
Modeling physical systems by effective harmonic oscillators:
The optimized quadratic approximation

Jianshu Cao and Gregory A. Voth
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

~Received 18 August 1994; accepted 8 November 1994!

A mathematical formalism is developed to map a physical system described by a general potential
energy function onto one consisting of effective harmonic oscillators. The present focus is on
many-body systems characterized by a temperature, so the theoretical effort is devoted to the
partition function through a diagrammatic representation of its cumulant expansion in the quadratic
reference system. Appropriate diagram summation and renormalization strategies lead to an
‘‘optimized quadratic approximation’’~OQA! for both the quantum and classical partition functions
of general systems. Diagrammatic methods are also used to develop accurate higher order
corrections to the OQA. Applications to representative problems are presented with good
success. ©1995 American Institute of Physics.
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I. INTRODUCTION

Many challenges faced by the theorist have a single o
gin: Virtually all nontrivial physical problems cannot be
solved exactly with known mathematical techniques. Ye
this situation also gives rise to many stimulating opportun
ties for one to developapproximatetechniques to analyze
such problems. For example, computational approaches h
grown enormously in popularity within this context, yielding
important new insights into the behavior of complex physic
systems. Another fruitful approach has been to model co
plex systems by simpler ‘‘zeroth-order’’ systems whichcan
be analyzed exactly, and to then use perturbation theory
quantify that which is missing from the zeroth-order descrip
tion. Yet another strategy is to map the solution of a difficu
problem onto one which is easier to understand mathema
cally. This latter approach falls within the domain ofvaria-
tional theory, out of which has grown such important tech
niques as self-consistent and mean field methods, basis
expansions, density functional methods, wave packet dyna
ics, effective potential theories, etc. One drawback of th
variational method, however, is that it can often be uncle
how to judge the accuracy of the variational solution an
then to systematicallyimprove uponthat solution. The focus
of the present paper, therefore, is devoted to the latter iss
within the context of one particular variational theory. In
particular, the technique of representing a general nonline
potential energy function by an effective harmonic functio
~see, e.g., Ref. 1! will be formally analyzed within the con-
text of statistical mechanics, and then it will be shown ho
to systematically improve upon the variational solution t
this problem.

In an earlier study,2 a theory was developed for the equi
librium path centroid density in the Feynman path integr
representation of quantum statistical mechanics.1,3–9 In that
work, the Feynman pathfluctuationsabout the centroid vari-
able were expressed in terms of a quadratic reference ac
functional. A one-to-one correspondence was developed
tween a diagrammatic representation and the cumulant
pansion of the centroid density in this reference system.
was shown that diagrammatic topological reduction an
J. Chem. Phys. 102 (8), 22 February 1995 0021-9606/95/102(8)/Downloaded¬25¬Jun¬2004¬to¬18.21.0.92.¬Redistribution¬subject¬to
i-

t,
i-

ve

l
-

to
-
lt
ti-

set
m-
e
r
d

ue

ar

l

ion
e-
x-
It
d

summation techniques, along with a renormalization of the
two basic diagram elements, leads to a set of highly accurat
self-consistent equations for the centroid density and relate
quantities. This analytical theory2 explores the specific dia-
grammatic representation of the well-known Feynman–
Hibbs variational theory10 for the centroid density and a
more accurate effective quadratic approximation,11–13

thereby providing a systematic way to improve upon those
schemes~see also Ref. 14!.

Mathematically, the treatment in Ref. 2 is simply a gen-
eralized theory of Gaussian expansions with special care ex
ercised to enforce the centroid constraint. Though the dia
grammatic analysis in that paper was developed in the
context of the centroid density, the basic methodology is by
no means limited to treating only quantum thermal fluctua-
tions around the path centroid. In fact, the only assumption
for the validity of this diagrammatic analysis is the quadratic
nature of the reference system. In the present paper, ther
fore, the perspective is significantly broadened to develop a
general quadratic reference theory for thepartition function
in both quantum and classical equilibrium statistical mechan
ics. The theory approximates the physicalpotentialas being
described by an effective quadratic function, not just the par
describing the contribution to the action from the Feynman
path fluctuations.

It is well known that any analytic function of Gaussian
variables can be uniquely expressed in terms of its first and
second moments. In particular, the partition function can be
expanded in an arbitrary quadratic reference frame, and th
topological reduction of the diagrammatic representation of
this expansion leads to a cumulant expansion. Unlike the
similar expansion of the centroid density where the centroid
of the path fluctuations is constrained,2 the expression for the
partition function includes both the first and second moments
so that additional effort is required in the summation and
renormalization scheme. Such a procedure treats the classic
and quantum thermal fluctuations in a most general fashion
leading to something we term the ‘‘optimized quadratic ap-
proximation’’ ~OQA! and higher order corrections. At ex-
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3338 J. Cao and G. A. Voth: Effective harmonic oscillators
tremely low temperatures, the OQA and higher order corre
tions can be shown to be equivalent to a quantu
perturbation theory calculation. At high temperatures, th
OQA approximation does not recover the exact classic
limit as does the centroid theory. Indeed, in the classic
OQA the potential is still modeled by an optimized quadrat
function.

The formal OQA theory is presented in Sec II, with
some aspects of the diagrammatic analysis having been
ready elaborated in Ref. 2 to which the reader is referred f
more details. In Sec. III, applications of the OQA theory ar
presented. Specifically, in order to demonstrate the valid
and utility of the OQA scheme and higher order correction
the classical and quantum partition functions for a particle
a one dimensional anharmonic potential are calculated
several temperatures. The comparison with the exact res
obtained by path integral Monte Carlo simulations9 clearly
indicates a consistent improvement as the higher levels
corrections are included. Next, the nonlinear dipolar intera
tion in fluids is formulated in the context of the OQA equa
tions. Combination of this formalism and the mean field ap
proximation ~MSA!15–19 provides a means to study the
dielectric response of polarizable fluids including nonlinea
dipolar interactions. To probe the extremely quantum m
chanical limit of the theory, the ground state energy shift of
Drude oscillator in the presence of an electron20 is calcu-
lated. The results are compared with the exact data compu
via path integral Monte Carlo simulations. Finally, the ana
lytic continuation of imaginary time correlation functions
generated from the OQA theory is employed to study in
tramolecular vibrational relaxation in polyatomic molecules
demonstrating a connection to some expressions derived
others.21 Concluding remarks are given in Sec IV.

