,可求得形函数:

$$N_i^q = -\frac{g_k}{2} + L_i + L_j + \xi_i \eta_i g_k P,$$

$$i = 1, 2, 3, 4; \ j = 2, 3, 4, 1; \ k = 3, 4, 1, 2 \quad (15)$$

其中:

$$P = \left[3(L_3 - L_1)(L_4 - L_2) - (g_2 - g_3)(L_3 - L_1) - (g_1 - g_2)(L_4 - L_2) - \frac{1}{2}(g_2g_4 - g_1g_3) \right] / (1 + g_1g_3 + g_2g_4)$$
3) 内参形函数 N_i^{λ} 。
(16)

标准 AGQ6-I 单元给出了点协调方案下的附加 形函数取法:

$$\begin{cases} N_1^{\lambda} = L_1 L_3 \\ N_2^{\lambda} = L_2 L_4 \end{cases}$$
(17)

显然,此时附加能量式(3)并不严格成立,换句话说 该形函数取法不是对应常应力/应变状态,这就是 ACQ6-I 单元无法通过严格分片检验的根本原因。 本文所构造的单元附加形函数仍采用满足点协调 的式(17),然而为了满足式(3),由 $T = I'^{T} \sigma$ 和 Green 变换,将式(7)改写为:

$$H_{\lambda p}^{(e)} = \int_{\Omega_{e}} \boldsymbol{\sigma}^{\mathrm{T}} \boldsymbol{\varepsilon}_{\lambda} \mathrm{d}\Omega \qquad (18)$$

式中: I'是转换矩阵; σ 表示应力向量。然后,采 用 一 种 所 谓 B_{λ} - 投 影 技 术 (B_{λ} -Projection technique),首先定义一个表达式 \overline{B}_{λ} :

$$\overline{\boldsymbol{B}}_{\lambda} = \frac{1}{A^{e}} \int_{\Omega_{e}} \boldsymbol{B}_{\lambda} \mathrm{d}\Omega \tag{19}$$

式中, A^e 为二维单元域 Ω_e 的面积。将 \overline{B}_{λ} 代入式(12) 和式(18),同时引入罚参数 β ,于是可得:

$$H_{\lambda p}^{(e)} = \int_{\Omega_{e}} \boldsymbol{\sigma}^{\mathrm{T}} \tilde{\boldsymbol{B}}_{\lambda} \boldsymbol{u}_{\lambda} \mathrm{d}\Omega \qquad (20)$$

其中:

$$\tilde{B}_{\lambda} = B_{\lambda} - \beta \overline{B}_{\lambda}, \quad 0 \leq \beta \leq 1$$
 (21)
特别地,当 $\beta = 0$ 时单元退化为标准 AGQ6-I;

当 *b* =1 时有式(3)成立,对应常应力/应变状态。文献[15-16]曾应用类似 Projection technique 建立了 Stokes 和 Darcy 方程的稳定格式,文献[17]基于所 谓 Polynomial-Pressure-Projection technique 构造了 多孔介质固-流耦合方程的稳定格式。

4) 单元刚度矩阵。

将式(4)和式(12)代入单个单元泛函并变分:

$$d\prod^{(e)} = 0 \tag{22}$$

经内部自由度凝聚后,单元刚度矩阵可表达为:

$$\boldsymbol{K}^{e} = \boldsymbol{K}_{qq} - \boldsymbol{K}_{ql} \left(\boldsymbol{K}_{11} \right)^{-1} \boldsymbol{K}_{1q}$$
(23)

其中:

$$\boldsymbol{K}_{qq} = \int_{-1}^{1} \int_{-1}^{1} \boldsymbol{B}_{q}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{B}_{q} | \boldsymbol{J} | \mathrm{d} \boldsymbol{x} \mathrm{d} \boldsymbol{h}$$
(24)

$$\boldsymbol{K}_{ql} = \boldsymbol{K}_{lq} = \int_{-1}^{1} \int_{-1}^{1} \boldsymbol{B}_{q}^{\mathsf{T}} \boldsymbol{D} \boldsymbol{B}_{l}^{\mathsf{H}} \mid \boldsymbol{J} \mid \mathrm{d} \boldsymbol{x} \mathrm{d} \boldsymbol{h} \quad (25)$$

$$\boldsymbol{K}_{II} = \int_{-1}^{1} \int_{-1}^{1} \boldsymbol{B}_{I}^{\boldsymbol{\mu}} \boldsymbol{D} \boldsymbol{B}_{I}^{\boldsymbol{\mu}} \mid \boldsymbol{J} \mid \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{h}$$
(26)

|**J**|为雅克比行列式。

4 数值算例

本节将通过 4 个典型例题测试单元 AGQβ6-I 基本力学性能,以及罚参数 b 的取值对结果影响, 并与其他经典单元计算结果进行对比分析。选取的 对比单元、单元缩写及描述等信息列于表 1 中。另 外注意,算例数字单位均作了无量纲化处理。

