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Discrete-Time Multivariable Adaptive Control

GRAHAM C. GOODWIN, MEMBER, IEEE, PETER J.
RAMADGE, anDp PETER E. CAINES, MEMBER, IEEE

Abstract—This paper establishes global convergence for a class of
adaptive control algorithms applied to discrete-time multiinput multioutput
deterministic linear systems, It is shown that the algorithms will ensure
that the system inputs and outputs remain bounded for all time and that
the output tracking error converges to zero.

I. INTRODUCTION

A long-standing problem in control theory has been the question of
the existence of simple, globally convergent adaptive control algorithms,
By this we mean algorithms which, for all initial system and algorithm
states, cause the outputs of a given linear system to asymptotically track
a desired output sequence, and achieve this with a bounded-input
sequence.

There is a considerable amount of literature on continuous-time
deterministic adaptive control algorithms [1]. However, it is only recently
that global stability and convergence of these algorithms has been
studied under general assumptions. Much interest was generated by the
innovative configuration proposed by Monopoli [2] whereby the feed-
back gains were directly estimated and an augmented error signal and
auxiliary input signals were introduced to avoid the use of pure dif-
ferentiators in the algorithm. Unfortunately, as pointed out in [3] the
arguments given in [2] concerning stability are incomplete. New proofs
for related algorithms have recently appeared [4], [5]. In [4] Narendra
and Valavani treat the case where the difference in orders between the
numerator and denominator of the system transfer function (relative
degree) is less than or equal to two. In [5], Feuer and Morse propose a
solution for general linear systems without constraints on the relative
degree. The algorithms in [5] use the augmented error concept and
auxiliary inputs as in [2]. The Feuer and Morse result seems to be the
most general to date for single-input single-output continuous-time sys-
tems. However, these results are technically involved and cannot be
directly applied to the discrete-time case.

There has also been interest in discrete-time adaptive control for both
the deterministic and stochastic case. This area has particular relevance
in view of the increasing use of digital technology in control applications
[6). [7].

Ljung [8), [9] has proposed a general technique for analyzing conver-
gence of discrete-time stochastic adaptive algorithms. However, in this
analysis a question which is yet to be resolved concerns the boundedness
of the system variables. For one particular algorithm [10}, it has been
argued in [11] that the algorithm possess the property that the sample
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mean-square output is bounded whenever the sample mean-square of the
noise is bounded. However, the general question of stability remains
unanswered for stochastic adaptive algorithms. )

The study of discrete-time deterministic algorithms is of independent
interest but also provides insight into stability questions in the stochastic
case [12], [15]. Recent work by Ionescu and Monopoli [13] has been
concerned with the extension of the results in [2] to the discrete-time

_case. As for the continuous case, the augmented error method is used.

In this paper we present new results related to discrete-time determin-
istic adaptive control. Our approach differs from previous work in
several major respects although certain aspects of our approach are
inspired by the work of Feuer and Morse [5).

The analysis presented here does not rely upon the use of augmented
errors or auxiliary inputs. Moreover, the algorithms have a very simple
structure and are applicable to multiple-input multiple-output systems
with rather general assumptions.

The paper presents a general method of analysis for discrete-time
deterministic adaptive control algorithms. The method is illustrated by
establishing global convergence for three simple algorithms. For clarity
of presentation, we shall first treat a simple single-input single-output
algorithm in detail. The results will then be extended to other single-in-
put single-output algorithms including those based on recursive least
squares. Finally, the extension to multiple-input multiple-output systems
will be presented.

Since the results in this paper were presented a number of other
authors [16]-[18] have presented related results for discrete-time de-
terministic adaptive control algorithms.

II. PROBLEM STATEMENT
In this paper we shall be concerned with the adaptive control of linear
time-invariant finite-dimensional systems having the following state
space representation:

x(t+1)= Ax(#) + Bu(t); .10
()= Cx(2) 22
where x(f), u(?), y(?) are the nX1 state vector, rx 1 input vector, and

m X1 output vector, respectively.

A standard result is that the system (2.1), (2.2) can also be represented
in matrix fraction, or ARMA, form as

x(0)=x,

g~ By (¢7") g~ B, (¢7")

A(g~ (D= : : u()  (23)
q~B,,(¢7") 9~ B, (¢7")

with appropriate initial conditions. In (2.3), A(g™"), By(g™") (i=

,-+-,m; j=1,---,r) denote scalar polynomials in the unit delay opera-
tor g~ ! and the factors ¢~ % represent pure time delays.

Note that it is not assumed that the system (2.1), (2.2) is completely
controllable or completely observable, nor is it assumed that (2.3) is
irreducible. The system will be required, however, to satisfy the condi-
tions of Lemma 3.2.

