VIRTUAL
MEMORY

GUNJianhua
BRIE
School of Computer Science
Northwestern Polytechnical University

Hecielrolpcl

© Virtual memory — separation of user logical memory from
physical memory.
= Only part of the program needs to be in memory for execution.

= Logical address space can therefore be much larger than physical
address space.

= Need to allow pages to be swapped in and out.
© Benefits:
= Program size not constrained by amount of physical memory available.
= Programmer do not consider the amount of physical memory.
= More programs can be run simultaneously
= Less need for swapping
© Virtual memory can be implemented via:
= Demand paging
= Demand segmentation

=

03 Poli-Ciés for Visiual Wamony (L)

o Fetch Policy
= How/when to get pages into physical memory.
= demand paging vs. pre-paging.

2 Placement Policy
= Where in physical memory to put pages.

© Replacement Policy

= Physical memory is full. Which frame to page
out?

nhua NWPU

Vigiual Megmory

© Background

© Demand Paging

2 Performance of Demand Paging
© Page Replacement

© Page-Replacement Algorithms
© Allocation of Frames

© Thrashing

© Other Considerations

© Demand Segmentation

2008-5-27 3y GUlianhua NWPU

=z

lgsiies rlaad rasolyed

2 Can a program execute correctly if part of
program are loaded into memory?

2 How can OS do if process access an data or
instruction that is not in memory?

2 How can the OS do if there is not enough free
memory in main memory?

inhua NWPU

O3S Policias for Vigitel Memony(2)

2 Resident Set Management Policy

= How many frames to allocate to process?
2 Cleaning Policy

» When to write a modified page to disk.
2 Load Control

= How many processes will be resident in main memory,
which is referred to as the multiprogramming level?

Deppziriel Peiefific)
© The principle of locality of reference.

2 Page Fault Processing
© Replacement

By GU/Jianhua NWPU

PRl

o ST By A RIS A6 AL ST A PUTRS 2 I By
MIAE, BPE—ARAEEEE B, 425 693
TEAS, AR, CH P 6 A0 E
BT EANRS

o BRI R I A A1 1A

o B 18] By Bt A 48 dm R A

N R A VA G %464 7T e .

iz 9], W RAVA S Z AR LE M VT 48
FroRARIT 9.

o A Byt R 45— 718 T A
T, EARAZ)G, LWL 64 A4 3 0 A% 37
7]

Peicja Tz0le Enliny
2 Page table entry:

= V: Valid-Invalid Bit
(1 = in-memory, 0 = not-in-memory)

Initially valid—invalid bit is set to O on all entries.
= M: Modified Bit
= C: Control Bit

The Princiole of Locality of Referance

© A program that references a location n at some
point in time is likely to reference the same
location n and locations in the immediate
vicinity of n in the near future.

2 As a process executes, it move from locality to
locality.

Dagrziricl Pacfing
© Bring a page into memory only when it is needed (not in
memory).
© Also called Lazy Swapper
© Benefits:
= Less I/0 needed
= Less memory needed

= Faster response
= More users

I
1

1 backang store

[P TTELTTT]

ph)srrmmary

Pelicje Rl)i
© Page fault : During address translation, if valid—invalid bit
in page table entry is 0 (Page NOT in memory) .

o Page fault trap: If there is ever a reference to a page, the
reference will trap to OS when page fault

2 OS looks at another table to decide:
= Invalid reference(out of process space) = abort.
= Just not in memory.
= Find a free frame.
2 Swap page into frame.(read page from swap)
© Reset tables: set validation bit = 1.
< Restart instruction

ProcééSing of Pacje e

page is on backing store

&,
0s =
) frap i
reference
1 :
| cru I @ S [i
restart /'
insirnctic —
page table
free o
frame FR—
tpalate page table aad page

physical memory

Wizt hap_pens if ifisre isno frae frama?

2 Page replacement — find some page in memory,
but not really in use, swap it out.
= algorithm
= performance — want an algorithm which will result in
minimum number of page faults.
2 Same page may be brought into memory several
times.
2 Use modify (dirty) bit to reduce overhead of page
transfers — only modified pages are written to disk.

