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Short Papers 

Discrete-Time Multivariable Adaptive Control 
GRAHAM C. GOODWIN, MEMBER, ERE, PFTER J. 
RAMADGE, AND PETER  E. CAINES, MWWER, ERE 

I. INIXODUCTION 

A long-standing  problem in control theory has been the question of 
the existem of simple,  globally  convergent adaptive control algorithms. 
By this we mean  algorithms  which, for all initial system and algorithm 
states, cause the outputs of a  given hear system to asymptotically track 
a W e d  output sequence, and achieve this with a bounded-input 
squence. 

There is a  considerable amount of literature on continuous-time 
deterministic adaptive control algorithms [l]. However,  it is only  recently 
that global  stability and convergence of these algorithms has been 
studied under general  assumptions. Much interest was generated by the 
innovative configuration proposed  by  Monopoli [2] whereby the feed- 
back gains were  directly estimated and an augmented error signal and 
auxiliary input signals  were introduced to avoid the use of pure dif- 
ferentiators in the  algorithm. Unfortunately, as pointed out in [3] the 
arguments given  in [2] concerning stability are incomplete.  New  proofs 
for related  algorithms have recently appeared [4], [5]. In [4] Narendra 
and Valavani treat the case  where the difference in orders between the 
numerator and denominator of the system transfer function (relative 
degree) is less than or equal to two. In [ 5 J  Feuer and Morse  propose a 
solution for general linear systems without constraints on the relative 
degree. The algorithms in [5] use the augmented error concept and 
auxiliary inputs as in [2]. The Feuer and Morse  result seems to be the 
most  general to date for singleinput singleoutput continuous-time sys- 
tems. However,  these  results are technically  involved and cannot be 
directly applied to the discrete-time  case. 

There has also been interest in  discretetime adaptive control for both 
the deterministic and stochastic case. This area has particular relevance 
in view of the increasing use of digital  technology in control applications 

Ljung [8], [9] has proposed  a general technique for analyzing  conver- 
gence of discretetime stochastic adaptive algorithms.  However, in this 
analysis  a question which is yet to be resolved concerns the boundedness 
of the system variables. For  one particular algorithm  [lo], it has been 
argued in [ 1 I] that the algorithm possess the property that the sample 
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mean-quare output is bounded whenever the sample  mean-square  of the 
noise is bounded.  However, the general question of stability remains 
unanswered for stochastic adaptive algorithms. 

The study of discretetime deterministic algorithms is of independent 
interest but also provides  insight into stability questions in the stochastic 
case [12],  [15]. Recent  work  by  Ionescu and Monopoli [13] has been 
concerned with the extension of the results in [2] to the  discrete-time 
case. As for the continuous case, the augmented error method is used. 

In this paper we present new results related to discretetime determin- 
istic adaptive control. Our approach differs  from  previous  work in 
several  major  respects although certain aspects of our approach are 
inspired  by the work  of Feuer and Morse [5]. 

The analysis  presented  here  does not rely upon the use of augmented 
errors or auxihry inputs.  Moreover, the algorithms have a  very  simple 
structure and are applicable to multiple-input multipleoutput systems 
with rather general  assumptions. 

The paper presents  a  general method of amlysis for discretetime 
deterministic adaptive control algorithms. The method is illustrated by 
establishing  global  convergence for three simple  algorithms. For clarity 
of presentation, we shall first treat a  simple singleinput singleoutput 
algorithm in detail. The results will then be extended to other si~@e-in- 
put single+ontput algorithms including those based on recursive  least 
squares. Finally,  the  extension to multiple-input multipleoutput systems 
will be presented. 

Since the results in this paper were  presented a number of other 
authors [16]-[18] have  presented related results for discretetime de- 
terministic adaptive control algorithms. 

11. PROBLEM STA- 

In this paper we shall be concerned  with the adaptive control of hea 
timeinvariant finitdimensional systems having the following state 
space representation: 

x( t + 1) =Ax(  1) + Bu( t);  x(0) = x, (2.1) 

A t )  = W t )  (2.2) 

where x(t), u(f), y(t) are the n x  1 state vector, r x  1 input vector, and 
rn X I output vector,  respectively. 

A standard result is that the system (2.1),  (2.2) can also be represented 
in matrix fraction, or ARMA, form as 

I /  4 q-dllBl,(q-l) . . . - d1-B I S Q  - 9 
A(q-l)y(t)= (2.3) 

q-ClBm1(q-') . * .  q-4-4Aq-I) 

with appropriate initial conditions. In (2.3), A(q-') ,  Bg(q-') ( i=  
l,-.-,rn;j=l,-.-,r)denotescalarpolynomialsintheunitdelayopera- 
tor q-' and the factors 4 - 4  represent pure time delays. 

Note  that  it is not assumed that the system  (21). (2.2) is completely 
controllable or completely  observable,  nor is it assumed that (2.3) is 
irreducible.  The  system will be required, however, to satis6 the condi- 
tions of Lemma 3.2. 