It is assumed that the coefficients in the matrixes 4, B, C in (2.1), 22
are unknown and that the state x(¢) is not directly measurable. A
feedback control law is to be designed to stabilize the system and to
cause the output, {y(#)}, to track a given reference sequence {y*(?)}.
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Specifically, we require y(7) and () to be bounded uniformly in ¢, and

Jim y,(2) -»H=0 i=L---.m. 24

M. KsY TeCHNICAL LEMMAS

Our analysis of discrete-time multivariable adaptive control algorithms
will be based on the following technical results.
Lemma 3.1: If

lim O
1= by(#) +by()o () o(2)

where {b(£)}, {b:()}, and {5(2)} are real scalar sequences and {o(¥)} is a
real p-vector sequence; then subject to
1) uniform boundedness condition

@G0

0<h(H<K<eo and 0B (<K< (32
for all t 50 and
2) linear boundedness condition
llo()]| <€y +C, max [s(r)] (33)
<r<t
where 0< C; < o0, 0<Cy < o0, it follows that
lim s(#)=0 (34)
=0

anrd {|le(D]}} is bounded.
Proof: If {s(1)} is a bounded sequence, then by (3.3) {|la(?)|]} is a
bounded sequence. Then by (3.2) and (3.1) it follows that

lim s(¢)=0.
I—c0
Now assume that {s(#)} is unbounded. It follows that there exists a
subsequence {#,} such that
lim |s(z,)|=00
1,0

and
[s(OI<Is(s,)] fore<e,. (3.5)
Now along the subsequence {1,}
s(2,) Is(t)l -
32
[6:0)+ bt)o( o) ] 2| [K+ Ko ¢
Is(e)|
K2+ KYe(1)]
Is() using (3.3) and (3.5).

K124 KV C + Cyls(2)]]
Hence,

lim 5(t) L1
b |:1’1(“,,)+bz(t,,)t:v(a‘,,)".;(;")]‘/2 K'\2C,

>0

but this contradicts (3.1) and hence the assumption that {s(¢)} is un-
bounded is false and the result follows. O

In order to use this lemma in proving global convergence of adaptive
control algorithms it will be necessary to verify (3.1) (with s(¢) interpre-
ted as the tracking error) and to check that assumptions (3.2) and (3.3)
are satisfied.

The next lemma will be used to verify that the linear boundedness
condition (3.3) is satisfied by an important class of linear time-invariant
systems. This class corresponds to those linear time-invariant systems for
which the control objective (2.4) can be achieved with a bounded-input
sequence and for which the tracking error can be reduced to zero if the
system parameters are known.
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Lemma 3.2: For the system (2.3) with r=m, and subject to

zdu‘dlB“(z) zdl-—dlBlm(z)

det =0 (3.6)

Zd'"_d"B,M(Z) z"-d'Bmm(z)

Jor |z| < 1 where

if
&)

oREX |yt + d)|=my,
1<i<m
then there exist constants my, my which are independent of T with 0 <m; <
00, 0<my< o0 such that
lu()|<mamg+m;  O<t<T, i=1,---,m.
Proof: The result is standard and simply follows from the fact that
(3.6) ensures that the system has a stable inverse. |
In the remainder of the paper these results will be used to prove global
convergence of a number of adaptive control algorithms. Sections
IV-VII will be concerned with adaptive control of single-input single-
output systems. Sections VIII and IX will extend these results to the
multiple-input multiple-output case.

IV. SINGLE-INPUT SINGLE-OUTPUT SYSTEMS

It is well known that for the single-input single-output (SISO) case, the
system output of (2.1), (2.2) can be described by

A(q“)y(t)=_ g~9B(g~ Du(r) “.n

where {u(9)}, {»()} denote the input and output sequences, respec~
tively, and A(¢~"), B(¢™") are polynomial functions of the unit delay
operator g7,

Al D=1+a,g7 '+ - +a,g9™*

B(g VD =bytbg '+--- +b,9g™™; by0.
d represents the system time delay. The initial conditions of (2.1) are
replaced by initial values of y(¢), 05¢> —n, and u(t), —d >t > —d—m.
The following assumptions will be made about the system.
Assumption Set 4:
a) d is known,
b) An upper bound for n and m is known.
¢) B(z) has all zeros strictly outside the closed unit disk, (This is
necessary to ensure that the control objective can be achieved with a
bounded-input sequence.)
We note that, by successive substitution, (4.1) can be rewritten as

y(+d)=alg Yy () +B8(g~Du(®) 4.2

where

+a”_lq—n+1
Bg™D=Bp+Big - +Bprgrg™ ™Y

As previously stated, the control objective is to achieve

fim [3()-y*(9]=0

a(g™)=ap+ayg+---

Bp7=0.

