DOI:10.13671/j.hjkxxb.2014.0544

屈成锐,徐斌,吴健,等.2014.流化床 O₂/CO₂气氛燃煤痕量元素的排放特性及控制[J].环境科学学报,34(8):1949-1953 Qu C R,Xu B,Wu J, *et al.* 2014.Control of sorbents on trace elements under O₂/CO₂ atmosphere during coal combustion in a fluidized bed combustor [J].Acta Scientiae Circumstantiae,34(8):1949-1953

流化床 O_2/CO_2 气氛燃煤痕量元素的排放特性及控制

屈成锐*,徐斌,吴健,刘建新,王学涛

河南科技大学车辆与动力工程学院,洛阳 471003 收稿日期:2013-11-10 修回日期:2013-12-16 录用日期:2013-12-16

摘要:通过平顶山烟煤在小型流化床中的燃烧实验,采用 X-射线荧光光谱仪(XRF)对低压撞击器(LPI)收集到的细颗粒物元素组成进行定量 测定,研究了 O₂/CO₂气氛下硅藻土对煤粉燃烧痕量元素的排放控制.结果表明,Zn、Mn 和 Ni 的含量随粒径呈双峰分布,峰值分别在 0.1 μm 和 2 μm 附近,Hg 和 Co 的含量在 0.1 μm 附近有一峰值;Hg 和 Zn 在亚微米颗粒上有一定程度的富集,Mn、Ni 和 Co 在亚微米和超微米颗粒上的含 量基本相当;当颗粒物粒径一定时,随着硅藻土含量的增加,5 种元素的富集因子呈减小的趋势;随着添加剂粒径的减小,颗粒物中 Hg、Mn、Zn、 Ni 和 Co 的含量呈减少的趋势;当颗粒物粒径一定时,5 种元素含量顺序为 Mn >Zn> Ni>Co>Hg.

关键词:O2/CO2气氛;煤燃烧;痕量元素;流化床;添加剂

文章编号:0253-2468(2014)08-1949-05 中图分类号:X51 文献标识码:A

Control of sorbents on trace elements under O_2/CO_2 atmosphere during coal combustion in a fluidized bed combustor

QU Chengrui*, XU Bin, WU Jian, LIU Jianxin, WANG Xuetao

College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang 471003Received 10 November 2013;received in revised form 16 December 2013;accepted 16 December 2013

Abstract: The control of diatomite on the emission of heavy elements was studied under O_2/CO_2 atmosphere during Pingdingshan bituminous coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine ash particles collected with a low pressure impactor (LPI) was quantified by X-Ray Fluorescence Spectrometer. The results indicate that the contents of Mn, Zn and Ni show two peaks around 0.1 μ m and 2.0 μ m, respectively, but the contents of Hg and Co display one peak around 0.1 μ m. Hg and Zn enrich in the PM₁, but the contents of Mn, Ni and Co in the submicron particle are simular to those in the ultramicron particle. The enrichment factors of Hg, Mn, Zn, Ni and Co decrease with enhancement of the content of diatomite when particle granule size is constant. With decreasing diatomite granule size, the concentrations of five elements decrease. When particle granule size is constant, the contents of flue elements followed the order of Mn, Zn, Ni, Co and Hg.

Keywords: O2/CO2 atmosphere; coal combustion; trace elements; fluidized bed; sorbent

1 引言(Introduction)

煤中除了含有 Si、Al 和 Ca 等主量元素外,还包 含有 As、Pb、Zn、Mn、Hg 等痕量元素.这些有毒有害 的元素在煤燃烧过程中会排入大气中,进而对环境 和人体健康造成很大的危害.目前,煤燃烧已成为痕 量元素释放的重要来源.

自 20 世纪 70 年代以来,国内外学者对煤燃烧 过程中痕量重金属元素的分布、迁移和转化进行了 研究 (Tang et al., 2012; Świetlik et al., 2012; Yi et al., 2008).研究发现,煤粉颗粒首先进行热解和着 火,随着挥发分的析出,焦炭开始燃烧时,易挥发性 的痕量元素开始通过各种途径向颗粒相转变,包括均 相成核及在飞灰颗粒上的物理/化学吸附和多相凝 结(Koukouzas et al., 2011; Shah et al., 2008; Vejahati et al., 2010).因此,其中一部分痕量元素以底渣的形 式沉积下来,而其它则以飞灰和气相形式随烟气排

基金项目:国家自然科学基金 (No.50806020);河南省教育厅科学技术研究重点项目(No.13A470238)