It is assumed that the coefficients in the matrixes A ,  B, C in (2. I), (2.2) 
are unknown and that the state x( t )  is not directly measurable. A 
feedback control law is to be designed to stabilize the system and to 
cause the output, {y(t)} ,  to track a given  reference  sequence {y*(t)} .  
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Specifically, we require y(t)  and u(t) to be bounded uniformly in 1, and 

, m. (2.41 limyi(t)-y:(t)=O i = I , - . -  
I-rW 

m. KBYTecEINIcULBMMAs 

Our analysis of discrete-time multivariable adaptive control algorithms 

Lemma 3.1: If 
will be based on the  following technical results. 

lim s(02 =O (3.1) 
I+- b,(t) + b(t)u(t)Tu(t) 

whwe (bl(t)}, {bz(t)}, und {s(t)} me realscab seguenc~ rmd (o(r)} is u 
realp-wtor sequence; then d j e c t  to 

I )  uniform l n n m W m s s  condition 

O<bl( t )<K<a and O<b2(t)<K<a,  (3.2) 

foraIIt>Oand 
2) linear bmmdecitress condition 

where O<Ci<a,, O<C2<oo, it follows t h  

lim s(t)=O 
r-m 

(3.4) 

(Il~(t)ll) is bounded. 
Proof: If {s( t ) }  is a bounded sequence, then by (3.3) ( I l u ( t ) l l )  is a 

bounded sequence. Then by (3.2) and (3.1) it follows that 

f--w 
lim s(t)=O. 

Now assume that { s ( t ) }  is unbounded. It follows that there exists a 
subsequence { tn} such that 

f"-borr 
lim Is(48)l= 00 

and 

Is(t)l< Is(t,)l for t a n .  (3.5) 

Now along the subsequence { tn) 

> I4tn)l 
K"2+K'/2[C, + C*ls(tJ] 

using (3.3) and (3.5). 

HenCe, 

but this contradicts (3.1) and hence the assumption that {s(t)} is un- 
bounded is false and the result  follows. 0 

In order to use this lemma in proving global convergence of adaptive 
control algorithms it will be necescrary to verify (3.1) (with s(t)  inteIpr* 
ted as the tracking error) and to check that assumptions (3.2) and (3.3) 
ate satisfied 

The next  lemma will be used to verify that the linear boundedness 
condition (3.3) is satisfied by an important class of linear time4nvariant 
system. This class corresponds to those linear time-invariant systems for 
which the control objective (2.4) can be achieved  with  a bounded-input 
seq-ce and for which the tracking error can be reduced to zero if the 
system parameters are known. 

Lemma 3.2: For the ystem (2.3) with r = m, and subject to 

for 121 < 1 when? 

if - In ( t+41=mz.  
O < I < T  
1 <i<m 

(3.7) 

then there exist constants m3, m4 which are independent of T with 0 <m, < 
m, O<m4< a, such that 

l ~ + ( t ) l < % m ~ + m ~  O < t < T ,  i = l , . - - , m .  

Prm$ The result is standard and simply follows from the fact that 
(3.6) ensures that the system has a stable inverse. a 

In the remainder of the paper these results will be used to prove  global 
convergence of a number of adaptive Control algorithms. Sections 
IV-VI1 will be concerned  with adaptive control of singleinput single- 
output systems. Sections VI11 and IX will extend  these results to the 
multiple-input multiple-output case. 

IV. SINGLB-hUT SINGLB-OUTPUT SYSTEMS 

It is well known that for the single-input single-output (SISO) case, the 
system output of (2.1),  (2.2) can be described by 

A(4-11Y(t)=4-dB(4-')u(t) (4.1) 

where (u(t)}, (y(t)} denote the input and output sequences. respec- 
tively, and A(q-'), B(q-') are polynomial functions of the unit delay 
operam 4 -  '. 

A(q-')=l+o,q-'+.*. +fq#q-n 

B(q-')=bo+b1q-'+*..  +b,,,q-"'; bo+O. 

d represents the system  time  delay. The initial conditions of (2.1) are 
r e p ~ b y i u i t i a l v a i u e s o f y ( t ) , O ~ t ~ - n , a n d u ( t ) ,  - -d>t>-d-m.  

The following  assumptions will be made about the system. 
Assumption  Set 4: 

a) d is known. 
b)Anupperboundfornandmisknown 
c) B(z) has all zeros strictly outside the closed unit disk. (This is 

necessary to ensure that the control objective can be achieved  with  a 
bounded-input sequen~e.) 