4.3

where {¥*(#)} is a reference sequence. It is assumed that {y*(9)} is
known g priori and that
for all «.

ly*()<m <o “4)
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V. SISO PROJECTION ALGORITEM I
Let 8, be the vector of system parameters (dimension p=n+m+d),

8 =(0g ** +%s—1sBo ** s Bra—1)- (CRY
Then (4.2) can be written
y(t+d)=o(1)", (52)
where
(T =), - - y(t—n+D,u(d), - ult—m—d+1). (53)

Now define the output tracking error as
e(t+d)=y(t+d)—y*(t+d)
= () 8—y*(¢+d).
By choosing {«(7)} to satisfy
P() 8p=y*(t+4d) (55)

it is evident that the tracking error is identically zero. However, since 6,
is unknown, we replace (5.5) by the following adaptive algorithm:

(54

80 =6(1— 1)+ a(e(t— D1+ 9(t— ) To(t— )]
[ 7 —ett-d)76¢~1)] (6)

@701y =y*(1+d) (57

where 5(1) is a p-vector of reals depending on an initial vector §(0) and
on y(1), 0<7<¢t, u(t), 0<7<t—d via (5.6), and where the gain constant
a(?) is computed as follows:

a()=1 if [(#+ Dth component of right-hand side of (5.6) (58
evaluated using a(f)=1]s=0; ’
=y otherwise where y is a constant in the interval

(6,2—¢), y++1 and O<e< 1.

This choice of gain constant prevents the computed coefficient of u(7)
in (5.7) being zero. We also remark that the purpose of the coefficient 1
in the term [1+¢(r— d)T¢(t — d)] ~! of (5.6) is solely to avoid division by
zero. Any positive constant could be used in place of the 1.

Apart from the above modification, the algorithm (5.6) is an orthogo-
nal projection of 8(z— 1) onto the hypersurface y(£)— ¢(t— d)79=0.

In the analysis of this algorithm, we will first show that the Euclidean
norm of the vector 8(¢)= 0'(1)—00 is a nonincreasing function along the
trajectories of the algorithm. This leads to a characterization of the
limiting behavior of the algorithm which will allow us to use Lemma 3.1
to establish global convergence.

Lemma 5.1: Along the solutions of (5.6), (5.7),
t>0

16216 — <0, (59

o)) _

lim 1/2

=% [1+9()T9(1)]

Proof- Using the definition of 8(#), (5.6) may be rewritten as

(5.10)

8(6)=6(t—1) - a(tyg(t— d)[ 1+ gt — @) "p(t— )] ™"
p(t—d)T0—1). (5.11)

Hence,

NGCI~16(s ~ 1)|P=a(#)| —2+a(2)

o(t—d) ot —d) ]

[1+g(1—d) p(1—d)]

8= 1)o(t = d)g(s =) T9(t~1)
[1+o(t—d) p(1—d)]

<0 (5.12)
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for all values of @(r—d) provided 0<a(¥)<2. This is satisfied by
definition (5.8). Then, since [|#()|}* is a bounded nonincreasing function
it converges. Setting

)= —o(t—d)79(1—1) 5.13)

[and noting that

a(0)] —2+ a(r) =D o =) ]

[1+@(t—~d)Tp(1-d)]

is bounded away from zero, with a(?) defined as in (5.8)] we conclude,
from (5.12), that

lim c"(t) =0
t>w [14 @(t—d) p(t—d)]
and hence
lim (%) =0. (5.19)
= [1+g(t—d) (1 —d)]'/*
Now using (5.13) and (5.11) it follows that
. d—1
«O)=~¢(1=d)b(t-d)= 3 alt-1)
. (p(t—d)TqJ(t—d—i) .
[+ o(t—d—)Tp(t—d— D] (4=
Then using (5.4) and (5.7) we have that
e(H)=—o(t—d) (¢ —d). (5.15)
Hence,
€(f) _ e(t)
[1+o(t—d)To(t-a)]'?  [1+9(—d) o(t—d)]'/
d-1 T
=S att—i o(t—d)
i=1 =9 [1 +¢(t—d)T¢(t—d)]l/2
e(t—d—1i)
[1+ 9t —d—DTe(t—d—D]"?
(=) (5.16)

[1+g(t—d—)Tg(1— d—D]Y*

Now by the Cauchy—Schwarz inequality and the fact that |a(#)| <2
a(t=Do(t=d)” o(t—d—i)

[1+g(z— ) g(t— )]/ [1+ p(t— d— ) Tp(t—d— )]/

. e(t—1i)
[1+p(t—d—Do(t—d—)]'/?

0<

2e(t—1i)
[1+ gt —d—i)To(t—d—)]"/?

Then using (5.14) it follows that

p(z—d)”

lim
[1+ g(t— d) (s - d)]'/?

—>00

a(t—i)

@(t—d—i)
[1+g(t—d—i)Tp(t—d—]'/?

e(t—i) 0

~[1+ —————|=0  fori=12:.d~1.
p(t—d—i) g(t—d—1)]

(CRY))
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Hence, using (5.16), (5.17), and (5.14)
e(1)

lim =0, (5.18)
= 14 (s~ d) (s — )]/
This establishes (5.10). O

Note that we do not prove, or claim, that 8(rf) converges to 8,
However, the weaker condition (5.10) will be sufficient to establish
convergence of the tracking error to zero and boundedness of the system
inputs and outputs. These are the prime properties of concern in adap-
tive control.