Dapnziriel Peiefinie) Bl ole
SMemory access time = 100 nanoseconds
SAverage page-fault time = 25 milliseconds
SEAT = (1 —p) x 100 + p x (25 000 000)

=100+24 999 900 x p
= When p=0.1%, EAT=25 microseconds
= [f we want less than 10% degradation,
100+100 x 10% >100 + 25 000 000 X p
p < 0.000 000 4

reference

Restart Page table

instruction

Update page table

Physical memory
14

Parformzrces i Darmacl Peiejine)

SPage FaultRate 0<p<1.0

= if p = 0 no page faults

= if p =1, every reference is a fault
SEffective Access Time (EAT)

EAT = (1 — p) x memory access + p x page_fault time
page_fault time = (service page fault interrupt

+ [swap page out]

+swap page in

+ restart overhead)

Page'—R'épIac'ementAlgorithms

SWant lowest page-fault rate.

SEvaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string.

>ln all our examples, the reference string is

1,2,3,4,1,2,51,23,4,5.

2Algorithms

= Optimal Algorithm

= FIFO Algorithm

= Least Recently Used (LRU) Algorithm
= Random Algorithm

Qutignal Algoritrin
SReplace page that will not be used for longest period of
time in the future.

24 frames example
1,2,3,4,1,2,51,2,3,4,5

ap
2

6 page faults

2How do you know this? (Prediction)
2Used for measuring how well your algorithm performs.

By GUIJia

==

Lazist Hacantly Usad (LRU) Algoritnm

o Replace page in memory that has not been
referenced for longest time.

1,2,3,41,2,51,2,3,4,5

© Basic Algorithm:
= Counter implementation
= Stack implementation

LRU Covrliar immolamentation

© Counter implementation

= Every page entry has a counter; every time page is
referenced through this entry, copy the (logical) clock into
the counter.

= When a page needs to be changed, look at the counters to
determine which page are to change.

» the LRU page with the smallest time values

© Features
= Request a search of page table to find the LRU page
» Write the page table whenever each memory access
= Overflow of clock must be considered

B} [Jianhua NWPU

T TETGT (FIFQ) Algoritrin

© Replace page that has been in memory the longest(oldest)
© 3 frames (3 pages can be in memory at a time per process)
1,2,3,4,1,2,5,1,2,3,4,5 1

9 page faults

o 4 frames
10 page faults

2 FIFO Replacement — Belady’s Anomaly
= more frames =5 less page faults

201 B

REplacementExample

2 Demo

Ll Szl irmolamertation

o Stack implementation — keep a stack of page
numbers in a double link list:
=Page referenced:
—Remove it from stack and put it on the top
—Top page is always the most used page and bottom is LRU
page
o Features
srequires 6 pointers to be changed at worst when
moving page
= No search for replacement
2 Demo

LRU Agorodinmzation Algoritfinms
2 Basic Idea:

= Reference hit
— With each page associate a bit, initially = 0
—When page is referenced, the bit is set to 1.

— Replace the one whose bit is 0 (if one exists). We do not
know the order, however.

2 Algorithms:
= Additional-Reference-Bits Algorithm
= Second-Chance Algorithm
= Enhanced Second-Chance Algorithm

By GU/Jianhua NWPU

LRU:Szconc-Crizinca Algordiri

2 Need one reference bit for each page
© Algorithm:
repeat to inspect reference bit for each page:
If (reference bit is 0) replace that page;
else{ setreference bit 0;

leave page in memory;
move on next page;

Deloje-Buifarine (1)
Slssue: cost of replacing a page that has been
modified is greater than for one that has not.
S The replaced page is not swapped out, but
rather is held in memory.
2 System maintain two list: free page list and
modified page list in memory.
= [f(no modified) put it into free list;
= [f(modified) put it into modified list;

By GU/Jianhua NWPU

==

-
-

-
=

-
=

-
=

-
=

L

U Additionzl-Refarance-Bits Algoriifm)
Keep an 8-hit shift register for each page

At regular intervals(say, every 100m), OS shifts the reference
bit for each page into high-order bit of shift register, shifting the
other bit right 1 bit. | RB | Shift Register

If we interpret shift register as unsigned integers, the page with
the lowest number is the LRU page, and it can be replace.
Note: The number are not guaranteed to be unique. We can
either replace all page with smallest value, or user FIFO
selection.

Example: page with 11000100 has been used more recently
than one with 01110111

2008-5-27

LR EnfEncad Seconc-Chizincs Algoriinm

o

2 Both reference bit and modify bit are needed,
which is an ordered pair <R,M>
2 Algorithm:
If(<0,0>) page is selected;
If(<0,1>) set the M bit to 0; and move on(next);
If(<1,0>) set the R bit to 0; and move on;
If(<1,1>) set the M bit to 0; and move on;

PageQES_uffel'ilwg 2)

2When a page fault occurs, OS first check

whether the desired page is in the free or
modified list.