We note that, by d v e  substitution, (4.1) can be rewritten BS 

y(l+d)=a(q- ' )y(t)+lB(q-')u(t)  (4.2) 

where 

As previously stated, the control objective is to achieve 

(4.3) 

where {y*(t)} is a reference sequence. It is assumed that {y*(t)} Is 
known u priori and  that 

ly*(t)l <m, < 00 for all t. (4.4) 
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v. SISO PROJEcIlON URITFIM 1 

Let 0, be the vector of system parameters (dimension p = n + m + d),  

e , T = ( ~ . . . ,  4 r - l , ~ ~ . . . , ~ ~ + 1 - 1 ) .  (5.1) 

Y(t+d)=cp(O=% (5.2) 

men (4.2) can be written 

where 

cp(t)T=(y(t),-..,y(t-n+l),u(t),-.-,u(t-m-d+l)). (5.3) 

Now  define the output tracking error as 

e ( t + d ) = y ( t + d ) - y * ( t + d )  

=cp(t)Teo-y*(t+d). (5.4) 

By choosing { u(t)) to satisfy 

cp(t)Teo=Y*(t+d) (5.5) 

it is evident that the  tracking error is identically zero. However,  since Oo 
is unknown, we replace (5.5) by the following adaptive algorithm: 

i (1)=i(1-1)+a(f)cp(t-d)[ l+cp(t--d)=~r-d)]- ’  

*[r(t)-cp(t-d)=i(t-1)] (5.6) 

q(t)%(t)=y*(t+d) (5.7) 

where i(t) is a p-vector of reals depending on an initial vector 6(0) and 
on y ( ~ ) ,  O<T < r, U(T), O<T < t - d via (54,  and where the gain constant 
a($) is computed as follows: 

a(t) = 1 if [(n + 1)th  component of right-hand  side of  (5.6) 
evaluated using a(t) = l]+ 0; (5.8) 

= y  otherwise where y is a constant in the interval 
( ~ 2 - 4 ,  y#1  mdO<c<l. 

This choice of gain constant prevents  the computed coefficient  of u(t) 
in (5.7) being zero. We also remark that the purpose of the coefficient 1 
in the tern [I +Ht- d)=Ht- 41-l of  (5.6) is solely to avoid  division  by 
zero.  Any  positive constant could be used in place of the 1. 

Apart from the above modification, the algorithm (5.6) is an orthogo- 
nal projection of O(t - 1) onto the hprsurface y(t) - cp(t - d)%= 0. 

In the analysis of algorithm, we will first show that the Euclidean 
norm of the vector O(t) = O(t )  - 0, is a nonincreasing function along the 
trajectories of the  algorithm. This leads to a characterization of the 
limiting  behavior of the  algorithm which will allow us to use Lemma 3.1 
to establish global convergence. 
L.em 5.1: Along the solt&ons of (5.6), (5.7), 

ond 

lim cp(t)=&) (5.10) 
r - x a  [1+cp(t)=cp(t)]’/2 

proof: Using the definition of i(t),  (5.6) may be rewritten as 

i(t)=i(t-l)-a(t)cp(t-d)[l+cp(t-d)Tcp(t-d)]-’ 

.cp(t-d)%(t-l). 

Hence, 

for all values of d t -  d )  pcovided 0 <a(t) < 2. This is satisfied  by 
definition (5.8). Then, since I10(t)l12 is a bounded nonincreasing function 
it converges.  Setting 

€(t)=--qI(t--d)=i(f-l) (5.13) 

[and noting that 

1 
is bounded away from zero, with a(t) defined as in (5.8)]  we conclude, 
from (5.12), that 

lim c2(0  
I+- [l+cp(t-d)T~(t-d)] 

=O 

and hence 

Now  using  (5.13) and (5.11) it follows that 

r(t)= -cp(t-d)%(t-d)- z a ( t - i )  
d-  1 

i- 1 

Then using (5.4) and (5.7)  we have that 

Hence, 

- z a(t-i)  & - d l T  
d-  1 

i- 1 [l+cp(t-d)=cp(t-d)J’/z 

Now  by the Cauchy-Schwan inequality and the fact that 1u(t)l<2 

Then using  (5.14) it follows that 

cp(t-d-i) 

[1+cp(t-d-i)=cp(t-d--i)]1/2 

(5.12) 
c(t-i) 

[ ~ + r p ( t - d - i ) ~ c p ( t - d - ~ ) l ” ~  
=O fori=1,2,--- ,d-l .  (5.17) 
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Hence, using (5.10, (5.17), and (5.14) 

lim ‘--)- [l+cp(t-d)rcp(t-d)]”’ 
e( r )  = 0. (5.18) 

This establishes (5.10). 0 
Note that we do not prove,  or claim, that i(r) converges to 8, 

However,  the  weaker condition (5.10) will be sufficient to establish 
convergence of the tracking error to zero and boundedness of the system 
inputs and outputs. These are the prime properties of concern in adap 
tive  control. 