II. THEORY

A. Exact diagrammatic representation of the partition
function

For the sake of simplicity, the OQA theory will be de-
veloped in this section for a one-dimensional quantum pa
ticle. From this analysis, the generalization to multidimen
sional space is straightforward. The classical limit may b
recovered by taking Planck’s constant\ to zero.

Two basic elements are required to specify a gene
quadratic reference potential:~1! the average position in the
reference system, given by

q̄r5^q& ref ~2.1!

and ~2! the imaginary time correlation function in the refer
ence system, given by

a~t!5^~q~t!2q̄r !~q~0!2q̄r !& ref , ~2.2!

wheret is the imaginary time on the interval 0<t<\b. It is
well known that any function of a Gaussian variable can b
expressed in terms of its meanq̄r and its mean squared de-
viation a~t!. All average values in the quadratic referenc
potential are denoted by the symbol^•••&ref .
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Since the correlation function in Eq.~2.2! is defined with
respect to the reference mean, an arbitrary Feynman path
be decomposed asq(t)5q̄r1q̃(t), whereq̃~t! is the ther-
mal fluctuation about the reference mean. A Fourier decom
position of the fluctuation pathsq̃~t! can now be introduced
such that

q̃~t!5 (
n52`

`

q̂ne
2 iVnt, ~2.3!

where the summation is over all integers, andVn is the Mat-
subara frequency defined byVn52pn/\b. ~It should be
noted that the above path decomposition is different fro
that in Ref. 2 where the path fluctuations about the centro
variable where studied.! As a next step, the imaginary time
action in the quadratic reference system is specified to hav
quadratic form in the variableq̃~t! such that

Sref@ q̃~t!#/\5
1

\ (
0

\b

dtH m2 q8 ~t!21Vref@ q̃~t!#J
5 (

n52`

` uq̂nu2

2an
, ~2.4!

wherean defines the reference correlation function such th

a~t!5 (
n52`

`

ane
2 iVnt. ~2.5!

To be specific, for the effective quadratic reference potentia
given byVref(q)5(1/2)mv2(q2q̄r)

2, one has according to
Eq. ~2.4!

an5
1

mb~Vn
21v2!

~2.6!

which leads to the imaginary time correlation function

a~t!5
\

2mv

cosh@~122u!b/2#

sinh~b/2!
, ~2.7!

whereb5\bv andu5t/\b. In the classical limit,a~t! re-
duces to the constanta51/~mv2b! and allan vanish except
for a0.

In terms of the quadratic reference system introduce
above, one can express the partition function as

Z5Zref̂ exp~2bDV!& ref , ~2.8!

whereDV is the imaginary time average

DV5
1

\b E
0

\b

dt DV~q~t!!, ~2.9!

and DV[V2Vref is the deviation of the real potentialV
from the reference potentialVref .

In order to develop a diagrammatic theory for the part
tion function, one must first Taylor expand the average in E
~2.8!, giving
o. 8, 22 February 1995¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3339J. Cao and G. A. Voth: Effective harmonic oscillators
^exp~2bDV!& ref

5 (
n50

`
1

n! K F2
1

\ E
0

\b

dt DV~q~t!!GnL
ref

,

5 (
n50

`
1

n! K F2
1

\ E
0

\b

dtE dk

2p
DV̂~k!eikq~t!GnL

ref

,

~2.10!

whereDV̂(k) is the spatial Fourier transform of the potenti
differenceDV(q) with respect to the variableq. Sinceq(t i)
is a Gaussian variable in the reference system at any im
nary time sliceti , the cumulant expansion of a linear com
bination of those variables truncates at second order, giv

K )
i51

n

eikiq~t i !L
ref

5expH 2F i(
i51

n

ki q̄r1
1

2 (
i51

n

(
j51

n

kikja~t i2t j !G J
~2.11!

in which the mean and the Gaussian width are given in E
~2.1! and Eq.~2.2!, respectively. It is noted that in a simila
expansion2 for the centroid density there exist no terms line
in ki or terms containinga0 according to the definition of the
centroid variable. This difference leads to additional facto
in Eq. ~2.11! which do no appear in the theory for the cen
troid density.

By substituting the Taylor expansion of Eq.~2.11! into
Eq. ~2.10!, and transforming back into coordinate space, o
arrives at the final expression in terms of the mean coor
nate, the Gaussian width, the partial derivatives of potent
and integrations over the imaginary timet. It is not particu-
larly useful to explicitly write out this lengthy expressio
here even though the perturbation series gives, in principl
complete description of the quantum canonical ensemble.
stead, a set of diagrammatic symbols will be introduced
aid in specifying the pertinent analytical expressions. It
likely that in higher orders the expansion terms become
creasingly complicated and a low order calculation will n
provide a reasonable physics picture of a quantum sys
having large anharmonicities. A suitably devised diagra
matic representation, therefore, is not only a useful tool
keep track of the expansion terms but also a powerful way
analyze the perturbation series. This is no different from
host of other applications of diagrammatic methods in phy
cal science~see, e.g., Refs. 22 and 23!.

There are three basic elements composing the diagr
in the expansion of Eq.~2.8!: vertices, dashed lines, an
solid lines. Each vertex is associated with the potential, or
derivatives and an imaginary timeti to be integrated from
ti50 to ti5\b. The potential terms are to be evaluated at t
origin of coordinate space. Each dashed line with only o
end attached to a vertex and the other end free~an open line!
is designated as the reference mean valueq̄r . Each solid line
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connecting two vertices at timesti andtj denotes a reference
correlation functiona(t i2t j ). Whenever a line connects to
a vertex, a spatial derivative is applied to the potential so th
the order of the derivative is equal to the number of lines tha
connect to the vertex. A negative sign and a factor of 1/\ are
assigned to each vertex. The value of a diagram is the pro
uct of all the composing elements multiplied by a symmetry
coefficient determined by the topological structure of the dia
gram.

With the above definitions, a one-to-one correspondenc
can be established between each distinct perturbation te
and each diagram. The expansion series in Eq.~2.10! is then
the collection of all topologically different diagrams and all
possible combinations. It is well known that an infinite serie
of all possible topologically different diagrams, and their
combinations, is equal to the exponential of all possible to
pologically different connected diagrams.22 For a connected
diagram, any two parts of the diagram are linked to eac
other by at least one line, one vertex, or one path of line
Therefore, one can express the quantum partition function

Z5Zref exp~F !, ~2.12!

whereF is given by

F 5 ~2.13!

