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On  the  Input-Output  Stability of Time-Varying 
Nonlinear  Feedback Systems 

Part I: Conditions  Derived  Using  Concepts of 
Loop Gain,  Conicity,  and Positivity 

Abstract-The object of this paper is to  outline a stability  theory 
for  input-output  problems  using  functional  methods.  More  particu- 
larly, the aim is to derive  open loop conditions  for the  boundedness 
and continuity of feedback  systems,  without, at  the beginning,  placing 
restrictions on linearity  or  time  invariance. 

It will be  recalled  that, in the special  case of a  linear  time  invari- 
ant  feedback  system,  stability  can  be  assessed  using  Nyquist's  cri- 
terion;  roughly  speaking,  stability  depends on the amounts by  which 
signals  are  amplified  and  delayed in flowing  around the loop. An 
attempt  is  made  here  to  show  that  similar  considerations  govern  the 
behavior of feedback  systems in general-that  stability of nonlinear 
time-varying  feedback  systems  can  often  be  assessed  from  certain 
gross features of input-output  behavior,  which  are  related  to amplifi- 
cation  and  delay. 

This paper is divided  into  two  parts: Part I contains  general 
theorems,  free of restrictions on linearity  or  time  invariance;  Part 
II, which will appear in a  later  issue,  contains  applications  to  a loop 
with  one  nonlinear  element. There  are  three  main  results in Part I, 
which follow the  introduction of concepts of gain, conicity,  positivity, 
and strong positivity: 

THEOREM 1 : If the  open loop gain is  less  than  one,  then  the  closed 
loop is bounded. 

THEOREMZ: If the open  loop  can  be  factored  into two, suitably 
proportioned, conic relations,  then  the  closed loop 
is bounded. 

THEOREM 3: If the open loop can  be  factored  into two positive  re- 
lations,  one of which is strongly  positive and  has 
k i t e  gain,  then  the  closed loop is  bounded. 

Results  analogous  to  Theorems 1-3, but  with  boundedness re- 
placed  by  continuity,  are  also  obtained. 

I. IXTRODCCTIOS 

EEDBACK, broadly  speaking,  affects a system in 
one of two  opposing wa>-s: depending on circum- 
stances i t  is either  degenerative  or  regenerative- 

either  stabilizing or  destabilizing. In  trying  to gain  some 
perspective  on the  qualitative  behavior of feedback SJ-s- 
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terns we might  ask:  ll'hat  are  the  kinds of feedback  that 
are  stabilizing?  Il-hat  kinds lead to  a  stable s_vstem? 
Can  some of the effects of feedback on stability  be  de- 
scribed  without  assunling a very specific system 
representation? 

Part  I of this  paper is devoted  to  the s)-stem of Fig. 1, 
which  consists of two  elements in a  feedback 10op.l This 
simple  configuration is a model  for many  controllers, 
amplifiers, and modulators;  its  range of application will 
be extended  to  include  multi-element  and  distributed 
systems,  by  allowing  the  system  variables  to  be  multi- 
dimensional  or  infinite-dimensional. 

4x*w1r 
-,X+, 

Fig. 1. .I feedback  loop  with  two  elements. 

The  traditional  approach  to  stabilit\-  involves Ll-a- 
pullov's method; here i t  is proposed to  take  a  different 
course.  and to  stress  the  relation between input-output 
beha\Tior and  stability. AAn input-oz~tf iz t f  system is one  in 
which  a  function of time, called the  output, is required 
to  track  another  function of time, called the  input;  more 
general[>- the  output  might be required  to  track sonle 
function of the  input. In order  to  behave  properly  an 
input-output s?-stem must  usualll-  have  two  properties: 

1) Bounded  inputs  must  produce  bounded  outputs- 
i.e., the  system  must  be nonexplosive. 

2 )  Outputs  must  not  be criticall!- sensitive  to small 
changes i n  inputs-changes  such as those  caused 
by noise. 

1 The  system of Fig. 1 has a sil7gle input x ,  multiplied b>- constants 
a 1  and Q Z ,  and  added i n  at t z o  points.  This  arrangement  has been 
chosen  because it is symmetrical and  thus convenient  for analysis: 

be needed. Of course. a single input loop can  be  obtained by setting 
it also remains invariant  under  some of the  transformations  that will 

u l  or an to  zero. The  terms z-1 and v: are fixed bins functions, which 
will be used to account  for  the effects of initial  conditions. The vari- 
ables e l ,  e?, y ~ ,  and y2 are  outputs. 
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These  two  properties will form  the  basis of the  definition 
of stability  presented in this  paper.  It  is  desired  to find 
conditions on the  elements HI and H 2  (in Fig. 1) which 
will ensure  that  the  overall  loop will remain  stable  after 
H I  and H? are  interconnected. I t  is  customary  to  refer 
to HI and HP prior  to  interconnection  as  the  “open-loop’‘ 
elements?  and  to  the  interconnected  structure  as  the 
“closed loop.” The problem  to  be  considered  here  can 
therefore  be  described  as  seeking open-loop conditions for 
closed-loop stability. 

Although  the  problem a t  hand is posed as a feedback 
problem,  it  can  equally well be  interpreted  as a problem 
in networks;  it will be  found,  for  example,  that  the 
equations of the  system of Fig. 1 have  the  same  form  as 
those of the  circuit of Fig. 2 ,  which  consists of two ele- 
ments  in  series  with a voltage  source,  and  in  parallel 
with  a  current  source.2 

y = v t v2. 5. i - 4, 
v2 = Z2i2. i, = yv,. 

Fig. 2. X circuit  equivalent t o  the loop of Fig. 1. 

1.1 Historical ;Vote 

The problem of Lyapunov  stability  has a substantial 
history  with  which  the  names of Lur’e,  Malkin,  Yaku- 
bowitch,  Iialman,  and  many  others,  are  associated. On 
the  other  hand,  functional  methods  for  stability  re- 
ceived less attention  until  relatively  recently,  although 
some  versions of the well-known Popov [ I ]  theorem 
might  be  considered  as  fitting  into  this  category. 

The  present  paper  has  its origin in studies  [2a,  b] of 
nonlinear  distortion in bandlimited  feedback  loops, in 
which  contraction  methods  were used to  prove  the 
existence  and  stability of an  inversion  scheme.  The 
author’s  application of contraction  methods  to  more 
general  stability  problems  was  inspired in part  by  con- 
versations  with  Sarendra  during 1962-1963;  using 
Lyapunov’s  method,  Narendra  and  Goldwyn  [3]  later 
obtained a result  similar  to  the  circle  condition of Part  
I1 of this  paper. 

The  kel-  results of this  paper, in a  son~ewhat  different 
formulation,  were  first  presented in 1964  [2dl  e].  Many 

are  inputs,  with €1 = a l x + w l  and i = a ? x + w ? ;  the  currents  and  voltages 
? I t  is  assumed  that  the  source  voltage ‘J and the source  current i 

in  the  two  elements  are  outputs. 

of these  results  are  paralleled  in  the  work  of  Brockett 
and Willems [4], who use Lyapunov based  methods. 
Several  others  have  obtained  similar  or  related  results 
by  functional  methods:  Sandberg  [Sa]  extended  the 
nonlinear  distortion  theory  mentioned  above;  later  [Sb] 
he  obtained a stability  theorem  similar  to  Theorem 1 of 
this  paper.  Kudrewicz [6] has  obtained circle conditions 
by fixed point  methods.  Contraction  methods  for  incre- 
mentally  positive  operators  have  been  developed  by 
Zarantonello [7], Kolodner [8], Minty 191, and 
Browder [lo].  A stability  condition  for  linear  time- 
varying  systems  has  been  described  by  Bongiorno  [I 11. 