表 1 对比单元列表 Table 1 List of elements for comparison

编号	单元缩写	描述	参考文献
1	Q4	4 结点等参单元	_
2	Q6	附带内部参数的4结点等参单元	[18]
3	QM6	附带内部参数的4结点等参单元	[19]
4	P-S	应力杂交元	[20]
5	PEAS7	假设应变单元	[21]
6	QE2	假设应变单元	[22]
7	\overline{B} -4E	假设应变单元	[22]

算例 1. 常应力/应变分片实验

3 单元网格剖分,单位厚度模型尺寸和边界条 件均如图 4(a)所示,然后采用中线平分的方式逐步 进行细分,如图 4(b)所示为 192 单元网格。模型材 料属性:弹性模量 *E* = 1000,泊松比*n* = 0.25。为 了验证单元在不同罚参数*b* 取值时的计算效果,监 测 2-7 节点自由度上的位移情况(*x* 向位移和 *y* 向位 移),并通过 *L*₂范数值来验证效果:

$$L_2 = \left[\frac{1}{n} \sum_{i=1}^{n} \left(\frac{a - \overline{a}}{\max(|\overline{a}|)}\right)^2\right]^{1/2}$$
(31)

其中: a 为计算值; ā 为标准值; n 为数据个数。

单元分别取b=0、0.5和1三种情况计算。位移2范数 L_2 ,x向位移2范数 L_{x_2} ,y向位移2范数 L_{y_2} 与网格数目n的关系如图5所示。结果可见,随着b取值的增大,AGQ β 6-I单元收敛速度显著增加;在b=1时单元可以精确通过任意网格常分片检验;在其他取值时单元没有通过强分片检验,但是随着网格加密单元收敛于精确解,表明单元通过弱分片检验。从这个测试可以看出罚参数b取值的意义,具有加速常应力/应变状态收敛的作用。

图 5 计算 2 范数与单元数关系曲线

算例 2. Cook 倾斜梁

如图 6 所示为 Cook 短斜梁在边界分布剪力 P=1 作用下横向弯曲问题。2×2 的网格剖分,单位 厚度模型尺寸和边界条件均如图 6(a)所示,并采用 中线平分的方式逐步进行细分,如图 6(b)为 16×16 的网格剖分。模型材料属性: *E*=1, *n*=0.333。 考察模型中 C 点的 y 向位移 v_c , A 点最大主应力 $\sigma_{A \max}$ 和 B 点最小主应力 $\sigma_{B \min}$, 结果列于表 2 中。

从表 2 可见, AGQβ6-I 单元在 $\beta = 0$ 时与其他 单元比具有较高的收敛速度;在 $\beta = 1$ 时与其他对 比单元性能几乎相当,但比传统 Q4 单元收敛速度 要快得多;在 $\beta = 0.5$ 时收敛速度在两者之间。

将模型取为平面应变问题计算,如图 7(a)给出 了不同单元网格下的v_c值曲线;图 7(b)给出了在单 元近似不可压缩时(v = 0.4999)的v_c值曲线。从图 中可以看出传统等参单元 Q4 对材料性质较为敏 感,在材料近似不可压缩时出现了锁定现象,而本 文单元则较好的克服了这一点,在单元近似不可压 缩时仍表现出良好的收敛性能。

表 2	Cook 斜梁计算结果	
Table 2 R	esults of Cook's skew bear	r

					-				-			
出二	Vc			$\sigma_{A\max}$			$\sigma_{\!B{ m min}}$					
単九	2×2	4×4	8×8	16×16	2×2	4×4	8×8	16×16	2×2	4×4	8×8	16×16
Q4	11.85	18.30	22.08	23.43	0.1032	0.1784	0.2219	0.2351	-0.0845	-0.1444	-0.1843	-0.1996
Q6	22.94	23.48	23.80	23.91	0.2029	0.2258	0.2334	0.2361	-0.1734	-0.1915	-0.1997	-0.2028
QM6	21.05	23.02	_	_	0.1928	0.2243	_	_	-0.1580	-0.1856	—	_
P-S	21.13	23.02	_	23.88	0.1854	0.2241	_	0.2364	_	_	—	_
QE-2	21.35	23.04	_	23.88	0.1956	0.2261	_	0.2364	_	_	—	_
\overline{B} -4E	21.35	23.04	_	23.88	0.1956	0.2261	_	0.2364	_	_	—	_
AQGβ6- Ι (β=0)	23.07	23.68	23.87	23.93	0.2035	0.2281	0.2352	0.2365	-0.1787	-0.1989	-0.2023	-0.2035
AQGβ6- Ι (β=1)	20.74	22.99	23.69	23.88	0.1950	0.2265	0.2348	0.2364	-0.1449	-0.1866	-0.1987	-0.2025
AQGβ6- Ι (β=0.5)	21.57	23.21	23.74	23.90	0.1978	0.2262	0.2347	0.2364	-0.1601	-0.1917	-0.2002	-0.2029
参考解[1]		2	3.96			0.2	362			-0.2	2023	