Though the topological reduction performed in the presen
case is equivalent to a diagrammatic representation of th
cumulant expansion, the cumulant expansion itself becom
complex in higher orders and there are a large number
cancellations not explicitly obvious in the cumulant rela-
tions. It therefore proves to be much easier to keep track
higher order terms using the diagrammatic representation.

To illustrate the usage of the diagrammatic expansion
two simple identities must first be established, i.e.,

2bDV~ q̄r !5 ~2.14!

which evaluates the potential at positionq̄r , and

2b^DV~ q̃!&a5 ~2.15!

which yields a Gaussian averaged potential at the origin, th
Gaussian width being given by

a~0!5
\

2mv
coth~b/2!. ~2.16!
No. 8, 22 February 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3340 J. Cao and G. A. Voth: Effective harmonic oscillators
Combination of the above two expressions leads to the av
age potential in the reference system, giving

2b^DV& ref5
~2.17!

which consists of all topologically different decorations de
rived from the diagrams in Eq.~2.14! and Eq.~2.15!. Since
the mean and the width of the reference quadratic poten
uniquely define an infinite set of Gaussian variables$q̂n%,
one can equivalently denote the average in the reference s
tem as

^DV& ref5^DV~ q̄r1q̃!&a5
1

A2pa~0!
E dq̃ DV~ q̄r

1q̃!exp@2q̃2/2a~0!#, ~2.18!

where the Gaussian width is defined in Eq.~2.16!. The
simple diagram series in Eq.~2.17! then yields the leading
approximation to the partition function, i.e.,

Z.Zref exp~2b^DV& ref!, ~2.19!

which sets an upper bound to the true partition function.1 An
application of the Gibbs–Bogoliubov variational principle to
Eq. ~2.19! will lead to an optimized quadratic reference po
tential which will be derived from a different point of view
in the next subsection.

B. Optimized quadratic approximation

As has been demonstrated in the previous work on t
centroid density,2 a similar expression forF in the centroid
density expansion consists of closed diagrams, i.e., there
ists no class of diagrams inF with single lines hanging
outside the main diagram or connecting two separate parts
diagrams. Therefore, the expression forF in Eq. ~2.13! rep-
resents a larger set of diagrams than in the centroid the
and additional renormalization schemes must be introduc
to simplify the summation of diagrams. This procedure lea
to equations for the average position and the self-consist
frequency, thus resulting in the general optimized quadra
approximation. In the context of the diagrammatic theor
developed in Ref. 2, the present study is devoted to the co
sequences of including in the theory an additional set
diagrams having single connected lines.

To address the effects due to the presence of the das
lines, the average position̂q& is first introduced through the
differentiation of a generating functional. An imaginary time
independent forcef ~t! is introduced into the action func-
tional by replacingV[q(t)] with V[q(t)]1 f (t)q(t). The
average position is then given by

^q&5 lim
f→0

2\
d ln Z@ f #

d f ~0!
~2.20!

whereZ[ f ] is the corresponding partition function for the
potentialV1 f q.
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Clearly the linear force termf q adds to the diagrams for
F in Eq. ~2.13! a solid or dashed line with one end associ
ated with f , giving

^q&5 ~2.21!

Making use of the identity in Eq.~2.17!, one can renormalize
a major portion of the above infinite series by defining

q̄5 ~2.22!

or in an explicit analytical form as

q̄5q̄r2ba0^DV
~1!~ q̄1q̃!&a . ~2.23!

Hereafter, quantities with bars stand for renormalized qua
tities which are represented in the diagrams by bold lines
black vertices. Unlike the centroid density where the mean
the Gaussian average is fixed, the additional subset of d
grams in Eq.~2.13! leads to a self-consistent equation which
determines the optimized average position.

To renormalize the lines, one can adopt the chain colle
tion of Eq. ~3.35! of Ref. 2, which leads to the following
self-consistent equation:

ā~t!5a~t!2bDV̄~2!
1

\b E
0

\b

dt8 ā~t2t8!a~t8!.

~2.24!

The open line equation in Eq.~2.23! can be rewritten as

q̄5q̄r2ba0DV̄
~1! ~2.25!

which is to be solved simultaneously with the bold line
renormalization equation in Eq.~2.24!. Here, the average po-
tential or its derivative is fully renormalized and is given by

DV̄~n!5^DV~n!~ q̄1q̃!&ā ~2.26!

which implies that each black vertex is attached with a
possible decorations of single line diagrams, the loops a
rings.

There is a simple solution to Eqs.~2.24!–~2.25! if the
following conditions are satisfied:

^DV~1!~ q̄1q̃!&ā50, ~2.27!

^DV~2!~ q̄1q̃!&ā50, ~2.28!

which leads toq̄5q̄r and ā5a~0!. One can thus introduce
the optimized quadratic approximation~OQA!, where the
reference potential takes the form of

VOQA5 1
2mv̄2~q2q̄!2 ~2.29!

with the parametersv̄ and q̄ implicitly defined by Eqs.
~2.27!–~2.28!. The OQA potential of Eq.~2.29! represents
the best quadratic fit to an anharmonic potential. If the ave
age is constrained at a fixed position as in the case of t
centroid density, all the results in Ref. 2 can be recovere
Unlike the centroid theory which is exact in the classica
limit, the OQA theory and higher order corrections forms a
approximate representation of classical systems. The valid
of the theory in either case depends on the anharmonicity
o. 8, 22 February 1995¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3341J. Cao and G. A. Voth: Effective harmonic oscillators
the potential and the temperature of the system. At low te
peratures, quantum thermal fluctuations play a major role
higher temperatures, the system is more likely to experie
nonlinear regions of large anharmonicities. The pres
theory incorporates these effects in a self-consistent fash
manifested by the interplay between the average positioq̄
and the effective frequencyv̄.

As in the formulation of the locally optimized quadrati
approximation to the centroid density2,11–13and the centroid-
constrained propagator,2 the OQA equations can also be ob
tained by applying the Gibbs–Bogoliubov variational proc
dure to maximize the right-hand side of Eq.~2.19! with
respect to the parametersv̄ andq̄, leading to Eqs.~2.27! and
~2.28!. On the other hand, the diagrammatic representat
provides a systematic study of the formally exact perturb
tion series, reveals the relationship between the variatio
method and the renormalization of the perturbations ter
and, more importantly, makes it possible toimprove uponthe
variational OQA approach by including higher order di
grammatic corrections.