2. FOKML-LATIOS OF THE PROBLEM 

There  are  several  preliminaries  to  settle,  namely,  to 
specify  a  system  model, to  define  stability,  and  to  write 
feedback  equations.  What  is  a  suitable  mathematical 
model of a feedback  element? A “black  box”  point of 
view  towards  defining a model will be  taken.  That  is  to 
say,  only  input-output  behavior,  which is a purely  ex- 
ternal  property, will be  considered ; details of internal 
structure which  underlie  this  behavior will be  omitted. 
Accordingly,  throughout  Part  I,  a  feedback  element will 
be  represented  by  an  abstract  relation, which  can  be 
interpreted  as  a  mapping  from  a  space of input  functions 
into a space of output  functions.  More  concrete  repre- 
sentations,  involving  convolution  integrals,  character- 
istic  graphs,  etc., will be  considered  in  Part 11. 

Some of the  elementary  notions of functional  analysis 
w i l l  be  used,  though  limitations of space  prevent an 
introduction  to  this  ~ubject.~ Xmong  the  concepts  which 
wil l  be  needed  and used  freely are  those of an  abstract 
relation, a normed  linear  space, an  inner  product  space, 
and  the L, spaces. 

The  practice of omitting  the  quantifier  “for all” shall 
be  utilized.  For  example,  the  statement 

(6 - $ < E -y) !’ - 

is to  be  read: 

“for all x E X, -x? 5 x?.” 
COSVENTION: A n y  expression co.rztaining a condition of 

the type ‘ ‘xEX,” free of quantijers,  lzolds for all x E X .  

2.1 The Extended ;Yormed Linear  Space X, 
In  order  to  specify  what is meant b): a  system, a suit- 

able  space of input  and  output  functions will first  be 
defined.4  Since  unstable  systems will be  involved,  this 
space  must  contain  functions  which  “explode,”  i.e., 
which  grow  without  bound as time  increases  [for  exam- 
ple,  the  exponential  exp ( t ) ] .  Such  functions  are  not  con- 
tained in the  spaces  commonly used in analysis,  for  ex- 
ample, in the L, spaces.  Therefore  it is necessary to  

The  space of input  functions will equal  the  space of output 
.I good reference  is  Kolmogorov and  Fomin 1121. 

functions. 



250 
. .  

IEEE TRANSACTIONS ON AUTOMATIC  CONTROL APRIL 

construct a special  space, which will be called X,.  X,, will 
contain  both  “well-behaved”  and  “exploding”  functions, 
which will be  distinguished  from  each  other  by  assigning 
finite  norms to  the  former  and infinite  norms to   the 
latter. X ,  will be an extension,  or  enlargement, of an 
associated  normed  linear  space X in  the following  sense. 
Each  finite-time  truncation of every  function  in X ,  will 
lie  in X ;  in  other words, the  restriction of x E X ,  t o  a 
finite time  interval,  say  to [0, t ] ,  will have a finite 
norm-but this  norm  may  grow  without  limit  as f+ 50. 

First  a  time  interval T and a range of input or output 
values TT will be fixed. 

DEFINITION: T i s  a  given  subinterval of the  reals, of the 
type [to, a> or ( - ~i , a). v is a  given  linear  space. 

[For  example,  in  the  analysis of multielement (or 
distributed)  networks, V is  multidimensional (or 
infinite-dimensional) .] Second,  the  notion of a truncated 
function is introduced. 

XOTATION: Let x be any  funct ion  mapping T itzto V, 
that is, x : T+ V ;  let t be any  point in T ;  then  the symbol 
x t  denotes  the truncated  function, xf: T+V, zchich as- 
sumes  the  values xt(.) = x ( T )  f o r  ~ < t  and  xt(7) = O  else- 
where. 

(A truncated  function is shown  in  Fig. 3.) Kext,  the 
space X is  defined. 

V 

T 

Fig. 3. A truncated  function. 

DEFINITIOE;: X  is   a space  consisting of functions of the 
type x :  T 4  V; the  following  assumptions  are  made con- 
cerning X :  

(1) X is a normed  linear  space;  the  norm of x ~ X  is 

( 2 )  If x E X  then x t E X f o r  all tET .  
( 3 )  If x: T+V,  and if x t E X f o r  all t E  T ,  then: 

denoted  by llxil. 

( a )  [ ! x t ! !   i s  a nondecreasing  function of t E  T. 
(b)  If limt+- l/xtll exists,  then x E X  and  the Zimit 

equals I I X I  I . 
(For example,  it  can  be verified that  assunlptions (1)- 
( 3 )  are satisfied by  the L, spaces.) Next, X ,  is  defined. 

DEFINITION: The extension of X, denoted b y  X,, is the 
space  consisting of those functions  whose  truncations lie 
i n X , t h a t i s , ~ , = { x l  x : ~ - - , ~ ’ , a n d x ~ ~ X f o r a Z Z t ~ ~ j .  
(NOTE: X, is a linear  space.) An extended  norm, denoted 
IIxll,, is assigned to each x E X ,  as follows:  !!x\le=IIxII if 
%EX, and IIxII,= oc ifxgx. 

The  point of assumptions (2)-(3) on X can now be  ap- 
preciated;  these  assumptions  make  it  possible  to  deter- 
mine  whether  or  not  an  element x E X ,  has a  finite  norm, 
by observing  whether  or  not  limt-a :/xf!! exists. For ex- 
ample : 

EXAMPLE 1 : Let Lp [0, x )  be  the  normed  linear  space 
consisting of those  real-valued  functions x on [0, 5 )  for 
which the  integral S,“x2(t)dt exists, and let this  inte- 
gral  equal !lxIl2. Let X=L2[0 ,  x) ,  and  let L s ~ = X , ;  that  
is, Lpr is the extension of L2[0, x ) .  Let x be the  function 
on [0, 5 )  given by x ( t )  =exp ( t ) .  Is finite, that  is, 
is x in X ?  No, because l lxtl; grows  without  limit as 
t - -+ CT. , or in other  words, = . 

2.2 Input-Output  Relations 
The  mathematical model of an  input-output  system 

will be a relation on X,: 

DEFINITION: A relation H on X, is a n y  subset of the 
product  space X ,XX, .  If ( x ,  y )  is   any  pair  belonging to H 
then y will be said to be H-related  to x ;  y will  also be 
said to be an image  of x under H.j 

In  other  words, a relation  is  a  set of pairs of functions in 
X,.  I t  will be  convenient  to  refer  to  the  first  element 
in  any  pair as an  input,  and to the second  element  as  an 
output,  even  though  the  reverse  interpretation  is  some- 
times  more  appropriate. A relation  can  also  be  thought 
of as a mapping,  which  maps  some  (not  necessarily  all) 
inputs  into  outputs. In general,  a  relation  is  multi- 
valued; i.e., a single input  can  be  mapped  into  many 
outputs. 