Theorem 5.1: Subject to Assumptions 4a)—c); if the algorithm (5.6),
(5.7) is applied to the system (2.1), (2.2} (r=m=1), then { y(£)} and {u(£)}
are bounded and

Jm [y()=y*()]=0. (5.19)
Proof: Lemma 5.1 ensures that condition (3.1) of Lemma 3.1 is
satisfied, with s(#)= (), the tracking error, and o(¢f)=¢( — d) the vector
defined by (5.3). Also b,(f)=1, and b,(#)=1. It follows that the uniform
boundedness condition (3.2) is satisfied.
Assumption 4¢c) and Lemma 3.2 ensure that

|u(k—d)j<my+my max [y(r)] forall 1<k<s.
I<r<t

Therefore, using (5.3)
llp(t = @Il < p{ s+ [max(l,mg)] max |y(7)]}
but

(1> [~ |y > [¥(D)| — my.

Hence,

llo(t— )| <p{m3 +[max(1,m,)] ]Tffé’”e(“')l + '”1]}

=C,+Czll£$)<l‘|e(7)|; 0<C <, 0<Cy<

and it follows that the linear boundedness condition (3.3) is also satis-
fied.

The result now follows by Lemma 3.1 and by noting that boundedness
of {ll(2)]} ensures boundedness of {|y(#)]} and {Ju(s)]}- O

V1. SISO PROJECTION ALGORITHM Il

In this section we present an algorithm differing from that of Section
V in that the control law is estimated directly. This approach is adopted
in [5], and essentially involves the factorization of B, from (4.2). A
related procedure is used in the self-tuning regulator [10] where it is
assumed that the value of 8, is known.

An advantage of the algorithm is that the precautions required in
Section V to avoid division by zero in the calculation of the input are no
longer necessary. However, a disadvantage is that additional information
is required; specifically, we need to know the sign of 8, and an upper
bound for its magnitude.

Factoring 8, from (4.2) yields

y(t+d)=Bo(agy(D+ -+ +a,_1y(t—n+D+u(?)
+Bu(t—1) - + B u(t—m—d+1)). (6.1)

Let
e(t+dy=y(t+d)—y*(1+d)

=ﬁo(u(:)+aay(t)---a;_.y(r—n+1)+ﬁiu(t—1)
Ceee B g w(t-m—d+1)— Bioy'(t+d))

= Bo(u(2)— 9(£)78) (62)
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where
SOT=(=p(1) - —p(e=n+ 1), =u(z—1)--
—u(t—=m—d+1),y*(t+d))
0= (- a1 < Bivav o)

It is evident that the tracking error can be made identically zero By
choosing {u(#)} such that

u(t)=o(2) 7,

However, since 6 is unknown, the control law will be recursively
estimated. The following adaptive algorithm will be considered:

(63)

é(z)=é(r—d)—p%qo(t—d)ll+<p<z—d)T<p(z—d)]“e(r) (64)
0

u(r)=o(1)78(r) (65

where B, is a fixed constant and 8(¢) is a p-vector of reals depending on
d initial values 8(0),---,8(d—1) and on y(7), 0<r<¢, u(7), 0<r<
t—d—1 via (64). Note that (6.4) is actually d separate recursions
interlaced. (It has recently been pointed out {18] that it is also possible to
analyze a single recursion without interlacing using a different technique
but the same general principals.)

The analysis of projection algorithm II has much in common with the
analysis for projection algorithm I. We will therefore merely state the
analogs of Lemma 5.1 and Theorem 5.1 for the algorithm (6.4), (6.5).

Lemma 6.1: Define

0()=0(— 8, (6.6)
- - a
Then |8(t+ d)|>— |(2)|[> < O along with the solutions of (6.4) and (6.5)
and
7=
fm @06 _ .,
= [1+9() p(n)])/* ‘
provided
0< & <2 O

Bo

Lemma 6.1 is used to prove Theorem 6.1 in the same manner that
Lemma 5.1 is used to establish Theorem 5.1. We obtain the following
theorem in this way. R

Theorem 6.1: Subject to Assumptions 4a)-c) and for 0<By/ By<2; if
the algorithm (6.4), (6.5) is applied to the system (2.1), (2.2}, then { y(1)}
and {u(#)} are bounded and

Jm [¥(D)-y*(D]=0. (6.6)

We note that the condition 0< 8y/ B, <2 has been previously conjec-
tured [9], [10] in regard to stochastic self-tuning regulators using least
squares. The condition can always be satisfied if the sign of 8, and an
upper bound for the magnitude of B, are known.

VII. ApaPTIVE CONTROL USING RECURSIVE LEAST SQUARES

The wide-spread use of recursive least squares in parameter estimation
indicates that it may find application in the adaptive control context. We
treat the unit delay case of algorithm I with the projection (5.6) replaced
by recursive least squares.

The adaptive control algorithm then becomes

a(HP(t—De(t—1)

o= D i atet= 7P 29— D]

[»W~-e(t-DT¢-D]  (2.1)
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[, PG=Deet) a(+1) _
PO= [I 1+ () P(t—Dp(r)a(t+1) ]P(t D 2
()6 =y*(e+1) (13)

where P(¢) is a pXp matrix and the recursion (7.2) is assumed to be
initialized with P(— 1) equal to any positive definite matrix.