For complicated potential surfaces, and especially
many-body systems, there are many possible solutions
OQA equations. Physically all of these solutions correspo
to metastable potential wells. Under the condition that t
wells are reasonably separated, i.e., the barrier between
two neighboring wells is significantly higher than the ave
age thermal energy, one can assume the partition functio
given by a linear superposition for all the metastable so
tions. In this spirit, the partition function in the OQA can b
written as

Z5(
l

Zl exp~2bDV̄l !, ~2.30!

where$ l % denotes the set of distinct solutions to Eqs.~2.27!–
~2.28!. In general, all expectation values evaluated in t
OQA theory would follow this superposition principle.

In a way, one can attribute the differences between l
uids and solids to the nature of the OQA solutions for t
many-body configurations. Indeed, this important conce
makes it possible to define for liquids inherent structur
which were previously proposed and pursued from the p
spective of quenched potential minima,24–27 and to make a
connection with the somewhat different concept of instan
neous normal modes~INM !,28–31which provide an extension
of the phonon picture of solids.32,33 However, the unstable
modes in the INM theory present a conceptual difficul
when formulating the INM expression for dynamical corr
lation functions~i.e., they must be thrown out or the INM
expression will unphysically diverge at long times!. The in-
herent normal modes, defined as solutions to the OQA eq
tions, are free of such unstable modes by definition, and t
appear to provide a more accurate description of liquid st
dynamical correlations. Progress on this latter aspect of
theory will be presented in a forthcoming paper.34

C. Higher order corrections to the partition function

In principle, the perturbation series does not depend o
specific effective quadratic reference potential because w
J. Chem. Phys., Vol. 102,Downloaded¬25¬Jun¬2004¬to¬18.21.0.92.¬Redistribution¬subject¬t
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one includes a sufficient number of terms the series w
yield the desired accuracy. Nevertheless, a good choice
the reference potential will give improved convergence a
simplify the diagrammatic analysis; in particular, the OQ
reference potential will bear the closest resemblance to
real potential. The OQA conditions specify that all vertice
linked to one line or two lines will vanish, i.e.,

50 ~2.31!

50 ~2.32!

where the lines can be either solid or dashed. Furthermore
one chooses the origin atq̄ and redefines the coordinate ac
cording toq̃5q2q̄, all the dashed lines will vanish. Conse
quently, imposing the optimization equations eliminates
large number of diagrams containing the above two e
ments.

Since all diagrams containing the above elements w
vanish, the leading corrections inF in Eq. ~2.13! are then
given by

5
1

2!3!

b

\ E
0

\b

dt ā3~t!~DV̄~3!!2 ~2.33!

and

5
1

2!4!

b

\E0
\b

dt ā4~t!~DV̄~4!!2 ~2.34!

where all quantities are evaluated in the OQA reference s
tem. The above two terms provide an improvement to t
OQA partition function, giving

Z5ZOQA expH 2bFDV̄2
1

2!3!

f 3~b!

\v̄ S \

mv̄ D 3~DV̄~3!!2

2
1

2!4!

f 4~b!

\v̄ S \

mv̄ D 4~DV̄~4!!21••• G J , ~2.35!

whereb5\v̄b. Here, f n(b) is a dimensionless coefficient,
defined by

f n~b!5S 1bD
n21E

0

1

duF b/2

sinh~b/2!
cosh~122u!b/2Gn

~2.36!

which becomes a constant in the largeb limit. More correc-
tions can be included by adding more diagrams.

At extremely low temperatures, the quantum partitio
function is dominated by the contribution from the groun
state, i.e.,

E05 lim
b→`

1

b
ln Z~b!. ~2.37!

It is therefore an important test to calculate the ground sta
energy from the OQA theory. This procedure can be show
to be equivalent to the quantum perturbation theory expre
sion based on a basis set consisting of LHO~linear harmonic
oscillator! eigenstates. As an example, consider the cubic o
cillator potential, given by
No. 8, 22 February 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3342 J. Cao and G. A. Voth: Effective harmonic oscillators
V~q!5 1
2mv2q21cq3. ~2.38!

The reference potential is simply the LHO term, i.e
Vref5(1/2)mv2q2. Though the reference potential is not op
timized, a single vertex and all the vertices linked to one li
or two lines will vanish. Therefore, the leading correctio
terms to the partition function are given as

F 5 ~2.39!

which then leads to the expression for the ground state
ergy

E05
1

2
\v29

c2

\v
l622

c2

\v
l61••• . ~2.40!

Here, the following relations in the low temperature limit a
used

lim
b→`

f n~b!5
1

2~n21!n
~2.41!

and

lim
b→`

a~0!5
\

2vm
5l2, ~2.42!

with l being the width of the ground state LHO wave fun
tion. It can be readily verified that the first correction corr
sponding to the first diagram in Eq.~2.39! is identical to the
second order perturbation expression due to the coupling
tween the zeroth and the third LHO eigenvector, and
second correction corresponding to the second diagram
Eq. ~2.39! is identical to the second order perturbation e
pression due to the coupling between the zeroth and the
LHO eigenvector. Evidently, a one-to-one corresponden
can be established between perturbation terms of the gro
state energy calculation and higher order diagrams evalua
in the low temperature quantum mechanical limit. In the ne
section, this method will be applied to calculate the grou
state energy of a Drude oscillator interacting with an ele
tron.

It has been a common practice in ground state calcu
tions to first variationally parameterize the wave functio
from a reference potential and then the perturbation solut
is introduced to improve on the accuracy.35 We note that the
the general quadratic theory presented here is analogou
this approach, but it is extended through the incorporation
thermal excitations. Moreover, as long as the potential i
regular function, one can in principle include more diagram
into the calculations to achieve higher accuracy.

D. Higher order corrections to the correlation function

The imaginary time position correlation functionC~t!
can be introduced through functional differentiation of a ge
erating functional. In order to formulate such a functional,
imaginary time-dependent forcef ~t! is introduced into the
action functional of the partition function such that the p
tentialV[q(t)] is replaced byV[q(t)]1 f (t)q̃(t). The cor-
relation function is thus given by
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^q~t!q~0!&5 lim
f→0

\2

Z

d2Z@ f ~t!#

d f ~t!d f ~0!
. ~2.43!

Here, the partition functionZ[ f (t)] is understood to be a
functional of the extra time-dependent forcef ~t! and is
therefore the generating functional for the imaginary time
correlation function.