The  concept of state, which is essential to  Lyapunov’s 
method, will not  be used  here. This does not  mean  that 
initial  conditions  cannot  be  considered.  One  wa~7 of 
accounting  for  various  initial  conditions is to  represent 
a  system  by a multi-valued  relation,  in which  each input 
is paired  with  many  outputs,  one  output  per  initial  con- 
dition.  Another  possibility  is to  introduce a separate 
relation for  each  initial  condition. 

Note  that  the  restrictions placed on X, tend  to  limit, a 
priori, the class of allowable  systems. In particular,  the 
requirement  that  truncated  outputs  have  finite  norms 
means,  roughly  speaking,  that  only  systems  having infi- 
nite “escape  times,” i.e., systems  which  do  not blow up 
in  finite time, shall  be  considered. 

Some  additional  nomenclature follows: 

DEFINITION: I f  H is a relation on X,,  then  the domain of 
H denoted D o ( H ) ,  and the range of H denoted Ra(H),  are 
the  sets, 

Do(H) = (x1  x E X , ,  and there exists y E X ,  such that 
(x, Y)EHl 

( x ,  Y)EHJ 
R a ( H )  = {yl y E X , ,  and there exists x E X ,  such  that 

5 In  general x can  have many images. 
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NOTATION: If H i s  a  relation on X,, and if x i s  a  given 
element of X , ,  then  the  symbol Hx denotes a n  image of x 
under H.5 

The  idea  here  is  to use a special  symbol  for an  element 
instead of indicating  that  the  element  belongs  to a cer- 
tain  set.  For  example,  the  statement,  “there  exists H x  
having  property P” is shorthand  for  “there  exists 
y E R a ( H ) ,  such  that y is an image of x, and y has  prop- 
erty P.’16 

Observing that Hz is,  according to  the  definitions used 
here, a function  on T ,  the following symbol  for  the  value 
of Hx  at time t is adopted: 

NOTATION: The  symbol  Hx(t)  denotes fhe  vahe  assumed 
by  the  function Hz at  time t E T. 

Occasionally a special  type of relation,  called an 
operator, will be used: 

DEFINTION: An operator H i s  a relation on X ,  which 
satisfies  two  conditions: 1) D o ( H )  =X,. 2) H i s  single- 
valued;  that  is, if x, y ,  and z are  elements of X,, and if y 
and z are  images of x under H ,  then  y = z.  

2.3 The  Class 6l 

DEFINITION: (3 i s  the  class of those  relations H on X ,  
having  the  property  that  the zero elemenf,  denofed 0, lies in 
D o ( H ) ,   a n d   H o  = 0. 

The  assumption  that H maps  zero  into  zero  simplifies 
many  derivations; if this  condition is not  met  at  the  out- 
set,  it  can  be  obtained  by  adding  a  compensating  bias  to 
the  feedback  equations. 

If H a n d  K are  relations  in (i l l  and c is a  real  constant, 
then  the sum ( H + K ) ,  the product cH,  and  the co-mposi- 
tion  product K H  of K following H,  are defined  in the 
usual way17 and  are  relations  in 6l. The inverse of H in 
a, denoted  by H-l, always  exists. The identity operator 
on X, is  denoted  by I .  

2.4 Irzput-Output  Stability 
The  term  “stable”  has  been used in a variety of ways, 

t o  indicate  that  a  system  is  somehow well behaved. A 
system’shall  be  called  stable  if  it  is well behaved  in  two 
respects: (1) I t  is  bounded, i.e., not explosive. (2) i t  is 
continuous, i.e., not  critically  sensitive  to noise. 

DEFINITION : A subset Y of X ,  is  bounded i f  there  exists 
1-1 > O  such that,  for  all y E  Y, (lyl! ,<A. A relation H on 
X, is boundeds i f  the  image  under H of every bounded  sub- 
set of X ,  i s  a bounded  subset of X,. 

containing Hz free of quantifiers holdsfov all z in Ra(N). For example, 
6 I n  keeping  with  the  usual  convention used  here, any  statement 

“Hx>l  (xEX,)” means that  “for all x in X,, and for all H z  in 
Ra(H),   Hx>l .”  ’ In  particular, Do(H+K) = Do(H)nDo(K). Note  that  @is  nota 
linear  space;  for  example, if Do(H) #Do@) then  Do[(H+K) --K] 
# D o ( H ) .  

This  definition implies that  inputs of finite  norm  produce out- 
puts of finite  norm.  klore  than  that, i t  implies that  the  sort of 
situation is avoided in which a bounded  sequence of inputs,  say 

norms that  are finite but increasing without limit, say llHxnll =n. 
IIxnll< 1 where n= 1, 2, . . - , produces a sequence of outputs having 

DEFINITION: A relation H on X, is continuous if H 
has  the  .following  property:  Given a n y  x E X  (that   is ,  
]Ix\le< m), and  any A>O, there  exists 6>0 such  that, for 
nZZyEX, i f  IIx-yll < 6  then  IIHx-Hyll <A. 

DEFINITION: A relation H on X ,  i s  input-output  stable 
if H i s  bounded  and  continuous. 

2.5 Feedback Equations 
Although  negative  feedback  loops will be of interest, 

the  positive  feedback  configuration of Fig. 1 has been 
chosen  because i t  is symmetrical.’ The  equations  de- 
scribing  this  system, t o  be  known  as  the FEEDBACK 

EQUATIOXS, are : 

el = x11 + ulx  + y 2  (la, 

e2 = w2 f u2z + y1 (1 b) 

y 2  = H2e2 ( 2 4  

yl = Hlel (2b) 

in  which it  is  assumed  that: 

H1 and HZ are  relations  in (3 

a1 and a 2  are  real  constants 
w1 and w2 are fixed biases  in X 
x in X ,  is an  input 
el and e2 in X, are  (error)  outputs 
y l  and y z  in X ,  are  outputs. 

(The  biases  are used t o  compensate  for  nonzero  zero- 
input responses and, in  particular,  for  the  effects of 
initial  conditions.) The closed-loop  relations El, E2, F1, 
and Fz, are now defined as follows. 

DEFINITION: E1 i s  the  relation  that  relates  el to x or, 
more  precisely,  El= { ( x ,  el)  I ( x ,  e l )  E X , x X , ,  and there 
exist  e2,  yl, y?, Hlel, and  H2ez,  all in X, ,  such  that (1)  and 
( 2 )  are  satisfied. ] Similarly E2 relates e2  to x ;  F I  relates 
y l  to x; F 2  relates y 2  to x. 

All the  prerequisites  are now assembled  for  defining  the 
problem of interest  which  is: Find  conditions on H1 and 
H z  which  ensure  that El, Ez, Fl ,   and  F2 are  bounded or 
stable. In  general  it will be  enough  to  be  concerned  with 
E1 and E2 only,  and  to  neglect F1 and F2, since  every 
F z x  is related  to  some Elx  by  the  equation F2x = E l x  
-alx  -w1, so that  F Z  is bounded  (or  stable)  whenever 
El is, and  similarly  for F1 vs. E2. 