Supported by the National Natural Science Foundation of China (No.50806020) and the Science and Technology Research Key Projects of Education Department of Henan Province (No.13A470238)

作者简介:屈成锐(1970—),男,副教授(博士),E-mail: qcrccm@126.com; * 通讯作者(责任作者)

Biography: QU Chengrui(1970-), male, associate professor(Ph.D.), E-mail: qcrccm@126.com; * Corresponding author

入大气(Zhou et al.,2012;孟韵等,2012;Zhao et al., 2006).黄亚继等(2005)在小型流化床中研究了石 灰石、白云石、碳酸钠对痕量元素的控制规律,发现 3种固体添加剂对不同痕量元素的吸附能力不同, As、Cd、Cr、Cu、Pb和Zn在细颗粒物中富集;刘晶等 (2003)在沉降炉中研究了硫酸钙、石灰石、铝土矿 对痕量元素排放的控制,发现3种吸附剂对Pb、Cr 和Cu均有控制作用;Koukouzas等(2011)在0.1 MW的循环流化床上进行实验,结果表明,Cd、Cr、 Cu、Ni、Mn和Zn在细颗粒物上富集;徐鸿等(2004) 在35 t·h⁻¹的循环流化床锅炉上研究了痕量元素的 富集,发现Cd和Pb在PM₁上富集;Linak等(1994) 在一个小型旋流火焰焚烧炉中做了吸附剂团聚痕 量元素的实验,结果表明,石灰石对Zn有很好的吸 附作用.

O₂/CO₂燃烧技术采用纯氧和一部分再循环烟 气构成的混合气代替空气作燃料燃烧的氧化剂,是 一种既能直接获得高浓度 CO₂,又能综合控制燃煤 污染排放的新一代洁净煤燃烧技术,具有巨大的发 展潜力.目前,对于 O₂/CO₂气氛下燃煤过程中痕量 元属排放特性和控制的研究鲜见报道(Suriyawong et al.,2006; Chen et al.,2011; 李意等,2008).因此, 本文通过平顶山烟煤在小型流化床中的燃烧实验, 采用 X-射线荧光光谱仪(XRF)对低压撞击器(LPI) 收集到的细颗粒物元素组成进行定量测定,研究了 O₂/CO₂气氛下硅藻土对煤粉燃烧痕量元素的排放 控制.

2 实验与分析方法(Experiment and analysis method)

2.1 试验煤种和条件

实验采用平顶山烟煤,煤粉粒径为180~220 μm,其工业分析和元素分析见表1,灰成分分析见 表2,主要痕量元素含量见表3.采用硅藻土作为添 加剂,其主要成分为SiO₂,另外含有少量的Al₂O₃、 CaO、Fe₂O₃和MgO,其粒径分别为43、61、88和105 μm.燃烧温度为1123K,炉内燃烧气氛为21%O₂/ 79%CO₂.利用LPI收集烟气中的细颗粒物,LPI每级 基片上的收集量不能超过1mg,以免颗粒反弹引起 误差,每次收集时间小于20min.

工业分析(空气干燥基)					元素分析(空气干燥基)					
М	Α	V	FC	C	Н	0	Ν	S		
0.99%	18.19%	38.46%	42.36%	68.30%	5.31%	2.58%	0.78%	3.87%		
			rinaryono or aon co	inposition of 1 m	SumSunan Ditun	inious cour				
		Tuble 2								
SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	PbO	K20	Na ₂ O	TiO ₂		

衣い	平坝山烟床土安很里儿系召里	

Table 3 Analysis of trace elements of Pingdingshan bituminous coal									µg•g⁻¹
Со	Cr	Cu	Mn	Ni	Pb	Zn	Cd	As	Hg
2.91	26.16	15.10	68.83	11.03	6.15	35.25	0.067	63.38	0.05

2.2 试验装置和样品分析

实验装置是一个小型流化床实验台架(图1), 由给粉器(由料斗和小型螺旋输粉机组成)、反应 器、电加热器、旋风筒和飞灰收集装置等组成.反应 器的内径为50 mm,悬浮段的高度540 mm.实验过 程中,按21%O₂和79%CO₂混合的气体一部分从反 应器的底部进入,通过布风板进入燃烧室,另一部 分随二次风进入燃烧室.燃料和硅藻土混合后经小 型螺旋输粉机送入炉膛,整个反应器的温度由热电 偶测量.煤粉燃烧完全以后,烟气携带细颗粒物经过 带有 N₂保护气和水冷却装置的采样管,然后经过切 割粒径是 10.0 μm 的旋风分离器,再进入 LPI 并被 分成不同大小的粒径范围.旋风分离器的作用是去 除粒径大于 10.0 μm 的颗粒;LPI 可以将颗粒物按 粒径不同分成 13 级,其空气动力学直径为 0.023~ 9.314 μm.将 LPI 收集到的颗粒物样品进行 X-射线 荧光光谱(XRF)化学成分分析.