Following the diagrammatic notation introduced in the
previous subsections, one can formally express the corre
tion function as:

^q~t!q~0!&5 ~2.44!

where the bold solid line stands for the collection of all the
possible connected diagrams linking two ends associate
with f ~t! and f ~0!, and the bold dashed line stands for the
average position. To simplify the analysis, we redefine th
position correlation function as

C~t!5^~q~t!2^q&!~q~0!2^q&!& ~2.45!

in which the average position̂q& can be the exact result
evaluated from simulations or the analytical solution calcu
lated from the renormalization equation Eq.~2.25!. With this
definition in hand, the evaluation of the correlation function
C~t! is equivalent to the renormalization of the solid line
@i.e., the bold solid line in Eq.~2.44!#, explicitly given by Eq.
~3.33! in Ref. 2. Here, as stated earlier, all the decoration
attached to the intermediate vertices can be removed if th
vertex is renormalized. This operation is achieved by replac
ing all theDV’s by DV̄’s, giving

DV̄5^DV~^q&1q̃!&C~0! ~2.46!

where the Gaussian width is now denoted byC~0! instead of
a~0!. In the case of full renormalization,C~t! is equivalent to
the renormalized reference correlation functionā~t!, and^q&
is equivalent to the renormalized reference meanq̄. These
two notations will not be distinguished hereafter.

The simplest set of lines, given by Eq.~3.35! of Ref. 2,
is the chain collection, which leads to the following self-
consistent equation:

ān5an2bDV̄~2!ānan . ~2.47!

By noting thatā5(ān , it is seen that Eq.~2.47! is the same
as the OQA equation~2.28! derived earlier.

The next stage in the analysis is to include all the two
line-loop corrections in the renormalization, given by Eq
~3.38! of Ref. 2. It is important to incorporate infinite terms
corresponding to the same class of diagrams so that at lo
temperature and high anharmonicity the self-consistent equ
tion will not diverge. The infinite summation of two-line
loops in Eq.~3.38! of Ref. 2 can be carried out to yield a
closed equation, given by

ān5an2anānbDV̄~2!1
~1/2!anānan

2~bDV̄~3!!2

11~1/2!an
2~bDV̄~4!!

~2.48!
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3343J. Cao and G. A. Voth: Effective harmonic oscillators
which can be solved numerically. Here,an
2 is the contribu-

tion from the two-line-loop diagram, given by

an
25 (

m52`

`

ān2mām , ~2.49!

wherean is interpreted as in Eq.~2.7! which in the classical
limit becomes zero unlessn is zero. Sincea2 is a convolu-
tion expression, the self-consistent equation forā is nonlocal
in Fourier space, and therefore one can no longer see
single effective frequency prescription as in the OQA theo
In fact, this analysis shows that the optimized quadratic r
erence system provides the best possible quadratic pote
to approximate an anharmonic potential and any further c
rections are beyond the effective quadratic description.

The real-time counterpart of the imaginary time quantu
correlation functionC~t! is an essential component in de
scribing the dynamics of quantum systems. The real time
imaginary time correlation functions are of course related
the analytical continuationt→i t , so the detailed study of the
Euclidean correlation function presented in this section m
eventually help to reveal the real time behavior of quantu
systems.36,37As an example, it will be demonstrated in Se
III D that Eq. ~2.48! can be employed in studying intramo
lecular vibrational relaxation in polyatomic molecules.

E. Multidimensional formulation

In order to generalize the OQA theory to multidimen
sional coordinate space, a vector-matrix prescription will
introduced here to formalize the relevant expressions. He
vectors and matrices are denoted by bold fonts.

First, the OQA equations@Eqs. ~2.27!–~2.28!# can be
rewritten as

^“V~ q̄1q̃!&C50 ~2.50!

^“:“V~ q̄1q̃!&C5K , ~2.51!

whereK is the optimized effective force constant matrix an
where“ is the partial derivative vector with the elemen
“i5] i . The notation̂ •••&C here denotes a multidimensiona
Gaussian average centered atq̄, i.e.,

^V~ q̄1q̃!&C5
1

Adet@2pC#
E dq̃ V~ q̄1q̃!

3exp~2q̃–C21
–q̃/2! ~2.52!

where the Gaussian width factor matrixC, in this case, can
be formally expressed as

C5 (
n52`

`

@bmVn
21bK #21. ~2.53!

Here, m is the N-dimensional mass matrix and
Vn52pn/\b. In terms of eigensolutions, a unitary matrixU
can be found which diagonalizes the mass-scaled force c
stant matrixK̄ , giving the eigenfrequencies

U†K̄U5@ I–v̄2#, ~2.54!
J. Chem. Phys., Vol. 102,Downloaded¬25¬Jun¬2004¬to¬18.21.0.92.¬Redistribution¬subject¬t
k a
y.
f-
tial
r-

m
-
nd
y

ay
m
.

-
e
re,

d
s
l

on-

wherev̄ is the set of the eigenfrequencies and@I–v̄2# denotes
a diagonal matrix with thel th diagonal element given byv̄ l

2.
The Gaussian width factor matrix in Eq.~2.52! can be deter-
mined from the relation

C5Ū@ I–ā#Ū†, ~2.55!

whereŪ5m21/2U and the individual elements of the norma
mode thermal width factor vector are related to the norm
mode frequencies$vl% such that

ā l5
1

bv̄ l
2 H ~\bv̄ l /2!

tanh~\bv̄ l /2! J . ~2.56!

Thus the set of optimized frequencies$v̄% and average posi-
tions $q̄% are variationally obtained as the self-consistent s
lution to the transcendental matrix equations, Eqs.~2.50!–
~2.56! in N-dimensional space.

With the help of the vector and matrix notation, one ca
now rewrite the higher order corrections to the partitio
function inN-dimensional space as

5
1

2!3! (
$ i , j ,k%

(
$ i 8, j 8,k8%

b

\

3E
0

\b

dt Ci i 8~t!Cj j 8~t!

3Ckk8~t!@] i] j]kDV̄#@] i 8] j 8]k8DV̄# ~2.57!

and

5
1

2!4! (
$ i , j ,k,l %

(
$ i 8, j 8,k8,l 8%

b

\

3E
0

\b

dt Ci i 8~t!Cj j 8~t!Ckk8~t!Cl l 8~t!

3@] i] j]k] lDV̄#@] i 8] j 8] l 8]k8DV̄#, ~2.58!

where the sums run from 1 toN. The multidimensional for-
malism for the renormalization equation of the correlatio
function, Eq.~2.48!, can be expressed in a similar format
More discussion on this aspect of the theory can be found
Sec. III D.