I t  should  be  noted that  by posing the  feedback  prob- 
lem in  terms of relations  (rather  than in terms of 
operators)  all  questions of existence  and  uniqueness of 
solutions  are  avoided.  For  the  resuIts  to  be  practically 
significant, it  must  usually  be known from  some  other 
sourceg that  solutions  exist  and  are  unique  (and  have 
infinite  “escape  times”). 

separate  assumptions.  For  example,  existence  can  often  be  deduced, 
Existence and  stability  can  frequently  be  deduced  from  entirely 

by- iteration  methods,  solely  from  the  fact  that (loosely speaking)  the 

existence and generalized  delay  is discussed in G. Zames,  “Realiz- 
open  loop delays  signals;  stability  can  not.  (The  connection  between 

ability  conditions for nonlinear  feedback  systems,” IEEE Trans. on 
Circuit Theory, vol. CF-11,  pp. 186-194, June 1964.) 
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3. SMALL LOOP GAIN COKDITIOKS 
T o  secure  a  foothold  on  this  problem  a  simple  situa- 

tion  is  sought  in  which  it  seems  likely,  on  intuitive 
grounds,  that  the  feedback  system will be  stable.  Such  a 
situation  occurs  when  the  open  loop  attenuates all sig- 
nals.  This  intuitive  idea will be  formalized  in  Theorem 1 ; 
in  later  sections, a more  comprehensive  theory will be 
derived  from  Theorem 1. 

T o  express  this  idea, a measure of attenuation, i.e., a 
notion of gain,  is  needed. 

3.1 Gains 
Gain will be  measured  in  terms of the  ratio of the 

norm of a  truncated  output  to  the  norm of the  related, 
truncated  input. 

DEFISITIOK: T h e  gain sf a relafioz H in a, denoted by  
g W ) ,  is 

where the supremum  is   taken over all x in Do(H) ,  all HX  
i n  R a ( H ) ,  and  all t in T for  which xt#O. 

In  other  words,  the  supremum  is  taken  over all  possible 
input-output  pairs,  and  over all possible truncations. The 
reason  for  using  truncated  (rather  than whole) functions 
is that  the  norms of truncated  functions  are  known  to 
be finite a priori. 

I t  can  be verified that  gains  have all the  properties of 
norms.  In  addition, if H a n d  K belong to  then g(KH)  
<g(K)g(H).  Gains  also  satisfy  the following inequal- 
ities: 
- 

)I(H.4!; I g(H)-1)xt11 t. E D m ) ;  1 E TI (4  
! : H . v ! ~ ~  5 g(H).11x11. [X E Do(H)] ( 5 )  

where (4) is implied b y  (3),  and ( 5 )  is  derived  from (4) 
by  taking  the  limit  as t-+ x .  

If g(H)  < then (5) implies that  H is  bounded.  In 
fact,  conditions  for  boundedness will be  derived  using 
the  notion of gain  and  inequalities  such  as (5). In  a  sim- 
ilar  way,  conditions  for  continuity will be  derived  using 
the  notion of incremental  gain,  which is defined as fol- 
lows : 

DEFINITION: The  incremental  gain of any H in a, de- 
noted by g ( H ) ,  i s  

where  the  supremum i s   t aken  over all x and y in Do(H),  all 
Hx and H y  in R a ( H ) ,  and  all t .in T f o r  which x t # y t .  

Incremental  gains  have  all  the  properties of norms,  and 
satisfy  the  inequalities 

g(KH) I am . t (H) (7)  

_< g(H) *IIxt - ytjl [x, yEDo(H); / E T ]  (8) 

1; (H-t-) t - ( H ~ ) t l (  

I;Hx - Hylje 5 g(H) . / , X  - [x, y E D o ( H ) ] .  (9) 

In  the  Feedback  Equations (1)-(2), the  product 
g(H1) .g(H2) will be  called  the open-ioop  gain-product, 
and  similarly,  HI) . g(H2) will be  called  the incremental 
open-loop  gain-product. 

3.2 A Stability  Theorem 
Consider  the  Feedback  Equations (1)-(2). 

THEOREM 1 :lo a) If g(H$ eg(H2) <1, then  the closed loop 
relations E1 and EB are  bounded.  b) If g(H1).  g(H,) < 1, 
then El and El are  input-output stable. 

Theorem 1 is inspired by  the well known  Contraction 
Principle.'l 

PROOF OF THEOREM 1: (a)  Since  eqs. (1)-(2) are  sym- 
metrical  in  the  subscripts 1 and 2, i t  is enough t o  con- 
sider El. This proof will consist of showing  that  there 
are  positive  constants a ,  b, and c, with  the  property  that 
any  pair (x, el) belonging to  E1 [and so being a solution 
of eqs. (1)-(2)], satisfies the  inequality 

IlellI I allml)  + b\\v2;\  + c\lx\I. (10) 

I t  will  follom that  if x is confined to  a bounded  region, 
say \!x:! 5.4, then el \vi11 also  be confined to a  bounded 
region,  in  this  case jlel:l ~ u . ~ ~ z 1 1 1 \  +bilw21! + c A .  Thus El 
will be bounded. 

PROOF  OF ISEQUALITY (10): If (x, el) belongs  to El 
then,  after  truncating  eqs. (la) and  (lb),  and using the 
triangle  inequality  to  bound  their  norms,  the following 
inequalities  are  obtained : 

iieltll 5 l i w t l l  + I a1 I * I I x t 1 1  + j l y z t l l  (t E T )  (loa) 

/le2t]l I l l w t ] l  + I a2 I . I I x t ] l  + llyltll ( f  E T )  (lob) 

Furthermore,  applying  Inequality (4) to  eqs. (2) ,  the 
following is obtained,  for  each t in T :  

, I  , ,  

l l y 2 t i i  5 g(HJ .ile?tl/ (1 la> 

IIyltji I g(H,) .i!eltj. (1 1b) 

Letting g(H1) La and g(HJ and  applying (lla) t o  
(loa)  and (1 lb)  to  ( lob),   the following  inequalities  are 
obtained : 

lleltjl I l)=-ltll + I u1 .I!xtlJ + P J l e Z t ! ,  ( t  E T )  (12a) 

!Ieztll I ~ ~ w ~ t ~ ~  + I Q.Z I -iI.rtll + aljeltll ( t  E TI. (12b) 

applying (12b) t o  ~ l e ~ t l l  in  (12a),  and  rearranging, 

(1 - aa)i,eltll -S 1 ~ ~ 1 1 ~ 1 1  + ~ ] / = ! 2 ~ l l  

-I- ( 1  01 I C 8 '  (12 I ) ; I x t i l  ( f  E T ) .  (13) 

4 related  continuity  theorem  was used in [2c]. An independent, re- 
10 -4 variation of Theorem 1 was  originally  presented  in  [2d]. 

lated  result is Sandberg's [Sb]. 
11 If X is a complete  space, if all relations  are in  fact  operators, 

and if the  hypothesis of Theorem l b  holds,  then the  Contraction 
Principle  implies  existence and  uniquenes of solutions-a matter 
that  has been  disregarded  here. 
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Since  (1 - ayP) > 0 (as ap < 1, by  hypothesis),  Inequality 
(13) can  be  divided  by (1 -a@) ; after  dividing  and  tak- 
ing  the  limit of both  sides as t - m ,  the  Inequality (10) 
remains. Q.E.D. 

(b) Let ( x ! ,  el ')  and (x", el") be  any  two  pairs be- 
longing to  El. Proceeding as in Part  (a) an  inequality 
of the  form l\el"-el'/'  Ici;x"-x'II is  obtained,  which 
implies that  El is continuous.  Moreover,  since  the  hg- 
pothesis of Part  (b)  implies  the  hypothesis of Part  (a), 
El is  bounded  too.  Therefore E1 is  input-output  stable. 