The scalar a(z) in (7.1), (7.2) plays the same role as in Section V and is
required only to avoid the nongeneric possibility of division by zero in
(7.3) when evaluating u(¢). Hence, a(f)=1 will almost always work and
for a(f)=1 we observe that (7.1) and (7.2) are the standard recursive
least squares algorithm. The sequence {a(7)} may be chosen as in (5.8).

Lemma 7.1: Along with the solutions of (7.1), (7.2), (7.3) the fumction
V()=8()TP(+—1)"8(¢) is a bounded, nonnegative, nonincreasing func-
tion and

tim o(t=)70(~1) =0 (14
== [1+a(Ne(1~1) PG -2)p(t— D]/
where 8(£)= 6(2)~ 8,
Proof: From (1.1), (5.2),
iy=i-n - SOPEDIDel- D0
Then using (7.2), '
8(6)=P(t— 1) P(t—2)"0(+-1).
Thus,
P(t=1)"'9()=P(t—2)"'4(¢—1). (7.6)

Now defining F{(#) as (¢~ 1)TP(z — 1)4(¢— 1) we have
V() - V(t—1)=0()TP(t— 1) 4(s) - 8 —1)TP(t—2) "} 6(1—~1).
Using (7.6)
V(- V(t-1)=[8(5~b8¢—1)]"P(t=2)" (- 1)
(¢ — 1) To(t— Dop(t— 176z 1)
[1+a(d)e(t—1)7P(t—2)p(t - 1)]

where we have used (7.5). It is clear from (7.7) that ¥(#) is a bounded,
nonnegative, nonincreasing function and hence converges.
Thus, from (7.7), and since a(?) is bounded away from zero,

= —a(?)

an

60—~ DTo(1=De(t-DB-1 _o
e [14+a(gl—1)PG-29(-D]

Hence,
. e(?)
lim = 7.8
=% [+ a(r)e(r~ 1) P(1—2)p(1— 1)}/ @9
where
e()=—g(t= )bt~ D=y()~r*(2). (79)
O

Theorem 7.1: Subject to Assumptions 4a)—c) if the algorithm (7.1), (7.2),
(7.3) is applied 10 the system (2.1), (2.2) (r=m=1), then { y(1)}, {u(t)} are
bounded and

Jim [y()—=y*()]=0. (7.10)

Proof: From Lemma 7.1

lim o) =o.
=% [1+a(Dg(t— 1) P(r~2)p(r—1)]"/

(7.11)
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Now
e S le()P i
[1+a(De(t—D)TP(t-2)9(t—1)] ~ [1+2le(t— DIPRuad Pt —2)D)]
(7.12)
Hence, from (7.11) and (7.12)
le() (7.13)

lim =0.
-0 [142Q L P(t - Dot — DI?]

This will be recognized as being condition (3.1) with s(H)= (1), b,(1)=
1, and by(#) =2, J Pt —2)]-
To establish the fform boundedness condition (3.2) we proceed as
follows. From (7.2) and the matrix inversion lemma,
P =P-1) " +a(e(Ne().

Hence,
xTP() x> xTP(1—1)x
> Aial P(z—=1) ™ ' l|x|2

Now choose x as the eigenvector corresponding to the minimum
eigenvalue of [P(9)~'].
Then from (7.14)

Aminl PO ") 3 Al P~ 171

50 AL [P(H”] is a nondecreasing function bounded below by
Apd P(- D 1=K "1>0.

Hence from (7.13), 0 <b,(#) < 2K. This establishes condition (3.2).

The proof now proceeds as for Theorem 5.1.

foreachxeRr. (7.14)

a

VIII. MULTIPLE-INPUT MULTIPLE-OUTPUT SYSTEMS

For the case m=r> 1, the system (2.1), (2.2) can be represented in the
form

A(g7Y) 0
. ()
0 An(g™"
q B (g™ ") g %mBy,.(a7Y)
= : : u(®) (8.1)
g "B,(q7") 9~ %B,.(a7")

where A;(g~") and B, (¢~ ") 1 <k<m, 1<I<m are scalar polynomials
in the unit delay operator ¢~ ! with nonzero constant coefficient.
Using the m identities 1=A,(g~)F (g~ ")+ g %G(g ") where

Fg™D)=1+fig™' - +f_1q74"!

and
‘4=12i1<1m{dy}’ i=l,---,m,
(8.1) can be written
»it+dy) ag™ 0
Dol b
Ym(t+dy) 0 a(a™"
Aule™ Bin(g™h
+ : : u(f) (8.2
Bamla™" Bunla™")
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where
a(g~H=6G(g7")
and

Bi(a~)=F (g )By(qa g% %. (83)
It can be seen that (8.2) consists of a set of multiple-input single-out-
put (MISO) systems having a common input vector. The following
assumptions will be made about the system.
Assumption Set 8:
a) dy,- - ,d,, are known.
b) An upper bound for the order of each polynomial in (8.2) is
known.
¢) The system (8.1) satisfies condition

z%~4B,,(2)
zdml"danl(z)

2=y, (2)

=0
z%m—%B  (2)

det for |z|< 1.