Theorem 5.I: Subjeer io Assumptiom 4a)-c); if the algorithm (5.6), 
(5.7) is qpliea‘ to rhe ysystem (2.1), (2.2) ( r  = m = I ) ,  then { y(r)} d { u(t)} 
are baurded and 

lim [y(r)-y*(r)]=O. (5.19) 
r+m 

ProoJ Lemma 5.1 ensures that condition (3.1) of Lemma 3.1 is 
satisfied, with s( r )  = e( t), the tracking error, and a(?) = q(r - d) the vector 
defined  by (5.3). Also b,(r)= 1, and 4 ( t ) =  1. It follows that the uniform 
boundedness  condition (3.2) is satisfied. 

Assumption 4c) and Lemma 3.2 ensure that 

( ~ ( & - d ) ( < r n ~ + m ~ , ~ ~ ( y ( ~ ) 1  f o r d   I < k < t .  

Therefore,  using (5.3) 

Ildr-d)ll < P { m o + I m a K ( l , m 4 ) 1 1 ~ r l v ( ~ ) l )  

but 

le(0l 2- lY(~)l- lY*(~)l>  Iv(Ol-m, .  

HenCt3, 

I I c p ( ~ - ~ ) l l ~ P { m 3 + t ~ ( l , ~ ~ ~ l , ~ r I l e ( ~ ) 1 + ~ l l }  

=C,+Cz max le(T)I; O<C,<m, OcC2<w 
l C S C f  

where 

VI. SISo PROJJXTION ALGORITHM 11 

In this section we present an algorithm differing  from that of Section 
V in that the control law  is estimated directly. This approach is adopted 
in [5], and essentially  involves the factorization of Bo from (4.2). A 
related  procedure is used in the self-tuning  regulator [lo] where  it is 
assumed that the  value of Bo is known. 
An advantage of the algorithm is that the precautions required in 

Section V to avoid division by zero in the calculation of the input are no 
longer necessary. However, a disadvantage is that additional information 
is reguired;  specifically, we need to know the sign of Bo and an upper 
bound for its magnitude. 

Factoring Bo from (4.2) yields 

y ( t + d ) = j 3 0 ( d y ( t ) + . . .   + & l y ( f - n + + ) + u ( t )  

+ & u ( t - l ) - . -   + & + d - l u ( t - m - d + l ) ) .  (6.1) 

Let 

e ( f + d ) = y ( t + d ) - y * ( f + d )  

= B ~ ( u ( r ) + d u ( r ) . . . r  - , y (ys t -n+l )+B~u( t - l )  

‘ e . .  +BA+d- ,u ( t -m-d+ l ) - - y* ( t+d) )  B O  I 

cp(f)==(-y(t).** -y( t - n + l ) , - u ( t - l ) . . .  

-u( t -m-d+l) ,y*( t+d))  

It is evident that the tracking error can be made identically zero by 
choosing (u(t)}  such that 

U ( r )  = Cp(r)=e& (6.3 

However, since 86 is unknown, the control law will be recursively 
estimated. The following adaptive algorithm will be  considered: 

where io is a fixe+ consta$ and i ( t )  is ap-vector of reak depending on 
d initial  values e (o ) ; - . , e (d -1 )  and on Y(T), o < T < ~ ,  u(T), O<T< 
1 - d -  1 via (6.4). Note that (6.4) is actually d separate recursions 
interlaced. (It has recently been pointed out [I81 that it is also possible to 
analyze a  single  recursion  without interlacing using a  different  technique 
but the same general  principals.) 

The analysis of projection algorithm I1 has much in common with the 
analysis for projection  algorithm I. We will therefore  merely state the 
analogs of Lemma 5.1 and Theorem 5.1 for the algorithm (6.4),  (6.5). 

Lemma 6.1: Define 

i ( r )=i ( t ) -e& (6.6) 

0 
?’hen IIB(t+d)112-IIi(?)112~0 dong with ? h e  solutions of (6.4) and (6.5) 
and 

provided 

o< 7 <2. B O  

BO 
0 

Lemma 6.1 is used to prove Theorem 6.1 in the same manner that 
Lemma 5.1 is used to establish Theorem 5.1. We obtain the following 
theorem in this way. 

Theorem 6. I :  Subjecr to Assumptiom 4a)-c) and for 0<B0//jO<2; if 
? h e  algorirhm (6.4), (6.5) is qvplied to rhe  ystem (2.I), (2.2), then (y( r ) )  
and (u( f ) }  are  bounded and 

I--)- 
lim [ y ( r ) - y* ( t ) ]=o .  

We note that the condition 0 < / 3 0 / ~ 0 < 2  has been  previously conjee 
hued 191. [ lo]  in regard to stochastic self-tuning regulators  using  least 
squares. The condition can always be satisfied if the sign of Bo and an 
upper bound for the magnitude of &, are known. 

MI. ADAPTIVE CONTROL USING &!CURSIVE LEAST SQUARES 

The widespread use of recursive least squares in parameter estimation 
indicates that it may find application in the adaptive control context, We 
treat the unit delay case of algorithm  I  with the projection (5.6) replaced 
by  recursive  least squares. 