EXAMPLE 2: In  eqs. (1)-(2) (and  in  Fig. 1) let  one of 
the  two  relations,  say  HI, be the  identity on Lz,. (Lz ,  is 
defined in  Example 1.) Let the  other  relation, H z  on LZe, 
be  given  by  the  equation  Hg(t) = kN[x(t)],  where  k>O 
is  a  constant,  and LV is a function  whose  graph is shown 
in  Fig. 4. For what values of k are  the closed loop relations 
(a)  bounded?  (b) stable? 

(a)  First  the  gain is calculated. 

LV[x(f)] dt / l a x 2 ( t )  dt}  

2 real 

where  the  first  sup  is  over [ x E D o ( H ) ;  H x E R a ( H ) ;  
t E T ,  x t # O ] .  That  is, g ( H )  is k times  the  supremum of 
the  absolute  slopes  of  lines  drawn  from  the  origin  to 
points on the  graph of N. Here g ( H )  = K ,  so Theorem 1 
implies boundedness  for k < 1. This  example is trivial  in 
at least  one  respect,  namely,  in  that H has  no  memory; 
examples  with  memory will be  given  in Part  11. 

(b)  g(H) can  be  worked  out  to  be k times  the  supre- 
mum of the  absolute Lipsclzitzian slopes of :IT, that  is, 
g(H) = k sups, N ( x )  -:V(y)/x-yI = 2k. The  closed 
loop i s  therefore  stable fo r  k < 1/2. 

N (x) 

t -  / 

I /  4: 
I ..a;'-- 

/- 
denotes slope 

Fig. 4.  Graph of the relation in Example 2. 

4. CONDITIONS INVOLVIKG CONIC RELXTIOSS 
The usefulness of Theorem 1 is  limited  by  the  condi- 

tion  that  the open-loop  gain-product  be less than   one-  
a condition  seldom  met  in  practice.  However, a reduced 
gain  product  can  often  be  obtained  by  transforming  the 
feedback  equations.  For  example, if GI is  added  to  and 
subtracted  from Hz, as shown  in  Fig. 5, then ez remains 

unaffected;  however, H1 is changed  into a new relation 
HI', as  in effect --I  appears in feedback  around HI. 
Under  what  conditions  does  this  transformation  give a 
gain  product less than  one?  It will appear  that  a suffi- 
cient  condition  is that  the  input-output  relations of the 
open  loop  elements  be  confined to  certain "conic" regions 
in  the  product  space X, x X,. 

H: -, 

Fig. 5. X transformation. 

RESTRICTIOK: In  the  remainder of this paper,  assume 
that X i s   a n  inner-product  space,  that (x, y) denotes  the 
inner  product otz X, atzd that (x, x >  =I;x;I2. 

This  restriction is made  with  the  intention of working 
mainly  in  the  extended L2[0 ,  m )  norm,12 with (x, y j  
=Jo"r(t)y(t)dt. 

1.1 Definit.ions of Conic  and  Posifize  Relations 
DEFIKITION: A relation H in 6i i s  interior  conic if 

there  are  real  constants r>_O afad c f o r  which  the  inequality 

IJ (Hx)~ - C X ~ I J  I rJj.~tlJ {X E Do(H); t E T ]  (14) 

i s  satisfied. H is exterior  conic if the  inequality sign in 
(14) i s  reversed. H i s  conic if i t   i s  exterior  conic or interior 
conic. The  constant  c  will  be called the center  parameter 
of H,   and r will be called the radius  parameter. 

The  truncated  output  (Hx), of a conic  relation  lies 
either  inside or outside a sphere  in X, with  center  pro- 
portional  to  the  truncated  input xt and  radius  propor- 
tional  to I Ix t l l .  The region thus  determined  in X , X X ,  
will be  called a "cone," a term  suggested  by  the follom- 
ing  special  case: 

EXAMPLE 3: Let H be a relation  on Lps (see Example 
1);  let  Hx(t)  be a function of x ( t ) ,  say  Hx(t)  =N[x(t)], 
where N has a graph  in  the  plane;  then, as shown  in 
Fig. 6, the  graph lies inside  or  outside a conic  sector of 
the  plane,  with a center  line of slope c and  boundaries of 
slopes c-r  and c+r. More  generally,  for H t o  be  conic 
[without  Hx(t)  necessarily  being a function of x ( t ) ,  that  
is,  if H has  memory], i t  is enough  for  the  point [x ( t ) ,  
Hn.(t)] t o  be confined t o  a sector of the  plane.  In  this 
case,  it will be  said that  H is instantaneously  confined 
to a sector of the  plane. 

Inequality (14) can  be  expressed  in the  form 
! ! ( H x ) t - c x t l l ? - r l ! x , ! ; 2 1 0 .  If norms  are expressed in 

to  prove  stability in the L, norm. The present  theory  has  been ex- 
l2 However, in engineering  applications it is often  more  interesting 

tended  in  that direction  in the  author's [2f]. The idea is [ Z f ]  is t o  trans- 
form L? functions  into L,  functions by means of exponential  weight- 
ing factors. 
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Hxk) 

t / 

Interior of sector 
is shaded. 

Fig. 6 .  A conic  sector in  the plane. 

terms of inner  products  then,  after  factoring,  there  is 
obtained  the  equivalent  inequality 

- axt ,  (Hx)~ - bxt )  I 0 [ x  E Do(H); t E T ]  (15) 

\\-here a = c - r  and b = c + r .  I t  will often  be  desirable to  
manipulate  inequalities  such  as (15) ,  and a notation 
inspired  by  Fig. 6 is  introduced: 

NOTATIOS: A conic relation H is said to be inside  the 
sector { a ,  b }  , if a s b  and if Inequality (15) holds. H is 
outside  the  sector { a ,  b }  if a s b  and if (15 )  holds with 
the  inequality  sign  rezersed. 

The following relationship will frequently  be  used: If H 
is  interior  (exterior)  conic  with  center c and  radius r 
then H is  inside  (outside)  the  sector { c - r ,  c + r  }. Con- 
versely, if H is  inside  (outside)  the  sector { a, b } ,  then 
H is  interior  (exterior)  conic,  wit5  center  (b+a)/2  and 
radius ( b  - a)/2. 

DEFINITION: A relation H in (R is positive13 i f  

( x t ,  2 0 [.x E Do(H); t E T I .  (16) 

A positive  relation  can be regarded as degenerately 
conic,  with  a  sector  from 0 t o  E .  [Compare (15) and 
(16).] For example,  the  relation H on LZe is  positive if i t  
is  instantaneously  confined (see Example 3) to the  first 
and  third  quadrants of the  plane. 

4.2 Some Properties of Conic Relations 
Some  simple  properties will be  listed. I t  will be as- 

sumed, in these  properties,  that H and H1 are conic 
relations;  that H is inside  the  sector { a ,  b ] ,  with 
b>O; that  H1 is  inside { a , ,   b l )  with b1>0; and  that  
k 2 0  is a constant. 

(i> I is inside { I ,  I 1 .  
(ii) KH is inside { k a ,  k b } ;  - H i s  inside { -b,  - a } .  

(iii) SUM RVLE: (H+H1) is inside {a+al ,  b+b l } .  
(iv) INVERSE RULE 

“nondissipative” have also been used. 
13 Short for “positive  semidefinite.” The  terms  “passive”  and 

CASE l a :  If a>O then H-’ is i n s i d e   f l / b ,  

CASE lb: If a<O then H-l i s  outside { l / a ,  

CASE 2 :  If a=O t h e n   ( H - l - ( l / b ) I )  i s  

1/a 1 .  
l / b  1. 
positive. 