III. APPLICATIONS

A. A one-dimensional example

In this section, a completely nonquadratic model pote
tial is employed to stringently probe the accuracy of th
OQA equations and higher order corrections for both th
quantum and classical partition functions. The test calcu
tions are based on the potential

V~q!5q31q4/2 ~3.1!

where the massm and\ are taken to be unity. The inverse
temperatureb is thus the equivalent to the dimensionles
parameterb\v.

First, the optimized quadratic reference potential wa
found according to the variational equations Eqs.~2.27!–
~2.28! which have only one solution for the potential in Eq
No. 8, 22 February 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3344 J. Cao and G. A. Voth: Effective harmonic oscillators
~3.1!. The partition function was then evaluated by includin
the higher order corrections in Eq.~2.35! and compared with
the exact result which was obtained by computing th
weighting function in Eq.~2.10! directly by Monte Carlo
simulations. The umbrella sampling method was employ
to evaluate the exact partition function. To achieve good co
vergence, the path integral simulations9 employedP5100
discretizations and 106 MC passes. The number of quasipar
ticles moved at each trial was adjusted to yield an acceptan
ratio of 50%.

In Fig. 1, the magnitude of the negative free energ
ln Z/b, for a classical particle in the potential Eq.~3.1! is
plotted as a function ofb. Without optimizing the equilib-
rium position through Eq.~2.27!, the solution of Eq.~2.28! at
the potential minimum deviates considerably from the exa
results and the OQA results. This clearly demonstrates t
necessity of adjusting the equilibrium position to the cent
of thermal excitation self-consistently along with the effec
tive thermal fluctuation lengthscale~i.e., the curvature of the
effective potential!. Furthermore, it is seen in Fig. 1 that the
higher order corrections considerably improve upon th
OQA solutions. However, all the approximation scheme
seem to converge at low temperatures because in this sit
tion a classical particle becomes trapped in the potentia
minimum with diminishing thermal fluctuations.

In Fig. 2, the partition functionZ for a quantum particle
in the potential of Eq.~3.1! is plotted as a function ofb.
Again, the progressively improving accuracy of the OQ
solutions and the higher order corrections is observed wh
compared to the results obtained without optimizing th
equilibrium position. In this case, however, none of the di
ferent approximations completely recover the exact result
low temperature. This error arises because of the nonvani
ing quantum ground state amplitude which would requi
increasingly higher order corrections to describe accurate
The relatively large deviation at higher temperature shou
also be noted because the increasing thermal fluctuations

FIG. 1. A plot of the negative free energy,2F5ln Z/b, for a classical
particle in the potential given by Eq.~3.1!. The solid circles depict the
numerically exact results, while the solid line is the optimized result of E
~2.27! evaluated at potential minimum, the dashed line is the OQA res
from Eqs. ~2.27!–~2.28!, and the dash–dot line is the result obtained b
including the higher order correction from Eq.~2.35!.
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able the particle to explore regions of high anharmonicity.

B. Nonlinear effects in dipolar interactions

The rapidly fluctuating motion of electrons~i.e., elec-
tronic polarization! has important effects in fluids and clus-
ters ~see, e.g., Refs. 38 and 39!. A model that incorporates
electronic induction is the well studied Drude oscillato
model,15–18,40,41an isotropic harmonic oscillator with a fre-
quencyv, massm, and charges1q and2q connected by a
harmonic spring. If the electrostatic interaction between th
Drude oscillators is treated in the dipole–dipole approxima
tion, the problem reduces to a matrix problem.19,42,43 This
simplified picture of electronic polarization provides a usefu
vehicle for studying the dielectric and spectral properties o
many-body systems.

On the other hand, the dipolar approximation fails t
account for the fact that the high order contributions to th
Coulomb interaction become important at small distances.
take full account of the Coulomb interactions, one must re
sort to numerical simulations. However, the variational qua
dratic reference potential method developed in the prese
paper allows one to rigorously approximate the Coulom
interactions by a set of general oscillators with coordinate
pi , the effective potential being given by

Vref5(
i51

3N

si
pi
2

2
1 (

i , j51

3N

ti j pipj1(
i51

3N

hipi , ~3.2!

whereN is the number of Drude oscillators and the param
eters in the model can be formally defined by the impleme
tation of the general OQA optimization equations, given i
this case by

si5K ]2V

]pi
2L

C

, ~3.3!

.
lt

FIG. 2. A plot of the partition functionZ for a quantum particle in the
potential given by Eq.~3.1!. The solid circles depict the numerically exact
results, while the solid line is the optimized result of Eq.~2.27! evaluated at
potential minimum, the dashed line is the OQA result from Eqs.~2.27!–
~2.28!, and the dash–dot line is the result obtained by including the high
order correction from Eq.~2.35!.
o. 8, 22 February 1995¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3345J. Cao and G. A. Voth: Effective harmonic oscillators
t i j5 K ]2V

]pi]pj
L
C

, ~3.4!

2hi5 K ]V

]pi
L
C

, ~3.5!

which can be obtained from the application of the optimiza
tion conditions in Eqs.~2.50!–~2.51!. For every nuclear con-
figuration, the OQA equations specify a set of oscillato
which best mimics the Coulomb interacting system, althoug
it could be a formidable numerical task to solve the multid
mensional equations.

As an alternative to the direct numerical solution of th
OQA equations, the well-developed mean spherical appro
mation ~MSA! for polarizable fluids15–19 can be combined
with the variational approach to yield an optimized MSA
equation. The self-consistence is manifested in two differe
aspects: the many-body polarization and the optimized qu
dratic approximation.

Consider a pair of Drude oscillators interacting throug
the Coulombic potential, that is

V~R,r1 ,r2!5
1

2
mv2r1

21
1

2
mv2r2

21q2F 1R2
1

uR2r1u

2
1

uR1r2u
1

1

uR2r11r2u
G , ~3.6!

whereR is the distance between the nuclei with nucleus
located at the origin,q is the charge,r1 and r2 are the elec-
tron displacements of two Drude oscillators, with the corre
sponding fluctuating dipoles given asp15qr1 andp25qr2,
and the polarizability is given asa5q2/(mv2). In this sub-
section,a denotes polarizability andC denotes the Gaussian
width in the OQA.