The adaptive control algorithm then becomes 

i ( r ) = i ( t - 1 ) +  a(t)P(r-2)cp(r-l) 
[1+U(~)cp(t-1)=P(r-2)cp(r-1)] 
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where P(t) is a p X p  matrix and  the recursion (7.2) is assumed to be 
initialized with P(- 1) equal to any positive  definite matrix 

The scalar u(t) in (7.1),  (7.2) plays the same  role as in Section V and is 
required only to avoid the nongeneric possibility of division by zero in 
(7.3) when evaluating u(t). Hence, a(t)= 1 will almost always  work and 
for u(t)=l we  observe that (7.1) and (7.2) are the  standard recursive 
least squares algorithm. The sequence {a(t)] may be chosen as in (5.8). 

L m q u  7.1: Aiong-w'th the solutiom of (7.I), (7.2), (7.3) the frmction 
v(t)= @(t)=P(t- l)-'@(t) is CI bounded. nonnegutioe, nonincreanng f.ne- 
twn and 

lim cp(t-l)=i(f-l) =O 
(7.4) 

[1+a(t)cp(l-l)=P(t-2)cp(t-1)]'/2 

i( t)=i(t-1)- a(t)P(t-2)cp(t-l)cp(t-l)=i((t-l) 
[l+u(t)cp(t-l)=P(r-2)cp(t-l)] 

. (7.5) 

Then using (7.211 

i ( r ) = P ( t - l ) P ( t - 2 ) - ' i ( f - l ) .  

Thus, 

~ ( t - l ) - ' ~ ( t ) = ~ ( t - 2 ) - ' ~ ( t - l ) .  (7.6) 

Now d e f i i g  V(t) as i(t - l)=P(t-  l)&t - 1) we have 

v(t)- v ( f - l ) = i ( t ) = P ( t - 1 ) - ' ~ ( # ) - ~ ( t - 1 ) = ~ ( t - 2 ) - ' ~ ( r - l ) .  

using (7.6) 

v ( t ) - v ( t - l ) = [ i ( t ) - i ( f - l ) ] = P ( t - 2 ) - ' i ( t - l )  

= - a( t )  
i( t- l)=cp(t-l)cp(t-l)=i(t-l)  
[ l+o(t)cp(t-l)=P(t-2)(p(t-l)]  

(7.7) 

where we have used (75). It is clear from (7.7) that V(t) is a  bounded, 
nonnegative, nonincreasing function and hence converges. 

Thus, from (7.7), and since a(t) is bounded away from zero, 

(7.12) 

Hence, from (7.1 1) and (7.12) 

This will be recognized as being condition (3.1)  with s(t)= e(t), 6,(t)= 

To establish  the &form boundedness  condition (3.2)  we proceed as 
1, and 62(t)=2(&JP(t-2)1)- 

follows. From  (7.2) and  the matrix inversion lemma, 

X=P(t)-'x>x=P(t-l)x 

>&[P(t-1)-']IIxll2  foreachxEW'. (7.14) 

Now  choose x as the eigenvector  corresponding to the minimum 
eigenvdue of [ P( r) - '1. 

Then from (7.14) 

So A,JP(t)-'] is a nondecreasing  function bounded below  by 

Hence  from (7.13), 0 < b2(t) < 2K. This establishes condition (3.2). 
The proof now proceeds as for Theorem 5.1. 0 

&&y-L)- ']=K-'>o. 

For the  case m = r> 1, the system (2.1),  (2.2) can be represented in the 
form 

where Ak(q-')  and B d q - ' )  1 <k<m, 1 < I < m  are scalar polynomid~ 
in the  unit delay operator q-' with nonzero c o n s t a n t  coefficient. 

Using the m identities 1 =Ai(q-')I$(q-')+ q-4Gi(q-') where 

and 

(8.1) can be written 
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where 

and 

) 3 i i ( q - ' ) = ~ ( q - ' ) B i i ( q - ' ) q 4 - ~ .  (8.3) 
It can be seen that (8.2) consists of a set of multiple-input  single-out- 

put (MISO) systems  having  a  common input vector. The following 
assumptions will be made about the system. 

Assumption  Set 8: 
a) dl,- . . ,& are known. 
b) An upper bound for the order of each polynomial in (8.2) is 

c) The system (8.1) satisfies condition 
known. 

Condition 8c)  deserves comment. 
First, for any output component yi. 1 < i < m, there  exists at least one 

polynomial q-&Z$(q-'), 1 < j < m ,  for which the power of q-' 
associated  with  its  (nonzero) leading coefficient is 4. For each such 
polynomial the associated input $t) appears in yi(t + 4.) with the least 
possible  delay 4. Evaluated at z=O condition 8c) requires the matrix of 
these  leading  Coefficients to be nonsingular. 