(v) Properties (ii), (iii), and  (iv)  remain  valid  with 
the  terms  “inside f } ”  and “outside { 1’ inter- 
ckanged  throughout. 

(vi) g ( H ) s m a x ( l a l ,  I b l ) . H e n c e i f H i s i n  { - r , r ]  
th,en g(H) I r.  

The proofs are  in  Appendix A. One  consequence of these 
properties  is  that  it  is  relatively  easy  to  estimate  conic 
bounds  for  simple  interconnections,  where it  might  be 
more  difficult,  say, to find Lyapunov  functions. 

4.3 A Theorem on Boundedness 
Consider  the  feedback  system of Fig. 1, and  suppose 

that  Hz is  confined to  a  sector f a ,  b 1. I t  is  desirable  to 
find a condition on H I  which will ensure  the  bounded- 
ness of the closed loop. h condition will be  found,  which 
places H1 inside  or  outside a sector  depending on a and b ,  
and which  requires  either H1 or Hz to  be  bounded  away 
from  the  edge of its  sector  by  an  arbitrarily  small 
amount, A or 6. 

relations.  Let A and 6 be constants, of which  one is strictly 
positize  and  one  is zero. Suppose  that 

(I)  - H z  is inside  the sector {a+A,  b - A )  where 

THEOREM 2a: [In eqs. (1)-(2)] Let H1 and Hz be Conic 

b > O ,  and, 
(11) H1 satisfies  one of the following conditions. 

CASE l a :  If a> 0 then H I  is outside 

1 
6 , - - + 6  

b 

CASE l b :  If a < O  then H1 i s   ins ide  

CASE 2:  If a = 0 then 

HI + (+ - 6) 

is posit.ive; .in addition, if A=O then g(H1) 
< =. 

Tlzen El   and  E2 are  bounded. 
The proof of Theorem 2a is  in  Appendix B. Kote  that 

the  minus  sign  in  front of Hz reflects an interest in nega- 
tive feedback. 

EXAMPLE 4: If H1 and Hz are  relations on LZe instan- 
taneously  confined to  sectors of the  plane  (as  in  Ex- 
ample 3), then  the closed loop will be  bounded if the 
sectors  are  related  as in Fig. 7. (Uore realistic  examples 
will be  discussed  in Part 11.) 
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$-l/a 
CASE 2. a = O  

NOTE: IN ALL CASES, A > 0 , 6 = 0 ,  AND  b>O. 
ADMISSIBLE REGIONS  ARE SHADED 

Fig. 7. hlutually  admissible  sectors  for H2 and H I  

4.4 Incrementally  Conic  and  Positive  Relations 

Nest ,  i t  is  desired to  find a stability  result  similar  to 
the preceding  theorem  on  boundedness. To  this   end  the 
recent  steps  are  repeated  with all definitions  replaced 
by  their  “incremental”  counterparts. 

DEFINITION: A relation H in & i s  incrementally  inte- 
rior  (exterior) conic <f there are  real  comtants r>O ami  c 
for  which  the  inequality 

1 1  (Hx - H y ) t  - C ( %  - u)tll 5 (x - y)tl( 
[x, y E W H ) ;  t E TI (17) 

i s  satisfied  (with  inequality  sign  reversed). An  incremen- 
tally  conic  relation H i s  incrementally  inside  (outside) 
the  sector { a ,  b } , i f  a 4 b  and i f  the  inequality 

( ( H X  - ~ 3 ’ ) ~  - Q ( x  - Y)~, (HX - H Y ) ~  - b(r  - I o 
[x, y E W H ) ;  t E TI (18) 

i s  satisfied  (with  ineqzlality  sign  reversed). A relation H 
in i s  incrementally positive’* if 

( ( X  - y ) t ,  (Hx - H>l)t) 2 0 [ X ,  y E Do(H); t E TI. (19) 

E x A m w z  5 :  Consider the  relation H on L2e, with 
Hx( t )  = L V [ x ( t ) ] ,  where :I7 is a function  having a graph 
in the plane. If M is incrementally  inside f a ,  b 1 then B 
satisfies the  Lipschitz  conditions, a(x -y) 4 ;V(x) - X(y) 
5 b ( x - y ) .  Thus llr‘ lies in a sector of the  plane, as in the 
nonincremental  case (see Fig. 6), and in  addition  has 
upper  and  lower  bounds  to  its  slope. 

Incrementally  conic  relations  have  properties  similar 
t o  those of conic relations (see Section 4.2). 

14 The  terms  “monotone”  and  “incrementally  passive”  have  also 
been used. 

THEOREM 2b: Let HI and Hz be incrementally  conic 
relations.  Let A and 6 be constants, of which  one  is  strictly 
positive and one i s  zero. Suppose  that,  

(I) - H P  is  incrementally  imide  the sector {a+A,  
b - A } ,  where b>0,   and,  

(11) H1 satisfies  one of the  following  conditions: 
CASE l a :  If a>O then H1 is incrementally  outside 

CASE lb :  If a <O thetz H1 is  incrementally  inside 

+s, - - - 6  
a 

CASE 2: If a=O  then 

is  incrementally  positive; in addition, i f  A = 0 
then g(H1) < c13 . 

Then El and Ez are  input-output stable. 

omitted. 
The  proof is similar to   tha t  of Theorem la, and is 

5 .  CONDITIONS ISVOL~ING POSITIVE REIATIONS 
A special  case of Theorem 2, of interest  in  the  theory 

of passive  networks, is obtained  by,  in  effect,  letting 
a = 0 and b - +  x .  Both  relations  then  become  positive; 
also,  one of the  two  relations  becomes  strongly  positive, 
1.e. : 

DEFINITION: A relation H in & i s  strongly  (incremen- 
tally)  positive i f ,  for  some u>O, the  relation (H--crI) is 
(incrementally)  positive. 

The  theorem, whose proof is in  Appendix C ,  is: 
THEoREbf 3:’s (a) [In  eqs. (1)-(a)] If H1 and -Hz are 

positive,  and if - H Z  is strongly  positive  and  has  finite 
gain,  then El  and E? are  bounded.  (b) If H1 and -H2 
are  incrementally  positive,  and if -Hz is strongly  incre- 
mentally  positive  and  has  finite  incremental  gain,  then 
E1 and Ez are  input-output  stable. 

For  example, if H2 on LZe is instantaneously confined 
to  a sector of the  plane,  then,  under  the provisions  of 
Theorem 3, the  sector of Hz lies  in the first and  third 
quadrants,  and is bounded  away  from  both  axes. 

5.1 Positivity  and  Passivity in :Yetzmrks 
A passive  element is one  that  always  absorbs  energy. 

I s  a. network  comisting of passive  elements  necessarily 
stable? An attempt will be  made  to  answer  this  question 
for the special  case of the  circuit of Fig. 2. 