Condition 8c) deserves comment.

First, for any output component y;, 1 <i <m, there exists at least one
polynomial ¢~#%B,(g~"), 1<j<m, for which the power of ¢~!
associated with its (nonzero) leading coefficient is 4. For each such
polynomial the associated input u«(f) appears in y,(t +4;) with the least
possible delay d,. Evaluated at z=0 condition 8¢) requires the matrix of
these leading coefficients to be nonsingular.

Second, the genericity of condition 8c) {for the model (8.1)] depends
upon the initial parameterization of the system from which (8.1) is
computed. This dependence is currently under investigation.

The control objective, as before, is to achieve

lim [y()—pF(N]=0 i=L---.m
=0
where y*(?) is a reference sequence. It is assumed that each {y*(?)} is

known g priori and that |y}(#)| <m;< oo for all ¢, i=1,- -+, m.

IX. MIMO ApAPTIVE CONTROL

This section will be concerned with the multivariable versions of the
adaptive control algorithms introduced in Sections V and VI. The
multivariable version of the algorithm of Section VII also follows analo-
gously.

A. MIMO Prgjection Algorithm I

Let #! be the vector of parameters in a;(g~") and
B1(g™ Y« Bun{g ™). Then (8.2) may be written in the form

y(t+d)=g (70, 1<i<m ©.n
where
t(OT=(20)- - 2t -+ Du (- - u(t—m—d+1)7),
Define
et +d)=y,(t+d) —y?(t+d)
= (0705 -yt +d). 02

It is evident that the tracking error may be made identically zero if it is
possible to choose the vector u(?) to satisfy

o) 9=y (1 +d),

Obviously (9.3) is a set of simultaneous equations in #(r). Now the
matrix multiplying u(?) is nonsingular since in (8.3) det(diag F(z))=1 at
z=0 and Assumption 8c) holds. Hence a unique solution u(?) of (9.3)
exists at the true parameter value 8.

Consider the following adaptive algorithm:

1<i<m. 9.3)

840 =0t- D+ aelt—H[ 1+ olt- ) w(t—-d)] ™'
(2~ @t - )6 (- 1) 94

@) B()=yt1+d), 1<i<m (©.5)
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where 8,(2) is a p; (= m;+ m(m;+ d;)) vector of reals depending upon an
initial vector 9,(0) and y (1), 0<7<¢, u(r), O0<r<t—d, via (9.4).

Clearly, it is critical to ensure that a solution to (9.5) exists for all 7.
This is guaranteed if the matrix of coefficients of u(#) in (9.5) is
nonsingular and this is ensured by the following procedure.

1) At #=0 the arbitrary initial value 6(0) of the parameter estimate is
chosen so that Assumption Set 8 is satisfied. Hence, the analogous
equations to (9.3) evalvated at ¢(0), y(4), 1 <i <m, 8(0) are solvable for
u(0).

2) For ¢ > 1 the procedure of Lemma 9.1 below guarantees the solva-
bility of the algorithm equations for u(z).

Lemma 9.1: In order that the matrix of coefficients of u(t) in (9.5) is
nonsingular for all 151 it is sufficient for a(t) in (9.4) to be chosen as
Jollows:

e<a(f)<2—e

where 0<e< 1 and a(f)~! is not an eigenvalue of — R ~I(z— 1) V(¢) with

R~ E[ry,-,r,) (96)
and
V() £ oy -, 0,) (CX)
r; in (9.6) is the vector of coefficients of u(¢) in f(z— 1), that is,
n=86(-1) (9.8)
when
$=[0nxn Imxn Omxm+d-nl- (9.9)

g; in (9.6) is the vector of changes in the coefficient of u(#), that is,
o=S[ e(t—d)(1+ e (- d) ot -d)) ™
D)l BE-1)]. .10

Proof: The proof will be by induction and we first observe that
from (9.4) and (9.6)—(9.10)

R(t)=R(t— 1)+ a() V(). ©.11)

Then:
i) R(0) is nonsingular by the initial choice of 8,0), i=1,--,m.
i) Assume R(z—1) is nonsingular. Then from (5.11), using a(#)+0,

det R(7) =[det R(z— 1)][det(Z + a(£)R(t — 1)~ '¥(1))]

—[detR(r— 1)](a(t))"'[det( ;13)1+ R(z—1)7! V(t)]

L

=0 )

if and only if is an eigenvalue of
—R(t-1)"'¥(0).