Second, the genericity of condition 8c)  [for  the  model (8.1)] depends 
upon the initial parameterization of the system from  which (8.1) is 
computed. This dependence is currently under investigation. 

The control objective, as before, is to achieve 

lim [y,(t)-y:(t)]=O i=l , .--  
r--t m 

,m  

where y:(t) is a  reference  sequence. It is assumed that each (y:(t))  is 
knownaprioriandthatIy~(t)l<m,<w forallt,i=l;..,m. 

IX. MIMO h m  C ~ N F R O L  

This section will be concerned  with the multivariable  versions of the 
adaptive control algorithms introduced in Sections V and VI. The 
multivariable  version of the algorithm of Section VI1 also follows  analo- 
gously. 
A. MIMO Projection  AIgorithm I 

Let 0; be  the  vector of parameters  in ai(q-')  and 
&(q-')-  * B,,,,(q-'). Then (8.2) may be written in the form 

where 

Define 

It is evident that the tracking error may be made identically zero if it is 
possible to choose the vector u(t) to satisfy 

Ipi(t)Te;=y,qt+4), 1 <i<m.  (9.3) 

Obviously  (9.3) is a  set of simultaneous equations in u(t). Now the 
matrix multiplying u(t) is nonsingular since in (8.3) det(diagq(z))= 1 at 
z = 0 and Assumption  8c)  holds. Hence a  unique  solution u(t) of (9.3) 
exists at the true parameter value 8. 

Consider the following adaptive algorithm: 

where h(t) is ,a pi (= 5 + m ( q  + 4) vector of reds depending upon an 
initial vector %(O) and yi(.), 0 <T < t, u(T), 0 <T < t - 4 via  (9.4). 

Clearly, it is critical to ensure that a solution to (9.5) exists for all t .  
This is guaranteed if the matrix of coefficients of u(t) m (9.5) is 
nonsingulm and this is ensured by the f@owing procedure. 

1) At -0 the arbitrary initial value O(0) of the parameter estimate is 
chosen so that Assumption Set 8 is satisfied- Hepce, the analogous 
equations to (9.3) evaluated at +(O),y(aC,), 1 ( i  6m, 8(0) are solvable for 

2) For > 1 the procedure of Lemma 9.1  below guarantees the solva- 
bility of the algorithm equations for u(r). 

Lemma 9.1: In order thut the matrix of coeflcients of u(t)  in (9.5) i s  
nonsingulm for all t > 1 it is suflcient for a(t) in (9.4) to be chosen czs 
follows: 

40). 

c<a(t)<2-c 

where O<c< I and u(t)-' is not an eigenvalue of - R  -l(t- I)V(t) with 

R(r - 1) [r1; . - .rml (9.6) 

and 

when 

st=[Omx* Zmxn Omx(m,+r~-~J. (9.9) 

q in (9.6) is the vector of changes in the coefficient of u(t), that is, 

o i = s i [ ~ i ( t - ~ ) ( l + ~ i ( r - 4 ) T c p i ( t - - ) > - 1  

. (y i (r)-cpi( t -~. ,~Bi(z- l ) ) ] .  (9.10) 

Proof: The proof will be by induction and we first  observe that 
from (9.4) and (9.6)-(9.10) 

R(t)=R(t-l)+~(t)V(t). (9.1 1) 

Then: 
i) R(0) is nonsingular by the initial choice of i(O), i =  1,. . , m. 
ii) Assume R ( t -  1) is nonsingular. Then from (9.1 I), using a(t)#O, 

detR(t)=[detR(t- I)][det(I+a(t)R(r-I)-'V(t))] 

=[detR(t- I)](u(t))" 1 
= O  if and only if is an eigenvalue of 

4 r )  

-R(t-l)-'v(f). 
But the defiition of a(t) ensures u(t)-I is not an eigenvalue of 
- R(t - l)-lV(t), hence R(t) is nonsingular. However,  by  i) R(0) is 
nonsingular and it follows  by induction R(t), t > 0 is nonsingular. 0 

We note that the above choice of n(t)  has been  included for technical 
completeness and that a(t)= I will almost always work since it is a 
nongeneric Occurrence for 1 to be an eigenvalue of - R(t  - l)-'V(t). 
Also since - R(r - I)-lV(t) has only a finite number of eigenvalues it is 
always  possible to fiid  an a(t) to sat is fy  the lemma  by computation of 
the eigenvalues of R ( t -  l)-lV(t). 

Theorem 9.1: Subject io Asswqntions &)-e) if the dgorithm (9.4),  (9.5) 
is appZied to the vstem pi), (2.2) with r = m, then { y(r)) and { u(t)) are 
bounded and 

r-tm 
lim Iyi(t)-y:(t)J=O; 1 < i < m .  

proof: Using Lemma (5.1) for each i, we  have 
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The proof  now  follows that of Theorem 5.1, except in the case that the 
vector y( t )  is unbounded. In this case  there  exists a subsequence {t,} 
such that 

lim Ilv(t,)ll= 43 
fm+m 

and 

bdt+ 411 < I~,pJtn + 4co))l for some 1 <m 
.andforallil<i<mandforallt<tn. 