SThese replaced pages are reused as soon as

possible.

>Modified pages are written out in cluster rather

than one at a time.

2 Size of the two lists is fixed.
SFIFO algorithm is used to manage the list.

2008-5-27 By GUlJianhua NWPU

Allgezitior of Frames
2 Each process needs minimum number of pages. As the
number of frames allocated to each process decreases, 3 Equa| allocation — To Split m frames

Lhe page farlt-rate |dncreasesh, slowing protcfess egecfgnog. among n processes and to give each
© How many frames does each process get from the fixe process equal share, m/n

amount of free memory ?
> The minimum number of frames that must be allocated to © Example: if 100 frames and 5
a process is defined by instruction-set architecture. processes, give each 20 pages.
© Allocation schemes.
= Fixed allocation
= Proportional allocation
= Priority allocation

Eiael Alloeziijon)

By GU/Jianhua NWPU

Progoriomzl zlllgeziion) . .
PrlogityAllgezitjog
© Proportional allocation — Allocate according to

the size of process. >Use a proportional allocation scheme using
s, =size of process p, priorities rather than size.
S=0'g 2If process P; generates a page fault,
m = total number of frames = select for replacement one of its frames.

= select for replacement a frame from a process

a; = allocation for p; =Sim . L
S with lower priority number.

By GUlJianhua NWPU

Glogzl) s, Loeal] Raglaeae) IIEESHING

2Global replacement — process selects > Ifa process does NOT have “enough” pages,

the page-fault rate is very high. This leads to:
a replacement frame from the set of all _lfwgpu ilization, o
frames; one process can take a frame = operating system thinks that it needs to increase the

from another degree of multiprogramming.
: = another process added to the system.

SLocal replacement — each process © Thrashing = a process is busy swapping pages

selects from only its own set of allocated in and out.
frames 2 A process is spending more time paging than
: executing.

By GU/Jianhua NWPU 35 2 By GUlJianhua NWPU

degree of multiprogramming
2 Why does paging work?
Locality model
= Process migrates from one locality to another.
= Localities may overlap.
© Why does thrashing occur?
3 size of locality > total memory size

By GU/Jianhua NWPU

==

Workine-SetMoclz] (2)

2 WSS; (working set of Process P)) =
total number of pages referenced in the most recent
A (varies in time)
= if A too small will not encompass entire locality.
= if A too large will encompass several localities.
= if A = 0o = will encompass entire program.
©D =X WSS, = total demand for frames
2if D > m = Thrashing (m is total of physical frame)
2 Policy if D > m, then suspend one of the processes

By GULJ

© Establish “acceptable” page-fault rate.
= |f actual rate too low, process may have too many frame.
= If actual rate too high, process needs more frame.
= [f(rate > upper limit) allocate process another frame
= [f(rate < lower limit) remove frame from process

By GU/Jianhua NWPU

Workine-sSetMaoelz] (1)

o Working Set: WS(t, A) : set of pages referenced by process

during time interval (t- A, t)

2 A = working-set window = a fixed number of page
references
Example: 10,000 instruction

© Page reference table

...2615777751623412344434344413234.

A A
ws()={125673 " ws@=ay 2

2008-5-27

Kazoing Tracik ofifla Worlkine) Set
2 Approximate with interval timer + a reference bit
2 Example: A = 10,000

= Timer interrupts after every 5000 time units.

= Keep in memory 2 bits for each page.

= Whenever a timer interrupts copy and sets the
values of all reference bits to 0.

= If one of the bits in memory = 1 = page in working
set.

2 This is not completely accurate.

2 Improvement = 10 bits and interrupt every 1000
time units.

2008-5-27

DEMENUSEGENLAIGE)

>Used when insufficient hardware to implement
demand paging.
20S allocates memory in segments, which it
keeps track of through segment descriptors
2 Segment descriptor contains a valid bit to
indicate whether the segment is currently in
memory.
= If segment is in main memory, access continues,
= [f not in memory, segment fault.

By GU/Jianhua NWPU

OErConRsIderation

o Self-Study

o DLBOK B e N, TS K.

By GU/Jianhua NWPU

