- 1. Consider two electric dipoles \vec{p}_1 , \vec{p}_2 , and a charge q, lying at positions \vec{r}_1 , \vec{r}_2 , and \vec{r}_q , respectively. Which of the following statements are true? (複選) (多勾者倒扣, 扣完爲止) (15%)
 - (a) The electric potential energy of the dipole \bar{p}_1 is $(\bar{p}_1 \cdot \vec{E}_1)$, where \bar{E}_1 is the electric field at \bar{r}_1 .
 - (b) The electric field at \vec{r}_1 is $\vec{E}_1 = -\nabla_{\vec{r}_1}(V_1)$, where $V_1(\vec{r}_1) = q/|\vec{r} \vec{r}_1| + V_{12}$, V_{12} being the electric potential at \vec{r}_1 due to the dipole \vec{p}_2 .
 - (c) The potential energy between q and \vec{p}_2 is $V_{q2} = q[\vec{p}_2 \cdot (\vec{r}_2 \vec{r}_q)]/|\vec{r}_2 \vec{r}_q|^3$.
 - (d) The electric potential at q due to dipole \vec{p}_2 is $-[\vec{p}_2 \cdot (\vec{r}_2 \vec{r}_q)]/|\vec{r}_2 \vec{r}_q|^3$.
 - (e) The electric potential at \vec{r}_1 due to the dipole \vec{p}_2 is $V_{12} = -\vec{p}_2 \cdot (\vec{r}_1 \vec{r}_2)/|\vec{r}_1 \vec{r}_2|^3$.
 - (f) None of the above is true.
- 2. Consider the following magnetic field

 $\bar{B}(x,y,z) = \{ egin{align*} (0,B_0,0), & 0 \leq z \leq L \\ 0, & eslewhere \ . \end{cases}$, where B_0 is a constant. Let $\bar{A}(x,y,z)$ be the corresponding vector field. Which of the following statements are true? (複選) (多勾者倒扣,扣完爲止) (10%)

- (a) There are many choices for $\vec{A}(x, y, z)$ as long as they satisfy $\vec{B}(x, y, z) = \nabla \times \vec{A}(x, y, z)$.
- (b) We can choose $\vec{A}(x, y, z) = 0$ for |z| > L.
- (c) A possible choice for $\vec{A}(x, y, z)$ is the following.

$$0, z < 0$$

$$\vec{A}(x, y, z) = (B_0 z, 0, 0), 0 \le z \le L$$

$$0. z > L$$

(d) A possible choice for $\vec{A}(x, y, z)$ is the following.

$$\bar{A}(x, y, z) = (B_0 z, 0, 0), \quad 0 \le z \le L$$

$$(B_0 L, 0, 0), \quad z > L$$

(e) None of the above is true.

		55.6E						
	九十學年度_	電機系及電子工程	系((所) _			研究生招生考	弒
科目	電磁學	科號_4202 及 4303_	共 3	頁第	2_F	*請在試卷【	答案卷】內伦	乍答
 3. (a) A very long and very thin straight wire located along the z-axis carries a current I in the z-direction. Find the magnetic field intensity at any point in free space using Ampere's law in integral form. (5%) 								
(b) Does the equa	tion of continuity imply	charge co	nservati	on? How	?		(5%)
(c) Find electric f Gauss's law.	ield intensity due to an i	solated po	int charg	ge <i>q.</i> Star	ting from the d	ifferential form	n of the (5%)
•	d) Explain the w	orking principle of a lig	htning arre	stor (避	雷針).			(5%)
(•	stance per unit length of of the core is μ . The m		•		•	-	(5%)
4.	The electric field	intensity of a time-ham	nonic plan	e electro	magnetic	wave is given	by	
ı	$\bar{E}(x,y,z,t) = \hat{a}_x 126 \times \sin[10^9 t - 6y + 8z - 0.2]$ Volt/m, where all the variables are in MKSA units. This wave propagates in a simple, nonmagnetic medium. Find numerically, including units if applicable, for							
(a) the unit vector plotting it in t	pointing to the wavefrond the y-z plane).	nt propaga	ation dir	ection, (I	ndicate the dire	ection of the ve	ector by (3%)
(b) the wavelengt	h along the wavefront n	ormal dire	ction,				(3%)
((c) the wavefront velocity or the phase velocity of the electromagnetic wave in the wavefront propagation						agation	
	direction,							(3%)
'	· • •	city in the z direction,						(3%)
'	· · · · · · · · · · · · · · · · · · ·	h in the y direction,						(3%)
'		ndex of the medium,						(3%)
'	g) the wave impe	-		C.I				(3%)
		age intensity (power per			ave.			(4%)
]	Hint: the vacuum	permittivity is $\varepsilon_0 = \frac{1}{36}$	$\frac{-}{\pi} \times 10^{-9}$ I	7/m.				
a	ind the vacuum p	ermeability is $\mu_0 = 4\pi$	×10 ⁻⁷ H/	m				
5. Consider a short dipole antenna of length ℓ carrying a current $I_0 \cos(\omega t)$ located at origin and oriented along the z axis in free space. The electric field component of the wave at distance r very much greater than the wavelength is approximately given by								