It then  follows by Lemma 3.2 that there exist constants 0 < Cl < 03 and 
o<c*<oo such that 

I Id tn) I I  <CI+ CzI~~ta ) ( tn  +&t& 1 <i<m.  

Sice m is finite,  there  exists a further subsequence {t,,} of the sub- 
sequence { t"} such that 

II~f(td)ll<Cl+Czly,(t,.+(ll)l foratleastonei, l<i<m 

and { yr(td + (11)) is unbounded. The remainder of the proof then follows 
that of Theorem 5.1 where we note that 

0 

B. MIMO Prqjection Algorithm II 

From (8.2),  (8.3) the fact that 4(z)=1 for z=O, i = l , . - . , m  and by 
Assumption 8c) we can factor out the n0nsinguIa.r matrix To (=[ &<O))D 
giving 

[ ~ ~ ~ ~ ~ ) ] = r o ~ ~ ( t ) + c ( q - ~ ) u ( t ) + o ( q - ~ ) u ( t - l ) ~  (9.12) 

where 

c(q-I)=ril 

a id  

I [ Y : ( t ; d l ) ] ]  
=ro u(t)+c(q-l)u(t)+o(q-l)u(t-l)-r,-l 

vat + 4) 

=ro(l(.ct)-e6T'(t)) (9.13) 
where is an m X A' matrix whose ith row contains the parameters 
from the ith rows of C(q-'), D(q-'), and E=??&'. dt) is an n'xl 
Vector containing  the appropriate delayed  versions of y(t), u(t- l), and 
u w :  
cp(t)T=(--y(t)=, -Y(t-l)T,.. . ,-u(t-l)T, 

- u ( t - 2 ) T , . . . , y ~ ( t + d 1 ) , . . . , y ~ ( t + ~ ) ) .  

algorihq 
~ o g o u ~ l y  to Section VI we introduce the  following adaptive control 

i('.d)T=&t)T-P[ e 1 ( t + 4 )  i ][l+cp(~)T~(t)]-'cp(t)T (9.14) 

4) 
u(t)=i(t)Tcp(t) (9.15) 

where d - -dl,.  6). i( t)T is an m X n' matrix of reds depending 
ondinitialmatriaxB(z)T, l<i<dandpastdatafromthesystem.Pisa 
matrix of constants specified a priori. As in Section VI, (9.14) represents 
d interlaced recursions. 

%&the recursik (9.14),  (9.15) are initialized m a manner that leads 
to a unique solution for  u(0) it is sufficient to ensure that all successive 
recursions  lead to equations solvable for u(t), t > 1. In analogy to Lemma 
9.1 we have  the following 

K T +  K- KTK is positive  definite, then, along the trujectories of (9.14), 
(9.15): 

 emm ma 9.2: ~ e f i n e  e(t+ d)T = i ( t  + 4~- e;T and let K =  pr, g 

a) t r a c e [ ~ ( t + d ) T ~ ( t + d ) ] - t r a c e [ ~ ( t ) T ~ ( t ) ] < ~ .  

hJ 
a) We can rewrite (9.13) using (9.15) as 

Hence, from (9.14) 

~(t+d)T=~(t)T-~(t)Tcp(t)[l+cp(t)Tcp(t)]-lcp(t)T (9.18) 

and 

. ( 4 o T d m  +cp(t)T~(t) l - 'd~)T~(t))  1 
< O  ifKT+K-KTKisposit ivedefhite.  

b) As in the proof of Lemma (7.1) it follows that 

lim K T + K - K T K  d t ) T d t )  
t+m ( [ I+  dt)Tcp(t)l 1 

.(~(t)T~(r)[l+(P(t)T(P(t)l-lcp(f)TBit))=O. 

Since KT+ K- KTK is positive definite then 

lim [~( t )Tdt ) [ l+cp( t )Tcp( t ) ] - Icp( t )T~( t ) ]=o  

or 

1-00 lim r&'[ ] ~ 1  + ~ (  t ) T d t ) ] - ' ~ e l ( t + ~ l ) . . . e m ( t + d ~ ~ r i l = O  . 