First,  an  elaboration is given  on what is meant  by a 

Kolodner [8] has obtained  related  results,  with a restriction of 
15 Aq variation of this  result  was  originally  presented in [2dl. 

linearity on one of the elements. 
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passive  element.  Consider  an  element  having a current 
i and a voltage z!; the  absorbed  energy is the  integral 
j ,Di(t)-,l(f)dt, and  the  condition  for  passivity is that  this 
integral  be  non-negative. Xow, let 2 be  a  relation  map- 
ping i into o; by  analogy  with  the  linear  theory, it is 
natural  to  think of Z as an impedance  relation; suppose 
Z is defined on L2e,  where the energl;  integral  equals  the 
inner  product {i, 11:); then  passivity of the  element is 
equivalent  to  positivitl- of Z. Similarl>-? if Y on LZe is an 
admittance  relation, which maps c into i ,  then  passivity 
is equivalent  to  positivity of Y. 

Kow consider the  circuit of Fig. 2 .  This  circuit  con- 
sists of an  element  characterized  by  an  impedance  rela- 
tion 22. an element  characterized  by  an  admittance  rela- 
tion Y1, a  voltage  source E’, and a current  source i. The 
equations of this circuit  are, 

I t  is observed that  these  equations  have  the  same form 
as  the  Feedback  Equations, provided that  the sources 
i and E‘ are  constrained  by  the  equations v=alx+wl,  
and i=a,s+w,. (By  letting al=O the familiar ‘‘parallel 
circuit”  is  obtained.  Similarly,  by  letting a 2 = 0  the 
“series  circuit” is obtained.)  Thus  there is a correspon- 
dence  between  the  feedback  system  and  the  network  con- 
sidered  here.  Corresponding to  the closed loop  relation 
E1 there is a  voltage  transfer  relation  mapping z into 
“1. Similarly,  corresponding  to E? there is a current 
transfer  relation  mapping i into i z .  If Theorem 3 is now 
applied  to  eqs. (20)-(21) i t  ma>-  be  concluded that :  If 
both elements  are  passfile, and ti, in  addition,  the  relation 
of one of the elements is  strongly positisle and  has -tiTzite 
gain, then the network  tra-nsfer  relations  are  bozlnded. 

6 .  COXCI,I-SIOKS 
The  main  result here is Theorem 2. This  theorem  pro- 

vides sufficient conditions  for  continuit>-  and  bounded- 
ness of the closed loop,  without  restricting  the  open  loop 
to  be  linear  or  time  invariant.  Theorem 2 includes 
Theorems 1 and 3 as special cases. However, all three 
theorems  are  equivalent, in the sense that  each  can be 
derived  from any of the  others  by a suitable  transforma- 
tion. 

There  are resemblances  between  Theorem 2 and 
Kyquist’s  Criterion.  For  example,  consider  the follow- 
ing, easill; derived,  limiting  form of Theorem 2 :  “If 
Hz = k I  then a sufficient condition  for  boundedness of 
the closed loop  is that  Hl  be  bounded  away  from  the 
critical  value - ( l / k ) I ,  i n  the sense that 

for  all x in X, and t in T ,  where 6 is an  arbitrarily  small 

positive  constant.”  In  fact,  the conic  sectors  defined 
here  resemble the  disk-shaped  regions  on a Kyquist 
chart.  However,  Theorem 2 differs  from  Kyquist’s  Cri- 
terion in two  important  respects: ( 1 )  Unlike  Kyquist’s 
Criterion,  Theorem 2 is not necessary,  which  is  hardly 
surprising,  since  bounds  on i Y 1  and HZ are  assumed in 
place of a more  detailed  characterization. (2) Kyquist’s 
criterion assesses stability  from  observation of only  the 
eigenfunctions  exp (jwt), where  Theorem 2 involves all 
inputs in X,. 

There is also a  resemblance  between  the use of the 
notions of gain and  inner  product as discussed  here,  and 
the use of attenuation  and  phaseshift in the  linear  the- 
ory. further discussion  of this topic is postponed  to 
Part  11, where  linear  systems will be  examined in some 
detail. 

One of the  broader  implications of the  theory  de- 
veloped  here  concerns  the use of functional  analysis  for 
the  study of  poorly  defined  systems. I t  seems  possible, 
from  only  coarse  information  about  a  system,  and  per- 
haps  even  without  knowing  details of internal  structure, 
to  make  useful  assessments of qualitative  behavior. 

APPESDIS 

d .  Proofs of Properties (i-vi) 
Properties (i, ii). These  two  properties  are  immedi- 

ately implied by  the  inequalities 

( ( 1 x ) t  - 1 .xt, (I.x)t - 1 .mt> = 0 

( ( c H x ) ~  - cast, (cH.Y)~ - CbSt) 
= c‘((H.Y)~ - ax1, (H.t-), - bxt)  5 0 

in which c is a  (positive  or  negative)  real  constant. 
Property (iii). I t  is enough t o  show  that ( H + H l )  

has  center +(b+bl+a+al) and  radius +(b+bl-a-al);  
the following inequalities  establish  this: 

where  eq. (,4lb) follows from eq. (Ala) since H has 
center $(b+a.) and  radius +(b-a) ,  and  since H I  has 
center +(bl+aJ and  radius t ( b l - a l ) .  

Property (iv). 
CASES l a  AND lb:   Here a#O and b>O, and 
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where H-’x=y and x = Hy. Since,  by  hypothesis, H is 
inside { a ,  b ] and b > 0, the sign of the last expression  is 
opposite to   tha t  of a. Thus  the  Inverse  Rule  is  obtained. 

CASE 2: Here a =O.  The  property is implied by  the 
inequality, 

Property (v). Simply  reverse all the  inequality  signs. 
Property (vi). 

II(Hx>,ll I II(H4, - +(b + a)xt;I I 

+ li+(b + u)xt)i (Triangle  Ineq.) ( M a )  

- < $(b  - a)l l~t l l  + + I b + u I - I IZ t : I  (42b) 
= max ( 1  a l  , 1 b l  ) . l j x t , l  

where  eq ( X b )  follows from  eq (A2a) since,  from  the 
hypothesis, H has  center +(b+a) and  radius +(b-a) .  I t  
follows that g ( H )  S m a x  ( l a \ ,  l b l ) .  Q.E.D. 

B. Proof of Th.eorem 2a 
The  proof is  divided  into  three  parts: (1) The  trans- 

formation of Fig. 5 is carried  out,  giving a new relation 
Ez’; Ez’ is shown to  contain Ez. (2) The new gain  prod- 
uct is shown to  be less than one. (3) Ez’ is  shown to  be 
bounded,  by  Theorem 1; the  boundedness of Ez and E1 
follows. 

Let c=+(b+a) and r=$(b -a ) .  

B.1 Transfornzation of Eqs. (1)-(2) 

The proof will be worked  backwards  from  the  end; 
the  equations of the  transformed  system of Fig. 5 are, 

el’ = w; + u{x  + ypl (A3 a) 

e2 = w z  + (12.2: + y1 (A3b) 
y; = He’ez (A4a) 

yl = Hl’e; (Ai b) 

where 

Hpl = (Hz + c l )  (Aja) 

HI’ = (HI-1 + C I y - 1 .  (A5 b) 

(It may be  observed that  these  equations  have  the  same 
form  as  eqs. (1)-[2), but H1 is  replaced by HI’ and H2 
is  replaced  by Hz’.) Let Ezr be the closed-loop  relation 
that  consists  of  all  pairs (x, ez)  satisfying  eqs. (A3)- 
(A4). I t  shall now be  shown that  Ez‘ contains Ez,  that  
is, that  any  solution of eqs. (1)-(2) is also  a  solution of 
eqs. (A3)-(A4); thus  boundedness of E,’ will imply 
boundedness of Ez .  