Under the MSA approximation, each Drude oscillato
moves in the potential of mean force due to the other induc
dipoles, resulting in a larger amplitude, or equivalently
larger polarizability. For a homogeneous polarizable flui
the fact that all the Drude oscillators are identical leads to t
self-consistency of the renormalized polarizability. Under th
MSA assumption the optimized reference oscillator for a
isotropic fluid is centered atr150 and r250 so hi50. As-
suming a renormalized polarizabilityā, the effective Gauss-
ian width is given by

C5
1

mv̄2b

b/2

tanh~b/2!
, ~3.7!

whereb5\v̄b andv̄ is related toā through the expression
ā5q2/(mv̄2). Then, the Gaussian averaged Coulomb pote
tial is explicitly given as

V̄~R,C!5E dr r~r ,C!
q2

uR2r u
5E

R

`

dr
qQ~r ,C!

r 2
,

~3.8!

wherer is the Gaussian distribution function

r~r ,C!5
1

A2pC
exp~2r 2/2C! ~3.9!
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and Q(r ,C)5*0
r r~r 8,C!dr 8 is the charge enclosed by a

sphere of radiusr . Next, the OQA equations Eqs.~3.3! and
~3.4! can be approximated in the MSA by the solutions

si~R,C!.mv21] i
2V̄~R,C!2] i

2~R,2C! ~3.10!

and

t i j ~R,C!.2] i] j V̄~R,2C!2] i] j V̄~R,C!, ~3.11!

where the partial derivatives are now applied to the thre
components ofR for any given pair of Drude oscillators@cf.
Eq. ~3.6!#.

Now, one can modify the MSA equation for the opti-
mized polarizable fluids. Among many approaches availabl
we adopt the matrix formulation developed for nonpolar po
larizable fluids,~e.g., Appendix A of the Ref. 19!. The renor-
malization equation forā and, in turn,v̄ is given in this
approach by

ā5
a

11~a/ā !S~ā !
~3.12!

whereS can be approximated by Eq.~A6! of Ref. 19 with
the dipole–dipole interaction tensorT~R! replaced by the
tensort~R,C! from Eq. ~3.11!, i.e.,

S~ā!5
t2

12~ t3 /t2!
, ~3.13!

where

t25
1

3
ā2rE dR g~R!Tr~ t2! ~3.14!

and

t35
ā3r2

3V E dR1E dR2E dR3Tr@ t~R12R2!t~R22R3!

3t~R32R1!#g3~R1 ,R2 ,R3!. ~3.15!

Here,r is the density,V is the volume, andg3~R1,R2,R3! is
the three-body equilibrium distribution function for the fluid.
By solving Eqs.~3.11! and ~3.12! simultaneously, an opti-
mized self-consistent MSA solution is obtained for the fluid
consisting of Drude oscillators. Once the renormalized pola
izability is obtained, many properties of the Drude fluid can
be approximated at the level of MSA theory by a dipolar
fluid with the equivalent dipole momentuPu253~ā/b!.15–17

If the dipole–dipole approximation is assumed to domi
nate the interactions, the different Fourier path modes a
decoupled so that the dielectric constant and dielectric re
sponse are the same for a classical and a quantum nonpo
polarizable system. However, with the help of OQA theory
one concludes that the nonlinear interaction has a larger e
fect for quantum systems than for classical systems—an
this nonlinear effect increases as the mass and the tempe
ture decrease. In addition, the OQA will provide a vehicle to
study many-bodypolarization effects beyond the dipole–
dipole approximation.
o. 8, 22 February 1995¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3346 J. Cao and G. A. Voth: Effective harmonic oscillators
C. Ground state energy of a perturbed Drude
oscillator

As has been demonstrated in Sec. II C, the quant
ground state energy can be obtained from the asympt
expression of the partition function in the low temperatu
quantum mechanical limit. It has been shown for the o
dimensional case that the OQA equation including high
order corrections is equivalent to solving the Schro¨dinger
equation in a LHO basis set with the help of perturbati
theory. The method is below applied to the problem of
highly quantum mechanical Drude oscillator of massm, fre-
quencyv, and chargeq, such that$v50.534,m50.245,
q51.38% ~which are the parameters of, e.g., Xe44!. This os-
cillator is perturbed by a Coulomb interaction with an ele
tron fixed in the space. The goal here is to calculate
quantum ground state energy shift of the oscillator,DE, due
to the interaction with the electron. The positive charge
the Drude oscillator is placed at the origin~0,0,0!, while the
negative charge oscillates under the linear harmonic pot
tial. The electron is placed at distanceR on the x axis at
~R,0,0!. The potential is thus given by

V~r !5
1

2
mv2r22eqF 1R2

1

uR2r uG , ~3.16!

where r is the displacement of the negative charge of t
Drude oscillator. At room temperature~T5300 K!, such that
b5b\v5545, the oscillator is dominated by the ground sta
so that the ground state energy shift is effectively the same
the ‘‘solvation’’ energy.

Under the condition that the separationR is relatively
large, satisfyingR2.(\/2mv), the dipole approximation is
valid, implying

Vd~r !.
1

2
mv2r22

eq

r 3
r–R. ~3.17!

As a result, the charge–dipole interaction leads to a grou
state energy shift of

DEd52ae2/2R4, ~3.18!

where the polarizability a is explicitly given by
a5q2/(mv2). At smaller separations, the ground energ
shift DE will be reduced because of the full Coulomb inte
action. This reduction is denoted here by the energy corr
tion functionc(R) defined as

c~R!5DE/DEd . ~3.19!

For the sake of comparison with the analytic theory, pa
integral Monte Carlo simulations have also been carried
to calculate the exact ground state energy shift. Path inte
simulations are usually used to study temperature-depen
properties and are generally not efficient for calculati
ground state energies. Nevertheless, it was found that
normal mode path integral Monte Carlo method20

~NMPIMC! is at least as effective as the diffusion Mon
Carlo method~DMC! for calculating the ground state energ
for the potential in Eq.~3.16!. The calculation of the ground
state energy shift caused by a small perturbation requires
simulation of a system with a large number of quasipartic
J. Chem. Phys., Vol. 102,Downloaded¬25¬Jun¬2004¬to¬18.21.0.92.¬Redistribution¬subject¬t
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and very long runs because an accurate determination of
difference between two large expectation values is require
One way to circumvent this difficulty is to use the residu
potential,DV5V2Vref , as a Monte Carlo weighting func-
tion instead of a Metropolis importance sampling function
The potentialVref is an arbitrary quadratic reference potentia
which was chosen to be the OQA potential@Eq. ~2.29!# for
optimal convergence. This procedure gives

DZ~b,P!5^e2~b/p!( jDV~xj !& ref , ~3.20!

where the average is taken over the configurations genera
by eSref /\. In the limit of low temperature,DZ yields the
ground energy shift due toDV, i.e.,

DE52 lim
b→`

lim
P→`

ln DZ~b,P!. ~3.21!