$$\vec{E}(R,\theta) = \hat{a}_{\theta} j \frac{30\beta I_0 \ell}{R} \sin \theta e^{-j\beta R} \quad \text{where} \quad \beta = \omega \sqrt{\mu_0 \varepsilon_0}$$

(a) Find the corresponding magnetic field
$$\bar{H}(R,\theta)$$
 (5%)

(b) Find the time averaged poynting vector
$$\vec{P}_{ar}$$
 (5%)

(c) Find the total power radiated by the dipole source by integrating the poynting vector over a spherical surface centered at the dipole. (5%)

		<u> </u>			
	九十學年度	電機系及電子工程	系(所)_		組碩士班研究生招生考試
1	電磁學	科號 4202 及 4303	共 3 頁第	3 頁	+請在試卷【答案卷】內作答

(d) Show that the radiation resistance of this short dipole can be expressed as

$$R_{red} = 80\pi^2 \left(\frac{\ell}{\lambda}\right)^2$$
 where λ is the wavelength.

(e) What is the total power radiate from a short antenna of $\ell = 0.01 \lambda$ excited with 1 A current. (5%)

Note that the wave impedance is $120\pi\Omega$ here.

Cylindrical Coordinates (r, ϕ, z)

$$\nabla V = \mathbf{a}_r \frac{\partial V}{\partial r} + \mathbf{a}_{\phi} \frac{\partial V}{r \partial \phi} + \mathbf{a}_z \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{\partial A_{\phi}}{r \partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \mathbf{A} = \frac{1}{r} \begin{vmatrix} \mathbf{a}_{r} & \mathbf{a}_{\phi} r & \mathbf{a}_{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{r} & rA_{\phi} & A_{z} \end{vmatrix} = \mathbf{a}_{r} \left(\frac{\partial A_{z}}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \mathbf{a}_{\phi} \left(\frac{\partial A_{r}}{\partial z} - \frac{\partial A_{z}}{\partial r} \right) + \mathbf{a}_{z} \frac{\mathbf{i}}{r} \left[\frac{\partial}{\partial r} (rA_{\phi}) - \frac{\partial A_{r}}{\partial \phi} \right]$$

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

Spherical Coordinates (R, θ, ϕ)

$$\nabla V = \mathbf{a}_R \frac{\partial V}{\partial R} + \mathbf{a}_{\theta} \frac{\partial V}{R \partial \theta} + \mathbf{a}_{\phi} \frac{\mathbf{i}}{R \sin \theta} \frac{\partial V}{\partial \phi}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{R \sin \theta} \frac{\partial A_\theta}{\partial \phi}$$

$$\nabla \times \mathbf{A} = \frac{1}{R^2 \sin \theta} \begin{vmatrix} \mathbf{a}_R & \mathbf{a}_{\phi} R & \mathbf{a}_{\phi} R \sin \theta \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_R & RA_{\phi} & (R \sin \theta) A_{\phi} \end{vmatrix} = \mathbf{a}_R \frac{1}{R \sin \theta} \left[\frac{\partial}{\partial \theta} (A_{\phi} \sin \theta) - \frac{\partial A_{\phi}}{\partial \phi} \right] \\ + \mathbf{a}_{\phi} \frac{1}{R} \left[\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial}{\partial R} (RA_{\phi}) \right] \\ + \mathbf{a}_{\phi} \frac{1}{R} \left[\frac{\partial}{\partial R} (RA_{\phi}) - \frac{\partial A_R}{\partial \theta} \right]$$

$$\nabla^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$