
1

2008-5-27 By GU/Jianhua NWPU 1

Virtual
Memory
Virtual
Memory

GU/Jianhua
谷建华

School of Computer Science
Northwestern Polytechnical University

2008-5-27 By GU/Jianhua NWPU 2

Virtual MemoryVirtual Memory
Background
Demand Paging
Performance of Demand Paging
Page Replacement
Page-Replacement Algorithms
Allocation of Frames
Thrashing
Other Considerations
Demand Segmentation

2008-5-27 By GU/Jianhua NWPU 3

BackgroundBackground
Virtual memory – separation of user logical memory from
physical memory.

Only part of the program needs to be in memory for execution.
Logical address space can therefore be much larger than physical
address space.
Need to allow pages to be swapped in and out.

Benefits:
Program size not constrained by amount of physical memory available.
Programmer do not consider the amount of physical memory.
More programs can be run simultaneously
Less need for swapping

Virtual memory can be implemented via:
Demand paging
Demand segmentation

2008-5-27 By GU/Jianhua NWPU 4

Issues need resolvedIssues need resolved

Can a program execute correctly if part of
program are loaded into memory?
How can OS do if process access an data or
instruction that is not in memory?
How can the OS do if there is not enough free
memory in main memory?

2008-5-27 By GU/Jianhua NWPU 5

OS Policies for Virtual Memory(1)OS Policies for Virtual Memory(1)

Fetch Policy
How/when to get pages into physical memory.
demand paging vs. pre-paging.

Placement Policy
Where in physical memory to put pages.

Replacement Policy
Physical memory is full. Which frame to page
out?

2008-5-27 By GU/Jianhua NWPU 6

OS Policies for Virtual Memory(2)OS Policies for Virtual Memory(2)
Resident Set Management Policy

How many frames to allocate to process?
Cleaning Policy

When to write a modified page to disk.
Load Control

How many processes will be resident in main memory,
which is referred to as the multiprogramming level?

2

2008-5-27 By GU/Jianhua NWPU 7

Demand PagingDemand Paging
The principle of locality of reference.
Page Fault Processing
Replacement

2008-5-27 By GU/Jianhua NWPU 8

The Principle of Locality of ReferenceThe Principle of Locality of Reference
A program that references a location n at some
point in time is likely to reference the same
location n and locations in the immediate
vicinity of n in the near future.
As a process executes, it move from locality to
locality.

2008-5-27 By GU/Jianhua NWPU 9

程序局部性原理程序局部性原理
程序局部性原理是指程序在执行时呈现出局部
性规律，即在一较短时间内，程序的执行仅限
于某个部分，相应地，它所访问的存储空间也
局限于某个区域。

局部性又表现为时间局部性和空间局部性。

时间局部性是指如果程序中的某条指令被执
行，则不久以后该指令可能再次执行。如果某
数据结构被访问，则不久以后该数据结构可能
再次被访问。

空间局部性是指一旦程序访问了某个存储单
元，在不久之后，其附近的存储单元也将被访
问。

2008-5-27 By GU/Jianhua NWPU 10

Demand PagingDemand Paging
Bring a page into memory only when it is needed (not in
memory).
Also called Lazy Swapper
Benefits:

Less I/O needed
Less memory needed
Faster response
More users

2008-5-27 By GU/Jianhua NWPU 11

Page Table EntryPage Table Entry
Page table entry:

V: Valid-Invalid Bit
(1 ⇒ in-memory, 0 ⇒ not-in-memory)
Initially valid–invalid bit is set to 0 on all entries.

M: Modified Bit
C: Control Bit

Swap AddressCM Frame NumberV

2008-5-27 By GU/Jianhua NWPU 12

Page FaultPage Fault
Page fault : During address translation, if valid–invalid bit
in page table entry is 0（Page NOT in memory）.
Page fault trap: If there is ever a reference to a page, the
reference will trap to OS when page fault
OS looks at another table to decide:

Invalid reference(out of process space) ⇒ abort.
Just not in memory.

Find a free frame.
Swap page into frame.(read page from swap)
Reset tables: set validation bit = 1.
Restart instruction

3

2008-5-27 By GU/Jianhua NWPU 13

Processing of Page FaultProcessing of Page Fault

2008-5-27 By GU/Jianhua NWPU 14

0

Processing Of Page Fault

CPU

OS

Backing

store

Free frame

外存地址

reference

Restart
instruction

Trap

Page is on backing store

Load
page

Update page table

Page table

内存块号 外存地址 1

Physical memory

2008-5-27 By GU/Jianhua NWPU 15

What happens if there is no free frame?What happens if there is no free frame?

Page replacement – find some page in memory,
but not really in use, swap it out.

algorithm
performance – want an algorithm which will result in
minimum number of page faults.

Same page may be brought into memory several
times.
Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk.