This implies that (9.17) holds. 0 
Using Lemma 9.2 and following the proof  of Theorem 9.1 we have the 

Theorem 9.2: Subject to Assumptiom &)-c), and KT+ K -  KTK posi- 
tiw definire, if the algorithm (9. I4), (9.15) is appfied to the ystem @I), 
(2.2) with r= m, then the oectors y ( t )  und u(t) are bounded and 

I-DOO 

e1(t+dJ 

e,(t + dm) 

following. 

lim lyi(t)-y:(r)l=O, 1 <i<m.  
1+m 

0 

X. NONL~EARSYSITMS 

Although  the anal@ in the  paper has been carried  out for determink 
tic linear systems, it is clear that it could be readily extended to certain 
classes of nonlinear systems of known form. The essential points are the 
form of (5.2) or (6.2), and the linear  bound condition (3.3). The  latter 
point would indicate that systems with cone bounded nonlinearitiw 
would satisfy the  conditions. 
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XI. CONCLUSION 

The paper has analyzed a general  class of discrete-time adaptive 
control algorithms and has shown that, under suitable  conditions,  they 
will be globally  convergent. The algorithms have a  very  simple structure 
and are applicable to both singleinput single-output and multipleinput 
multiple-output  systems  with arbitrary time  delays  provided  only that a 
stable control law exists to achieve zero tracking error. The results 
resolve  a  long standing question in adaptive control regarding  the 
existence of simple,  globally  convergent adaptive algorithms. 
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Stable Discrete Adaptive Control 
KUMPATI S. NARENDRA, m w ,  m, AND YUAN-HA0 L M  

1. INTRODUC~ON 

At present there is widespread interest in the stable adaptive control of 
unknown  linear  time-invariant plants using input-output data. Schemes 
have  been suggested for both direct [1]-[3] and indirect 141, [5] control of 
continuous as well as discrete [a [7] systems and the  equivalence of the 
two schemes in some cases has also been demonstrated [4],  [5]. Probably 
the  single  most important problem to arise in the course of these 
investigations  concerns the proof of stability of the overall adaptive 
control loop. 
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by J. L. Speyer,  Past chairma0 of the  Stochastic Control Committee This work was 
supported  by the Office of Naval RLsearch under Contract Noal14-76C4bJI7. 

The authors are with  the  Department of Engineeriq and  Applied Science, Yale 
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Monopoli [l] proposed  a  scheme for continuous systems  involving an 
auxiliary signal f e d  into the reference  model and a corresponding aug- 
mented error between  model and plant outputs. Narendra and Valavani 
[2], using  positive real operators, suggested a similar approach and 
clarified the resulting stability problem  when the relative  degree of the 
plant is greater than or equal to three. They offered  a conjecture that the 
adaptive loop would also be stable for the general case. Feuer and Morse 
[3] proposed  a stable solution to the adaptive control problem  but the 
resulting  controller is much too complex for use in practical  applications. 
Thus, the search  has continued for  a controller with a simple structure 
which will assure  the  global asymptotic stability of the adaptive loop. 
The results  presented in this paper demonstrate the desired stability 
behavior for discrete  versions of the simple  controllers suggested in [l] 
and [2]. Similar results have also been reported recently in [9] and  [lo] 
for the discrete adaptive control problem and in [ 111 and [ 121 for the 
continuous case. 

This paper examines the discrete version of the problem  considered in 
[2] recapitulating the basic philosophy as well as the specific  technique 
used for the design of the adaptive controller in that paper. Hence the 
first few sections of this paper have been considerably condensed and 
the interested reader is referred to the earlier work for all details. The 
principal contribution made here is the verification of the conjecture 
made in [2] regarding the stability of the adaptive loop, for the discrete 
problem  when an additional feedback  signal  suggested in [8] is used. 
Accordingly  most of the paper is devoted to the proof  of stability. W e  
the proof  given  in 11  11 for continuous systems can be directly  extended 
to the  discrete case, we present  here a simpler proof  which is valid for 
discrete systems. 

11. STATJSIENT OF THE PROBLEM 

A singleinput single-output discrete linear time-invariant plant is 
described by the input-output pair { u(k),y,(k)} and can be represented 
by  the  transfer  function 

where Wp(z) is proper,  with %(z) a  monic polynomial of degree n, Zp(z) 
a  monic  stable'  polynomial of degree m <n, and $ a constant gain 
parameter. The integer n - m  is called the relative  degree of the plant 
We  assume that only m,n and the sign of $ as well as an upper bound 
on l k p l  are known, while the coefficients of Zp and I$ are unknown. 

A reference  model M whose output y d k )  represents the behavior 
desired from the plant when augmented by  a  suitable controller can be 
represented by the transfer function 

where Rdz) and Z d z )  are monic stable polynomials of degrees n and 
r < m respectively and k,,, is a constant. Hence  the  relative degree of the 
model is assumed to be greater than or equal to that of the plant. The 
reference input r(k) to the model is specified and is assumed to be 
uniformly  bounded. 

The adaptive control problem is to determine  a suitable control 
function u(k) such that 

y,(k)-y,(k)+O as k+m. (3) 

For the sake of simplicity we shall assume that r= m. As in the 
continuous case, the solution to the above problem may be divided into 
two parts. The first part which is algebraic in nature addresses itself to 
the realizability of a suitable controller structure. It can be shown  exactly 
as in the continuous case [2] that a controller can be found which can 
achieve  (3)  with  a  fixed  set of parameters. In the following  section the 
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