Fig.7 The value of v_c under different mesh

算例 3. 含不规则单元梁弯曲问题

模型如图 8 所示,具有单位厚度,划分为 5 个单元,模型尺寸和边界条件如图所示,其中载荷 分别为两种作用方式:

1) 在弯矩 M下的纯弯曲。

2) 在横向力 P 作用下的线性弯曲。

模型材料属性: E = 1500, v = 0.25。考察两 种载荷作用方式下模型 A 点的垂向位移 v_A 和 B 点 应力 σ_{xB} ,结果列于表 3。

由结果可知,本文单元在 $\beta = 0$ 时可以达到较高精度;在 $\beta = 1$ 时与其他对比单元性能相差不大,但比传统Q4单元性能显著优秀;值得注意的是在

b=0.5时计算精度也是非常之高的,而此时单元 对于常应力/应变的收敛性却几乎比**b**=0时快 一倍。

表 3 梁弯曲问题中选取点挠度及应力

 Table 3
 The deflections and stresses at selected locations for bending problems of a cantilever beam

肖示]	М	Р		
平九	v_A	S_{xB}	v_A	\boldsymbol{S}_{xB}	
Q4	45.7	-1604.1	50.68	-2152.9	
Q6	98.4	-2428	100.4	-3354	
QM6	96.07	-2497	97.98	-3235	
P-S	96.18	-3001	98.05	-3899	
QE-2	96.5	-3004	98.26	-3906	
\overline{B} -4E	96.5	-3004	98.26	-3906	
AQGβ6- Ι (β=0)	100.0	- 3000.0	101.9	- 4046.1	
AQGβ6- Ι (β=1)	95.7	- 3003.9	97.9	- 3944.0	
AQGβ6- [(β=0.5)	99.1	- 3008.1	100.5	- 4004.2	
精确解	100.0	-3000	102.6	-4050	

算例 4. MacNeal 细长畸变网格梁

这个例题是由 MacNeal^[23]提出的测试四边形 单元抗网格畸变能力的一道著名考题,如图 9 所 示。分别考虑三种网格划分:

a) 考虑长宽比畸变的矩形网格。

- b) 长宽比畸变与平行四边形畸变网格。
- c) 长宽比畸变与梯形畸变。

Fig.9 MacNeal's beam

模型厚度为 0.1,其它尺寸与边界条件如图所示,载荷分别为两种作用方式:

1) 在弯矩 M 下的纯弯曲。

2) 在横向力 P 作用下的线性弯曲。

模型材料属性: *E*=10⁷, *n*=0.3。考察两种 载荷作用方式下模型端部挠度,结果列于表 4。

结果可见,本文单元在 **b** = 0 时可以达到较高 精度,甚至在载荷 2)作用情况下完全克服网格畸变 达到精确值,取其它值时均表现出网格畸变敏感, 特别是 Q4 单元在各种网格下均表现最差;当 **b** = 1 时单元表现出比较明显的闭锁,性能与 P-S 单元及 PEAS7单元基本相当,但优于其他单元。当*b*=0.5 时单元性能优于*b*=1的情况,对于 AQGβ6-I 单元 来说此时正是强分片与弱分片检验的折中,兼具收 敛性与抗畸变能力。

表 4 不同网格下梁端挠度归一化结果

 Table 4
 The normalized results of the tip deflection for beam using different meshes

出	-	Р		М			
平九	(a)	(b)	(c)	(a)	(b)	(c)	
Q4	0.093	0.035	0.003	0.093	0.031	0.022	
Q6	0.993	0.677	0.106	1.000	0.759	0.093	
QM6	0.993	0.623	0.044	1.000	0.722	0.037	
P-S	0.993	0.798	0.221	1.000	0.852	0.167	
PEAS7	0.982	0.795	0.217	1.000	0.887	0.165	
AQGβ6- [(β=0)	0.993	0.994	0.994	1.000	1.000	1.000	
AQGβ6- [(β=1)	0.993	0.848	0.221	1.000	0.887	0.164	
AQGβ6- Ι (β=0.5)	0.993	0.946	0.388	1.000	0.964	0.327	
精确解		1.000^{*}			1.000**		