But the definition of a(¢) ensures a(f)~! is not an eigenvalue of
— R(t— 1)~ W(¢), hence R(f) is nonsingular. However, by i) R(0) is
nonsingular and it follows by induction R(¢), ¢ > 0 is nonsingular. O

We note that the above choice of a(r) has been included for technical
completeness and that a(/)=1 will almost always work since it is a
nongeneric occurrence for 1 to be an eigenvalue of — R(t—1)~'W(»).
Also since — R(z— 1)~ 'V{(¢) has only a finite number of eigenvalues it is
always possible to find an a(7) to satisfy the lemma by computation of
the eigenvalues of R(:— 1)~ 'F(2).

Theorem 9.1: Subject to Assumptions 8a)—c) if the algorithm (9.4), (9.5)
is applied to the system (2.1), (2.2) with r=m, then { y(£)} and {w(?)} are
bounded and

']ilgo () =y D]|=0; 1<i<m.

Proof: Using Lemma (5.1) for each i, we have

lim () =0.
= [1+q(e—d) -4y ]/
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The proof now follows that of Theorem 5.1, except in the case that the
vector y(f) is unbounded. In this case there exists a subsequence {7,}
such that

'li_l’l; ly(gll=o0
and
[+ d) <yt +dg,y)l  forsome 1<j(s)<m

.and for all i 1 <i <m and for all <1,

It then follows by Lemma 3.2 that there exist constants 0 < C; < oo and
0<C;< oo such that

@2l < €1+ Cal ¥iey (8 + digs))bs

Since m is finite, there exists a further subsequence {t,} of the sub-
sequence {#,} such that

(8N <C1+ Gl vt + d))

and { y(t,+d)} is unbounded. The remainder of the proof then follows
that of Theorem 5.1 where we note that

leD=1y(D) =y DI

1<i<m.

foratleastonei, 1 <i<m

(]

B. MIMO Projection Algorithm II

From (8.2), (8.3) the fact that F(z)=1 for z=0, i=1,---,m and by
Assumption 8c) we can factor out the nonsingular matrix Ty (=] 80D
giving

yi(t+dy)
: =To{u(t)+ C(q"l)y(t)+D(q")u(t—- 1)} (9.12)
IYm(t+d)
where
(g™ 0
(g~ hH)=Ty!
) 0 (g™
and
Bu(a™h Bi(a™")
D(g~)=Ty's| : ~To}-
Bml(q_l) ﬁmm(q_ l)
Define
e(t+d) »(t+dy) yi(e+dy)
en(ttdyy | {ymt+d) | | a0+ dy)
»@+d)
=T, | u(t)+ C(qg~ () + D(g~Du(t—1)-Tg"? :
yu(+d,)

=To((1) — 05%()) ©.13)

where 857 is an mXn’ matrix whose ith row contains the parameters
from the ith rows of C(g~ "), D(¢g™"), and E=Ty ', () is an n’'x1
vector containing the appropriate delayed versions of y(2), w(¢—1), and
Yo
(O =(—y(OT, ~y(t =17, —u(e=1)7,
—u(t=2)", - YR+ A, ya(t+d,)).
Analogously to Section VI we introduce the following adaptive control
algorithm,
e(t+d)
o(t+d)T=6("— P :
eq(t+d,)

[1+ () e®] 'o()7 (9.14)

w(H)=6(5)7e(9) ©.15)
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where d=max(d,- - -,d,,). §(f)” is an mX n’ matrix of reals depending
on 4 initial matrices 8(#)7, 1 <i <d and past data from the system. Pis a
matrix of constants specified @ priori. As in Section VI, (9.14) represents
d interlaced recursions.

Once the recursions (9.14), (9.15) are initialized in a manner that leads
to a unique solution for #(0) it is sufficient to ensure that all successive
recursions lead to equations solvable for u(#), ¢ > 1. In analogy to Lemma
9.1 we have the following. .

Lemma 9.2: Define 8(t+d)T = 0(t+d)"— 057 and let K=PT, If
KT+ K— KK is positive definite, then, along the trajectories of (9.14),
(9.15):

a) uace[é(:+d)Ti(:+d)]—uace[é(z)Té(z)]<o.

__&(ttd) =0, 1<i<m.
> [+ o()To(0]'*
Proof:
a) We can rewrite (9.13) using (9.15) as
e(t+dy)
i =T ().
enl(t+4,)

Hence, from (9.14)

b(t+d)" = b(2)" - KOO (D[ 1+ (1) (D] ')  (9.18)

and
trace(8(¢ + 4)"6(¢ + d)) — trace(6(2) "6(1))

- _m[( KT+ k- kTx 2O 20 )

[1+ () T(5)]
.(i(,)r.,,(,)[l+q,(t)r.p(,)1-'¢<¢)fi(,))]

<0 if KT+ K~ K7K is positive definite.

b) As in the proof of Lemma (7.1) it follows that
fim trace(KT + k- kTR-—2O 0 _ )
>0 [1+o()Te(n]

-6 o1+ (0o (D] 9 (1)6(5)) =o0.
Since K7+ K~ K7K is positive definite then
Jim [8()o(){1+() 0()] ™ () 76(1) |=0
or
e(t+4d)

b [+ o) R et +d))- - €,(1+d,)T5 1 =0.
e,(t+d,)

lim I'y!