Fig.1 Schematic diagram of laboratory-scale fluidized bed combustor

3 结果与讨论(Results and discussion)

3.1 痕量元素随 PM₁₀粒径的分布

煤粉燃烧后,Hg、Zn、Mn、Ni 和 Co 的含量及其 随粒径的分布如图 2 所示.由图可见, Zn、Mn 和 Ni 的含量呈双峰分布,峰值分别在 0.1 μm 和 2 μm 附 近,Hg和Co的含量在0.1 µm附近有一峰值,之后 随粒径的增大而减小:Hg 和 Zn 在亚微米颗粒上有 一定程度的富集, Mn、Ni 和 Co 在亚微米和超微米颗 粒上的含量基本相当,这可能是由于各种痕量元素 在不同粒径飞灰颗粒上的富集特性不同造成的.煤 粉燃烧过程中,煤粉颗粒首先发生热解和着火,随 着挥发分的析出,焦炭开始燃烧,部分存在于焦炭 表面的痕量元素也开始挥发,并从焦炭中释放出 来,在高温环境下与周围环境发生氧化还原反应,与 此同时,焦炭内的一部分矿物组分也开始挥发,在烟 气冷却过程中,某些痕量元素的化合物可能达到露 点并开始凝结.多相凝结通常发生在飞灰颗粒表面. 己蒸发的痕量元素组分通过成核、凝聚也可以形成 新的颗粒.Hg 和 Zn 属于挥发元素,易在亚微米飞灰

颗粒上富集,由于 Mn、Ni 和 Co 熔点高,不易汽化, 燃烧时不易挥发,主要存在于灰渣中,或部分存在 于细微颗粒物中.

图 2 痕量元素随 PM₁₀粒径的分布(燃烧温度 1123K,21%O₂/ 79%CO₂)

Fig.2 Size distribution of trace elements in PM_{10}

3.2 添加剂含量对痕量元素排放的影响

煤粉燃烧后, Hg、Mn、Zn、Ni 和 Co 随添加剂含 量的变化规律见图 3.为了说明随着颗粒粒径变化各 元素的变化趋势,定义相对富集因子 R_{ij} 以便清晰地 表明各元素在不同粒径颗粒上的分布特性, R_{ij} 为某 元素在 j 粒径飞灰颗粒中的质量分数(C_{ij})与在最大 粒径颗粒中(LPI 第 13 级)质量分数(C_{i13})的比值, 相对富集因子表征的物理意义是:某种痕量元素对 于其在含量最低的第 13 级颗粒物来说,随着颗粒物 粒径的减小,富集量相对增加的倍数.其表达式如下 (Clarke *et al.*,1992; Meij,1991):

$$R_{ii} = C_{ii} / C_{i13}$$

若该比值大于 1,说明元素在 *j* 粒径颗粒中富 集;反之,则没有富集趋势.由图 3 可见,亚微米颗粒 中 Hg、Mn、Zn、Ni 和 Co 的 *R*_{ij}高于超微米颗粒中;Hg 和 Zn 在亚微米颗粒上明显富集, Mn、Ni 和 Co 在亚 微米颗粒上无富集;当颗粒物粒径一定时,随着添

加剂含量的增加,5种元素的 R_{ij}呈减小的趋势.添加 剂对痕量元素的吸附包括物理吸附和化学吸附,其 中,物理吸附主要以痕量元素蒸汽在孔内凝结为 主,化学吸附是添加剂表面和内部小孔表面存在的 活性位(SiO₂、Al₂O₃、和 MgO 等)与痕量元素及其化 合物发生化学反应的过程,这种吸附取决于痕量元

素的化学性质和活性位分布.当所有活性位被占满 后,即表面层达到饱和,痕量元素的进一步的凝结 只能靠物理吸附来完成.

3.3 添加剂粒径对痕量元素排放控制的影响

煤粉燃烧后,Hg、Mn、Zn、Ni和Co随添加剂粒径的变化规律见图4.由图可见,随着添加剂粒径的

图 4 添加剂粒径对痕量元素的影响

Fig.4 Effect of sorbent granule size on trace elements

减小,颗粒物中 Hg、Mn、Zn、Ni 和 Co 的含量呈减少的趋势;当颗粒物粒径一定时,5 种元素含量顺序为 Mn>Zn>Ni>Co>Hg.当添加剂含量一定时,其粒径越小,比表面积越大,相应表面的小孔增加,使物理吸 附痕量元素的量增加;另外,比表面积增大,会使添 加剂中 SiO₂、Al₂O₃和 MgO 等活性位的数量增加,从 而使化学吸附量也增加.