注: *标准值为-0.1081; **标准值为-0.0054。

5 几点讨论

当单元 AQGβ6-I 是标准矩形时,附加形函数 (式(17))与 Wilson Q6 单元内参形函数形式相同, 此时边界附加位移场可表示成如图 10 所示。

国 10 平元四多元国家/市民 Fig.10 Element shape function of internal degrees of freedom

取平面应变条件下边长为 2 的正方形单元 (*E*=1000, *n*=0.3)进行特征分析,并将 Q4 单元的 特征值结果列于表 5。从表 5 结果可以看到,单元 与传统 Q4 单元在 4、5 阶弯曲特征模态上出现差 别,较传统单元特征值有所减小,表明单元在弯曲 特性方面将有更好的柔性。另外,计算也表明采用 4 点高斯积分与 9 点高斯积分具有相同的结果,并 且 *b* 的取值对结果没有影响,但采用单点积分时 仍会出现零能模式,这一点与 Q4 比并没有改变。

由于 **b** = 0 时单元在弯曲等高阶荷载作用下 通常会取得满意结果,而 **b** = 1 时则对应于常应力/ 应变的协调状态,因此可以将有限元模型中不同位 置处、不同条件下的单元 **b** 值根据问题性质进行 调整,取为 0~1 区间上的连续变化值。这样可构成 一种自适应算法,用不大的代价获得最优解答。 Prathap 等^[13]曾对文献[1]提出的单元进行测试指 出:以广义协调条件构造的单元结果是在真实解 上、下波动的。这与经典协调元得到的下限解(有 界性)不同,这点需要注意。Liu 等^[24-25]曾联合应 用基于最小势能原理的常规有限元(FEM,具有下 限解)与基于结点的应变光滑有限元(NS-FEM,具 有上限解),并引入 0~1 区间上a调节因子来逼近 问题的精确解。虽然a的取值形式与本文罚因子 b相似,但由于广义协调条件构造的单元使解的 有界性丧失,构造根据问题性质进行自适应调整的 算法还需进一步研究。

表 5 单元特征分析列表 Table 5 List of element eigenvalue analysis

阶数 Q4	AQGβ6-I (β 任意)	特征振形	说明
1~3 0.0000	0.0000		刚体位移特征
4、5 0.576	9 0.3663	$\square \square$	弯曲特征
6、7 0.769	2 0.7692	$\Box \square$	常应变特征 (拉、压、剪切)
8 1.923	1 1.9231		常应变特征 (等向扩展、收缩

6 结论

文献[1]基于面积坐标和广义协调方法建立了 平面四节点四边形广义协调单元,具有网格畸变不 敏感的优良性能,但无法通过强分片检验。本文在 此基础上通过 **B**₁-投影技术并引入 0~1 区间上可 连续变化的罚参数因子 **b**,建立了具有统一格式 的参变量单元 AQGβ6-I。通过 4 组数值算例测试 了单元性能,并将计算结果与许多著名单元对比表 明: **b**=0时,单元退化为原始格式,具有原始单 元的全部优良性能; **b**=1时,单元可以精确通过 强分片检验,此时性能与许多著名单元基本相当, 显著优于传统 Q4 单元; **b**=0.5时,单元兼具较 好的抗网格畸变能力和收敛速度。

本文所构造的单元 AQGβ6-I 不仅具有优良的 固体单元品质,还具有相当的灵活性(通过参变量 β 调节)。单元的构造方式对缓解一个有限元难题(通 过常应力/应变分片检验的四结点单元在弯曲问题 中表现欠佳,而在弯曲问题中表现非常好的单元无 法通过强分片检验)提供了有益思路。如何将复杂 有限元模型中不同位置处、不同条件下的单元根据 问题性质调整 β 取值(取为 0~1 区间上的连续变化 值),构成一种自适应算法,用不大的代价获得最 优解答是下一步的工作重点。

参考文献:

- Chen X M, Cen S, Long Y Q, et al. Membrane elements insensitive to distortion using the quadrilateral area coordinate method [J]. Computers & Structures, 2004(82): 35-54.
- [2] Zienkiewicz O C, Taylor R L. The finite element method for solid and structural mechanics [M]. 6th ed. Oxford: Elsevier Butterworth-Heinemann, 2005: 3-200.
- [3] Taig I C. Structural analysis by the matrix displacement method [R]. British, London: English Electric Aviation Report, 1961: S017.
- [4] Irons B M. Engineering application of numerical integration in stiffness method [J]. The American Institute of Aeronautics and Astronautics, 1966, 14: 2035-2037.
- [5] Long Y Q, Li J X, Long Z F, et al. Area coordinates used in quadrilateral elements [J]. Computational Mechanics, 1999, 19: 533.
- [6] Long Z F, Long Y Q, Li J X, et al. Some basic formulae for area coordinates used in quadrilateral elements [J]. Computational Mechanics, 1999, 19: 841.
- [7] Chen X M, Cen S, Fu X R, et al. A new quadrilateral area coordinate method (QACM-II) for developing quadrilateral finite element models [J]. International Journal for Numerical Methods in Engineering, 2008, 73(13): 1911–1941.
- [8] Long Z F, Cen S, Wang L, et al. The third form of the quadrilateral area coordinate method (QACM-III): Theory, application, and scheme of composite coordinate interpolation [J]. Finite Elements in Analysis and Design, 2010, 46: 805-818.
- [9] 岑松,陈晓明,李宏光,等. 有限元新型自然坐标方法研究进展[J]. 工程力学, 2008, 25(增 I): 18-32.
 Cen Song, Chen xiaoming, Li Hongguang, et al. Advances in new natural coordinate methods for finite element method [J]. Engineering Mechanics, 2008, 25(Suppl I): 18-32. (in Chinese)
- [10] 龙驭球,龙志飞,岑松. 新型有限元论[M]. 北京:清 华大学出版社, 2004: 3-20.
 Long Yuqiu, Long Zhifei, Cen Song. New developments in finite element method [M]. Beijing: Tsinghua University Press, 2004: 3-20. (in Chinese)
- [11] Cardoso R P R, Yoon J W, Valente R A F. A new approach to reduce membrane and transverse shear locking for one-point quadrature shell elements: Linear formulation [J]. International Journal for Numerical Methods in Engineering, 2006, 66(2): 214–249.
- [12] Du Y, Cen S. Geometrically nonlinear analysis with a

4-node membrane element formulated by the quadrilateral area coordinate method [J]. Finite Elements in Analysis and Design, 2008, 44(8): 427–438.

- [13] Prathap G, Senthilkumar V. Making sense of the quadrilateral area coordinate membrane elements [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49/50): 4379-4382.
- [14] Shi Z C. The F-E-M-Test for convergence of nonconforming finite elements [J]. Mathematics of Computation, 1987, 49(180): 391-405.
- [15] Bochev P B, Dohrmann C R. A computational study of stabilized, low-order C_0 finite element approximations of Darcy equations [J]. Computational Mechanics, 2006, 38: 323–333.
- [16] Dohrmann C R, Bochev P B. A stabilized finite element method for the Stokes problem based on polynomial pressure projections [J]. International Journal for Numerical Methods in Fluids, 2004, 46: 183-201.
- [17] White J A, Borja R I. Stabilized low-order finite elements for coupled solid- deformation/fluid-diffusion and their application to fault zone transients [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 4353-4366.
- [18] Wilson E L, Taylor R L, Doherty W P, et al. Incompatible displacement models [M]. Numerical and Computer Models in Structural Mechanics, New York: Academic Press, 1973: 43-57.
- [19] Taylor R L, Beresford P J, Wilson E L. A non-conforming element for stress analysis [J].

International Journal for Numerical Methods in Engineering, 1976, 10: 1211–1219.

- [20] Pian T H H, Sumihara K. Rational approach for assumed stress finite elements [J]. International Journal for Numerical Methods in Engineering, 1984, 20: 1685-1695.
- [21] Andelfinger U, Ramm E. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements [J]. International Journal for Numerical Methods in Engineering, 1993, 36: 1311-1347.
- [22] Piltner R, Taylor R L. A systematic constructions of B-bar functions for linear and nonlinear mixed enhanced finite elements for plane elasticity problems
 [J]. International Journal for Numerical Methods in Engineering, 1997, 44: 615-653.
- [23] Macneal R H, Harder R L. A proposed standard set of problems to test finite element accuracy [J]. Finite Elements in Analysis and Design, 1985, 1: 3-20.
- [24] Liu G R, Nguyen-Thoi T, Lam K Y. A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements [J]. Computer Methods in Applied Mechanics and Engineering, 2008(179): 3883–3897.
- [25] Liu G R, Nguyen-Xuan H, Nguyen-Thoi T, et al. A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes [J]. Journal of Computational Physics, 2009(228): 4055-4087.