2008-5-27 By GU/Jianhua NWPU 16

Performance of Demand PagingPerformance of Demand Paging
Page Fault Rate 0 ≤ p ≤ 1.0

if p = 0 no page faults
if p = 1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 – p) x memory access + p x page_fault time
page_fault time = (service page fault interrupt

+ [swap page out]
+ swap page in
+ restart overhead)

2008-5-27 By GU/Jianhua NWPU 17

Demand Paging ExampleDemand Paging Example
Memory access time = 100 nanoseconds
Average page-fault time = 25 milliseconds
EAT = (1 – p) x 100 + p x (25 000 000)

= 100+24 999 900 x p
When p=0.1%, EAT=25 microseconds
If we want less than 10% degradation,

100+100 x 10% >100 + 25 000 000 x p
p < 0.000 000 4

2008-5-27 By GU/Jianhua NWPU 18

Page-Replacement AlgorithmsPage-Replacement Algorithms
Want lowest page-fault rate.
Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string.
In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
Algorithms

Optimal Algorithm
FIFO Algorithm
Least Recently Used (LRU) Algorithm
Random Algorithm

4

2008-5-27 By GU/Jianhua NWPU 19

Optimal AlgorithmOptimal Algorithm
Replace page that will not be used for longest period of
time in the future.
4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this? (Prediction)
Used for measuring how well your algorithm performs.

1

2

3

4

6 page faults

4 5

2008-5-27 By GU/Jianhua NWPU 20

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm
Replace page that has been in memory the longest(oldest)
3 frames (3 pages can be in memory at a time per process)
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

4 frames

FIFO Replacement – Belady’s Anomaly
more frames ⇒ less page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

2008-5-27 By GU/Jianhua NWPU 21

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm
Replace page in memory that has not been
referenced for longest time.

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Basic Algorithm:
Counter implementation
Stack implementation

1

2

3

5

4

4 3

5

2008-5-27 By GU/Jianhua NWPU 22

Replacement ExampleReplacement Example

Demo

2008-5-27 By GU/Jianhua NWPU 23

LRU: Counter implementationLRU: Counter implementation
Counter implementation

Every page entry has a counter; every time page is
referenced through this entry, copy the (logical) clock into
the counter.
When a page needs to be changed, look at the counters to
determine which page are to change.
the LRU page with the smallest time values

Features
Request a search of page table to find the LRU page
Write the page table whenever each memory access
Overflow of clock must be considered

2008-5-27 By GU/Jianhua NWPU 24

LRU: Stack implementationLRU: Stack implementation
Stack implementation – keep a stack of page
numbers in a double link list:

Page referenced:
– Remove it from stack and put it on the top
– Top page is always the most used page and bottom is LRU

page
Features

requires 6 pointers to be changed at worst when
moving page
No search for replacement

Demo

5

2008-5-27 By GU/Jianhua NWPU 25

LRU Approximation AlgorithmsLRU Approximation Algorithms
Basic Idea:

Reference bit
– With each page associate a bit, initially = 0
– When page is referenced, the bit is set to 1.
– Replace the one whose bit is 0 (if one exists). We do not

know the order, however.

Algorithms:
Additional-Reference-Bits Algorithm
Second-Chance Algorithm
Enhanced Second-Chance Algorithm

2008-5-27 By GU/Jianhua NWPU 26

LRU: Additional-Reference-Bits AlgorithmLRU: Additional-Reference-Bits Algorithm
Keep an 8-bit shift register for each page
At regular intervals(say, every 100m), OS shifts the reference
bit for each page into high-order bit of shift register, shifting the
other bit right 1 bit.
If we interpret shift register as unsigned integers, the page with
the lowest number is the LRU page, and it can be replace.
Note: The number are not guaranteed to be unique. We can
either replace all page with smallest value, or user FIFO
selection.
Example: page with 11000100 has been used more recently
than one with 01110111

RB Shift Register

2008-5-27 By GU/Jianhua NWPU 27

LRU: Second-Chance AlgorithmLRU: Second-Chance Algorithm
Need one reference bit for each page
Algorithm:

repeat to inspect reference bit for each page:
If (reference bit is 0) replace that page;
else { set reference bit 0;

leave page in memory;
move on next page;
loop; }

2008-5-27 By GU/Jianhua NWPU 28

LRU: Enhanced Second-Chance AlgorithmLRU: Enhanced Second-Chance Algorithm
Both reference bit and modify bit are needed,
which is an ordered pair <R,M>
Algorithm:
If(<0,0>) page is selected;
If(<0,1>) set the M bit to 0; and move on(next);
If(<1,0>) set the R bit to 0; and move on;
If(<1,1>) set the M bit to 0; and move on;

2008-5-27 By GU/Jianhua NWPU 29

Page-Buffering (1)Page-Buffering (1)
Issue: cost of replacing a page that has been
modified is greater than for one that has not.
The replaced page is not swapped out, but
rather is held in memory.
System maintain two list: free page list and
modified page list in memory.

If(no modified) put it into free list;
If(modified) put it into modified list;

2008-5-27 By GU/Jianhua NWPU 30

Page-Buffering (2)Page-Buffering (2)

When a page fault occurs, OS first check
whether the desired page is in the free or
modified list.
These replaced pages are reused as soon as
possible.
Modified pages are written out in cluster rather
than one at a time.
Size of the two lists is fixed.
FIFO algorithm is used to manage the list.