1~

This implies that (9.17) holds.

Using Lemma 9.2 and following the proof of Theorem 9.1 we have the
following,

Theorem 9.2: Subject to Assumptions 8a)~c), and KT+ K— KK posi-
tive definite, if the algorithm (9.14), (9.15) is applied to the system (2.1),
(2.2) with r=m, then the vectors y(¢) and u(¢) are bounded and

lim |y,()—-y2(9)]|=0,
=

I<i<m. O

X. NONLINEAR SYSTEMS

Although the analysis in the paper has been carried out for determinis-
tic linear systems, it is clear that it could be readily extended to certain
classes of nonlinear systems of known form. The essential points are the
form of (5.2) or (6.2), and the linear bound condition (3.3). The latter
point would indicate that systems with cone bounded nonlinearities
would satisfy the conditions.
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XI. CONCLUSION

The paper has analyzed a general class of discrete-time adaptive
control algorithms and has shown that, under suitable conditions, they
will be globally convergent. The algorithms have a very simple structure
and are applicable to both single-input single-output and multiple-input
multiple-output systems with arbitrary time delays provided only that a
stable control law exists to achieve zero tracking error. The results
resolve a long standing question in adaptive control regarding the
existence of simple, globally convergent adaptive algorithms.
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Stable Discrete Adaptive Control
KUMPATI S. NARENDRA, FELLOW, IEEB, AND YUAN-HAO LIN

Abstract—The paper presents a proof of stability of the model reference
adaptive control problem for the discrete case.

I. INTRODUCTION

At present there is widespread interest in the stable adaptive control of
unknown linear time-invariant plants using input-output data. Schemes
have been suggested for both direct [1]-[3] and indirect [4], [5] control of
continuous as well as discrete [6), [7] systems and the equivalence of the
two schemes in some cases has also been demonstrated [4], [S]. Probably
the single most important problem to arise in the course of these
investigations concerns the proof of stability of the overall adaptive
control loop.
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Monopoli [1] proposed a scheme for continuous systems involving an
auxiliary signal fed into the reference model and a corresponding aug-
mented error between model and plant outputs. Narendra and Valavani
[2), using positive real operators, suggested a similar approach and
clarified the resulting stability problem when the relative degree of the
plant is greater than or equal to three. They offered a conjecture that the
adaptive loop would also be stable for the general case. Feuer and Morse
[3] proposed a stable solution to the adaptive control problem but the
resulting controller is much too complex for use in practical applications,
Thus, the search has continued for a controller with a simple structure
which will assure the global asymptotic stability of the adaptive loop.
The results presented in this paper demonstrate the desired stability
behavior for discrete versions of the simple controllers suggested in [1]
and [2]. Similar results have also been reported recently in [9] and [10]
for the discrete adaptive control problem and in [11] and {12] for the
continuous case.

This paper examines the discrete version of the problem considered in
[2] recapitulating the basic philosophy as well as the specific technique
used for the design of the adaptive controller in that paper. Hence the
first few sections of this paper have been considerably condensed and
the interested reader is referred to the earlier work for all details. The
principal contribution made here is the verification of the conjecture
made in [2) regarding the stability of the adaptive loop, for the discrete
problem when an additional feedback signal suggested in [8] is used.
Accordingly most of the paper is devoted to the proof of stability. While
the proof given in [11] for continuous systems can be directly extended
to the discrete case, we present here a simpler proof which is valid for
discrete systems.

II. STATEMENT OF THE PROBLEM

A single-input single-output discrete linear time-invariant plant P is
described by the input—output pair {u(k).y,(k)} and can be represented
by the transfer function

Z,(2)
R.(2)

where W,(2) is proper, with R,(z) a monic polynomial of degree », p(z)
a monic stable! polynomial of degree m<n, and k, a constant gain
parameter. The integer n—m is called the relative degree of the plant.
We assume that only 7,7 and the sign of k, as well as an upper bound
on |k,| are known, while the coefficients of Z, and R, are unknown.

A reference model M whose output y,{(k) represents the behavior
desired from the plant when angmented by a suitable controller can be
represented by the transfer function

Wy ()=k, 0]

W) 2 b )

#))
where Ry(z) and Z,,(z) are monic stable polynomials of degrees n and
r <m respectively and &,, is a constant. Hence the relative degree of the
model is assumed to be greater than or equal to that of the plant. The
reference input (k) to the model is specified and is assumed to be
uniformly bounded.

The adaptive control problem is to determine a suitable control
function u(k) such that

Yp(K) =y 5 (k)—0 as k—co. 3)

For the sake of simplicity we shall assume that r=m. As in the
continuous case, the solution to the above problem may be divided into
two parts, The first part which is algebraic in nature addresses itself to
the realizability of a suitable controlier structure. It can be shown exactly
as in the continuous case [2] that a controller can be found which can
achieve (3) with a fixed set of parameters. In the following section the

1With all zeros inside the unit circle.
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