4 结论(Conclusions)

1)Zn、Mn 和 Ni 的含量随粒径呈双峰分布,峰 值分别在 0.1 μm 和 2 μm 附近,Hg 和 Co 的含量在 0.1 μm 附近有一峰值,之后随粒径的增大而减小; Hg 和 Zn 在亚微米颗粒上有一定程度的富集,Mn、 Ni 和 Co 在亚微米和超微米颗粒上的含量基本 相当.

2) 当颗粒物粒径一定时,随着添加剂含量的增加,5种元素的 R_{ii}呈减小的趋势.

3)随着添加剂粒径的减小,颗粒物中 Hg、Mn、 Zn、Ni 和 Co 的含量呈减小的趋势;当颗粒物粒径一 定时,5 种元素含量顺序为 Mn>Zn>Ni>Co>Hg.

责任作者简介:屈成锐(1970—),男,副教授,主要研究方向 是洁净煤燃烧及大气污染控制,在国内外核心杂志上发表论 文12篇,SCI和EI收录11篇.

参考文献(References):

- Chen J, Yao H, Zhang P A, et al. 2011. Control of PM₁ by kaolin or limestone during O₂/CO₂ pulverized coal combustion [J]. Proceedings of the Combustion Institute, 33(2): 2837-2843
- Clarke L, Sloss L L.1992.Trace Element Emissions from Coal Combustion and Gasification [C].1EA Coal Research Report.356-367
- 黄亚继,金保升,仲兆平,等. 2005. 固体添加剂对煤气化过程中痕量 元素的控制研究[J].环境科学学报,25(4):507-511
- Koukouzas N, Ketikidis C, Itskos G. 2011. Heavy metal characterization of CFB-derived coal fly ash[J]. Fuel Processing Technology, 92(3):

441-446

- 李意,盛昌栋,刘小伟,等.2008.0₂/CO₂煤粉燃烧时细灰颗粒中痕量 元素分布特性的实验研究[J].工程热物理学报,29(7): 1236-1238
- Linak W P, Srivastava R K, Wendt J L. 1995. Sorbent capture of nickel, lead and cadmium in a laboratory swirl flame incinerator [J]. Combustion and Flame, 100(1/2): 241-250
- 刘晶,郑楚光,曾汉才,等. 2003. 固体吸附剂控制燃煤重金属排放的 实验研究[J].环境科学,24(5):23-27
- Meij R. 1991. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization [J]. Water, Air, and Soil Pollution, 56(1): 21-33
- 孟韵,张军营,钟秦. 2005.煤燃烧过程中有害痕量元素形态分布的化 学热力学平衡分析[J].燃料化学学报,33(1):28-32
- Shah P, Strezov V, Prince K, et al. 2008. Speciation of As, Cr, Se and Hg under coal fired power station conditions [J]. Fuel, 87 (10/11): 1859-1869
- Suriyawong A, Gamble M, Lee M H. 2006. Submicrometer particle formation and mercury speciation under O_2 -CO₂ coal combustion [J]. Energy & Fuels, 20(6): 2357-2363
- Świetlik R, Trojanowska M, Jóźwiak M A. 2012. Evaluation of the distribution of heavy metals and their chemical forms in ESPfractions of fly ash[J]. Fuel Processing Technology,95: 109-118
- Tang Q, Liu G J, Yan Z C, et al. 2012. Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 95: 334-339
- Vejahati F, Xu Z H, Gupta R. 2010. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization – A review[J]. Fuel,89(4): 904-911
- 徐鸿,骆仲泱,王涛,等. 2004. 循环流化床电站排放烟尘特性及痕量 重金属分析[J].环境科学学报,24(3):515-519
- Yi H H, Hao J M, Duan L, et al. 2008. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 87(10/11): 2050-2057
- Zhao Y C, Zhang J Y, Liu H T, et al. 2006. Thermodynamic equilibrium study of mineral elements evaporation in O₂/CO₂ recycle combustion [J]. Journal of Fuel Chemistry and Technology, 34(6): 641-650
- Zhou C C, Liu G J, Yan Z C, et al. 2012. Transformation behavior of mineral composition and trace elements during coal gangue combustion [J]. Fuel,97: 644-650