6

2008-5-27 By GU/Jianhua NWPU 31

Allocation of FramesAllocation of Frames
Each process needs minimum number of pages. As the
number of frames allocated to each process decreases,
the page fault-rate increases, slowing process execution.
How many frames does each process get from the fixed
amount of free memory ?
The minimum number of frames that must be allocated to
a process is defined by instruction-set architecture.
Allocation schemes.

Fixed allocation
Proportional allocation
Priority allocation

2008-5-27 By GU/Jianhua NWPU 32

Fixed AllocationFixed Allocation

Equal allocation – To split m frames
among n processes and to give each
process equal share, m/n
Example: if 100 frames and 5
processes, give each 20 pages.

2008-5-27 By GU/Jianhua NWPU 33

Proportional allocationProportional allocation
Proportional allocation – Allocate according to
the size of process.

m
S
spa

m

sS
ps

i
ii

i

ii

×==

=

=

=

∑

for allocation

frames ofnumber total

 process of size

5964
137
127

564
137
10

127
10
64

2

1

2

1

≈×=

≈×=

=
=
=

a

a

s
s
m

2008-5-27 By GU/Jianhua NWPU 34

Priority AllocationPriority Allocation

Use a proportional allocation scheme using
priorities rather than size.
If process Pi generates a page fault,

select for replacement one of its frames.
select for replacement a frame from a process
with lower priority number.

2008-5-27 By GU/Jianhua NWPU 35

Global vs. Local ReplacementGlobal vs. Local Replacement

Global replacement – process selects
a replacement frame from the set of all
frames; one process can take a frame
from another.
Local replacement – each process
selects from only its own set of allocated
frames.

2008-5-27 By GU/Jianhua NWPU 36

ThrashingThrashing
If a process does NOT have “enough” pages,
the page-fault rate is very high. This leads to:

low CPU utilization.
operating system thinks that it needs to increase the
degree of multiprogramming.
another process added to the system.

Thrashing ≡ a process is busy swapping pages
in and out.
A process is spending more time paging than
executing.

7

2008-5-27 By GU/Jianhua NWPU 37

Thrashing DiagramThrashing Diagram

Why does paging work?
Locality model

Process migrates from one locality to another.
Localities may overlap.

Why does thrashing occur?
Σ size of locality > total memory size

2008-5-27 By GU/Jianhua NWPU 38

Working-Set Model (1)Working-Set Model (1)
Working Set: WS(t, ∆) : set of pages referenced by process
during time interval (t- ∆, t)
∆ ≡ working-set window ≡ a fixed number of page
references
Example: 10,000 instruction
Page reference table

… 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4.

∆

t1

∆

t2WS(t1)={1,2,5,6,7} WS(t2)={3,4}

2008-5-27 By GU/Jianhua NWPU 39

Working-Set Model (2)Working-Set Model (2)
WSSi (working set of Process Pi) =
total number of pages referenced in the most recent
∆ (varies in time)

if ∆ too small will not encompass entire locality.
if ∆ too large will encompass several localities.
if ∆ = ∞ ⇒ will encompass entire program.

D = Σ WSSi ≡ total demand for frames
if D > m ⇒ Thrashing (m is total of physical frame)
Policy if D > m, then suspend one of the processes

2008-5-27 By GU/Jianhua NWPU 40

Keeping Track of the Working SetKeeping Track of the Working Set
Approximate with interval timer + a reference bit
Example: ∆ = 10,000

Timer interrupts after every 5000 time units.
Keep in memory 2 bits for each page.
Whenever a timer interrupts copy and sets the
values of all reference bits to 0.
If one of the bits in memory = 1 ⇒ page in working
set.

This is not completely accurate.
Improvement = 10 bits and interrupt every 1000
time units.

2008-5-27 By GU/Jianhua NWPU 41

Page-Fault Frequency SchemePage-Fault Frequency Scheme

Establish “acceptable” page-fault rate.
If actual rate too low, process may have too many frame.
If actual rate too high, process needs more frame.
If(rate > upper limit) allocate process another frame
If(rate < lower limit) remove frame from process

2008-5-27 By GU/Jianhua NWPU 42

Demand SegmentationDemand Segmentation
Used when insufficient hardware to implement
demand paging.
OS allocates memory in segments, which it
keeps track of through segment descriptors
Segment descriptor contains a valid bit to
indicate whether the segment is currently in
memory.

If segment is in main memory, access continues,
If not in memory, segment fault.

8

2008-5-27 By GU/Jianhua NWPU 43

请求分段的段表机制请求分段的段表机制

段表项

段名，段长，基址，访问方式，访问位，修
改位，内存标志，外存地址

地址变换/缺段终端

以段为单位换入/换出，开销比较大。

2008-5-27 By GU/Jianhua NWPU 44

Other ConsiderationOther Consideration

Self-Study