In  greater  detail 

(I)  let (x, ea)  be any given  element of Ez. 
(11) Let el, yl, yz, Hlel, and H2ez be fixed elements 

of X, that  satisfy eqs. (1)-(2) simultaneously 
with x and e2. 

(111) (Using  Fig. 5 as a  guide,)  define  two  new ele- 
ments of X,, 

y z ’  = yz + cez 

el‘ = el + cyl. 

(A6a) 

(A6b) 

I t  shall now be  shown that  there  are  elements H1’eI’ and 
Hz’ez’ in X, that  satisfy eqs.  (A3)-(A4) simultaneously 
with  the  elements defined  in (1)-(111). Taking  eqs. 
(A3)-(A4) one at a  time: 

Equation  (A3a). Substituting  eq.  (la) for el i n  eq. 
(A6b),  and  eq. (lb) for yl, 

e;  = ( w 1  - cwz) + (a1 - cu2)x + (yp + c e ? ) .  (-47) 

If wl’=wl-cwz and a ~ ’ = a ~ - c a ~ ,  then,  with  the aid of 
eq.  (-464,  eq. (-47) reduces  to  eq.  (-43a). 

Equation  (A3b) : This is merely  eq.  (lb),  repeated. 
Equation (A4a): Recalling that H2’=H2+cI,  i t  

follows, from eqs. (A6a)  and (2a), that  there  is  an Hzrez 
in X, for  which  eq. (A4a) holds. 

Equation (A4b): If eq.  (A6b)  is  substituted  for el 
in  eq.  (Zb), i t  is found that  there  exists Hl(el’-cyl)  in 
X, such  that y1= Hl(e1’ - cyl). Therefore, 

(after inversion) Hl-’y1 = el‘ - cyl 

(after  rearrangement) + c l ) y l  = el’ 

(after inversion) y l  = + cI)-le;. 

That  is,  there  exists Hl’el‘ in X, for  which  eq. (r14b) 
holds.  Since  eqs. (A3)-(A4) are all satisfied, (x, e 2 )  is 
in ES’. Since ( x ,  en)  is an  arbitrary  element of E z ,  Ez’ 
contains Ez. 

B.2 Boundedness of E,‘ 
I t  will be  shown  that g(H1’)  -g(Hz‘) < 1. 
The Case A > 0, 6 = 0 : g(Hz’) will be  bounded  first. 

Since  Hzis  in { -b+A, -a-A}  by  hypothesis, (Hz+cI)  
is  in { -b+A+c, -a-A+c) by  the  Sum  Rule of Sec- 
tion 4.2. Observing  that (H,+cl) =H2’ ,  that  ( -b+c)  
= - r ,  and  that  (-a+c) = Y ,  i t  is  concluded that Hz’ is 
in { - r + 4 ,  r-A). Therefore g ( H s ’ ) _ < r - 4 .  

Kext, g(H1’) will be  bounded.  In  Case l a ,  where a>O 
and HI is outside 

1 1 

b { u ’  
- - ,  - -1, 

the  Inverse  Rule of Section 4.2 implies  that H1-l is  out- 
side { - b ,  -a ] ; the  same  result  is  obtained  in  Cases l b  
and 2. In  all  cases,  therefore,  the  Sum  Rule  implies  that 
(H~-’+cl) is  outside { - r ,  r ) .  By the  Inverse  Rule 
again, (H1-l +cI)-l is i n  

{- 7, 1 f). 
Therefore g(H1’) 5 l /r.  

Finally, 
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The Case A = 0, 6 >0: It  shall be shown that  this 
is a special  case of the  case A > 0, 6 = 0. In other words, 
i t  will be  shown  that  there  are  real  constants a*, b*, and 
A* for  which the  conditions of the  case A >0,  6 = 0 are 
fulfilled, but  with a repIaced by a*, b by b*, and A by A*. 

Consider  Case la, in  which a > 0. (Cases lb   and  2 have 
similar  proofs,  n-hich will be  omitted.)  It  must  be  shou-n 
that :  (1) -H2 is in {a*+A,  b*-A}. (2) H1 is  outside 

1 
{ - a . J ; } .  

Without loss of  generality  it  can  be  assumed  that 6 is 
smaller  than  either l / a  or l / b .  Choose a* and b* in  the 
ranges 

a b 

l + d  
< a.* < a and b < b* < ___ - 

1 - b6 

Since - H z  is  in { a ,  b ] by  hypothesis,  and  since a* <a 
and b*> b by  construction,  there  must  be a A*>O such 
that  Hz satisfies  condition (1). Since H1 is  outside 

1 
a 

by  hypothesis,  and  since  by  construction 

condition (2) is  satisfied.  Hence  this  is,  indeed,  a  special 
case of the  previous  one. 

B.3 Conclmion of the Proof 
Sinceg(H,’)-g(Hz’) <1, Ez’ is bounded by Theorem 1, 

and so is Ez, which is contained  in E2’. i\Ioreover, the 
boundedness of Ez implies  the  boundedness of El;  for, 
if (x, el) is in E1 and (x, e2) is  in EB, then 

Thus, if 11x1: <const.  and IIe211 <const.,  then ljelll Icons t .  
(Inequality (AS) was  obtained  by  applying  the  Tri- 
angle  Inequality  and  Inequality (4) to  eq.  (la),  and 
taking  the  limit  as t+=. It  may  be  noted  that g(H3) 
< m ,  since -HZ is in { a ,  b 1 by  hypothesis.) Q.E.D. 

C. Proof of Theorem 2 

This  shall  be  reduced  to a special  case of Theorem 2 
[Case 2 with 6=0].  In  particular,  it  shall be  shown that  
there  are  constants b > 0 and A > 0 for  which ( I )  -Hz is 
inside { A ,  b - A l ,  and, (11) the  relation [Hl+( l , !b ) l ]  is 
positive. 

[Hl+( l /b ) I ]  is clearly  positive  for  any b > 0, since 
by  hypothesis H2 is positive;  the  second  condition is 
therefore  satisfied. T o  prove  the  first  condition  it is 
enough to  show that  Hz is  conic  with  center --I and 
radius r - A ,  where r = b/2 .  This is  shown  as  follows: 
The  hypothesis  implies  that,  for  some  constant u>O 
and  for  any  constant h > g ( H z ) ,  the following inequali- 
ties  are  true 

- (xt, ( ~ 2 % ) ~ )  2 uJI ztj!z (A91 
(A10) 

] I ( H ~ . Y ) ~  + Y.# 5 (x’ - 2 y U  + r?)ll.v,liz. (AH) 

II(H%&ll2 I X 2 I ( 1 q l 2  
I ’  I 

for any x in X, and for any t in T. Hence,  for  any Y > 0, 

Equation ( A l l )  was  obtained  by  expanding  the  square 
on its I.h.s., and  applying  eqs. (A9) and (A10). Con- 
stants h, r ,  and A, are  selected so tha t  X>a, r =XZ/u, 
and A = r [I - 41 - (U/X)~].  Now it  can  be verified that,  
for  this choice of constants,  the  term ( X Z - ~ Y U + ~ ~ )  in 
eq. (All) equals ( Y - A ) ~ ;  also, 0 < A < r  since (./X) <1); 
therefore  eq. (All) implies that  Hz is  conic  with  center 
--I and  radius r-A. Q.E.D. 
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