For the potential in Eq.~3.16! with b>5 and P>26, the
difference between the exact ground state energy and
average energy is less than 1028. The NMPIMC simulations
were performed atb55 andP564. A total of 106 indepen-
dent configurations were sampled. More details regardin
NMPIMC can be found in the relevant papers.20,45

In Fig. 3, the functionc(R), as obtained from the OQA
solution and from the higher order corrections, is plotte
fromR50.5 toR510.0 along with the exact results obtained
from the NMPIMC simulation. The OQA equations and the
higher order corrections in the three-dimensional space or
are given in Sec. II E. The considerable accuracy in the an
lytical prediction supports the validity of the theory. It mus
be pointed out that the OQA theory contains more informa
tion than just the ground state energy of physical systems:
is essentially the most general possible effective harmon
theory for describing equilibrium systems at a given tem
perature.

D. Intramolecular vibrational relaxation in polyatomic
molecules

An isolated polyatomic molecule can exhibit a charac
teristic change in its nonlinear vibrational motion as its en

FIG. 3. A plot of the energy correction functionc(R) defined by Eq.~3.9!.
The solid circles are the numerically exact results, while the dashed line
the OQA result from Eqs.~2.27!–~2.28!, and the dash–dot line is the result
obtained by including the higher order correction from Eq.~2.35!.
No. 8, 22 February 1995o¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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3347J. Cao and G. A. Voth: Effective harmonic oscillators
ergy increases~see, e.g., Ref. 46!. The transition of normal-
mode vibrations to stochastic behavior and the rate
intramolecular vibrational relaxation~IVR! can be studied
via the techniques of quantum Green’s function.47–49Accord-
ing to the inverse Wick rotation, the analytical continuatio
of Euclidean correlation functions gives real time correlatio
function.36,37 In fact, the analytical continuation in Fourier
space directly yields the Fourier transformation of the qua
tum response function, namely, the retarded Green’s fun
tion. Therefore, in studying the breakdown of normal mod
behavior in molecules the higher order corrections to th
Euclidean correlation function presented in Sec. II D assum
an important role in the analysis.

Consider a system described by the Hamiltonian

H5(
i51

N S pi22 1v i
2
qi
2

2 D 1
1

3! (
i , j ,k51

N

ci jkqiqjqk , ~3.22!

where the mass is assumed to be unity,vi is the frequency of
i th normal mode, andci jk is the cubic coupling constant. If
the normal modes are taken to be the quadratic referen
system, one has

q̄r ,i50 ~3.23!

and

an,i j5
1

b~Vn
21v i

2!
d i j , ~3.24!

where Vn is the Matsubara frequency defined earlier a
Vn52pn/\b. SinceDV is the cubic term in Eq.~3.22!, the
only nonvanishing vertex in the diagrammatic expression
the one linked to three lines, i.e.,

] iDV50, ~3.25!

] i] jDV50, ~3.26!

] i] j]kDV5ci jk . ~3.27!

Because of the cubic anharmonicity, the equilibrium positio
q̄i is shifted according to Eq.~2.25!, giving

q̄i52ba0,i i (
j ,k51

N

@ci jk q̄j q̄k1
1
2ci j j ā j j ~0!#, ~3.28!

where it is assumed that the renormalized correlation fun
tion matrix is also diagonalized and whereāj j (0)5(nān, j j .
Next, the infinite summation of two-line-loop diagrams i
carried out to yield Eq.~2.48!, which can be explicitly writ-
ten in the present case as

ān,i i5an,i i2ban,i i ān,i i(
j51

N

cii j q̄ j

1
1

2
b2an,i i ān,i i (

j ,k51

N

ci jk
2 (

m

ām,kkān2m, j j ,

~3.29!

where the convolution results from the two-line loops.
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Equations~3.28! and ~3.29! represent the self-consistent
equations resulting from the renormalization of the dashe
and solid lines, and they can be solved iteratively. Howeve
the analytical continuation requires a closed form expressio
which can be obtained by a perturbation approximation. Th
final solution takes the simple form

ān,i i5
an,i i

12Sn,i i
, ~3.30!

where the leading order in the self-energy term is given by

Sn,i i5
b2

2 (
j ,k51

N S cii j cjkkākk~0!a0,j j

1ci jk
2 (

m

ām,kkān2m, j j D . ~3.31!

In Eq. ~3.31!, the first term gives the frequency shift due to
the change in the equilibrium positions and the second ter
give arise to both a frequency shift and the spectral broade
ing. Essentially, the broadening of the normal mode spectru
is related to the vibrational relaxation.46 Equation~3.31! is
exactly the same as the one derived by Stuchebrukho
et al.21 in their study of threshold energy dependence of in
tramolecular relaxation in polyatomic molecules. Evidently
their result is a special realization of the general theory i
Sec. II as applied to the Hamiltonian in Eq.~3.22!.

IV. CONCLUDING REMARKS

In this paper, the representation of physical systems b
effective harmonic oscillators has been explored. The resu
ing optimized quadratic approximation~OQA! has been de-
veloped in the general context of statistical mechanics~i.e.,
systems characterized by a temperature!. Mathematically, the
formulation is based on a diagrammatic representation of th
cumulant expansion for the partition function in terms of
multidimensional Gaussian variables. In essence, both cla
sical and quantum statistical mechanics has been recast
terms of a harmonic ‘‘basis set.’’ Apart from its possible
physical applications, such a formal development is instruc
tive and meaningful in itself.

Through representative physical applications have bee
discussed in Sec III, the most important application of th
OQA theory will be to real continuous media such as solids
liquids, and glasses. The multiple OQA solutions in the
many-body hyperspace characterize the nature of the diffe
ent phases in an ‘‘understandable’’ way and may thereby a
low one to better isolate the physical features which lead t
the transitions between those phases. As another applicatio
consider the case of liquid state dynamics which may, fo
transient periods of time, be described by solid state concep
such as ‘‘inherent structures’’24–26or ‘‘instantaneous normal
modes’’ ~i.e., phonons!.28,29 The present theory can self-
consistently describe transient liquid state structures an
their thermal fluctuations, while effectively taking into ac-
count the anharmonicity of the many-body potential surfac
as it influences such structures. This approach thereby pr
o. 8, 22 February 1995¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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vides a well-defined mathematical framework for the intu
tive liquid state inherent structure idea introduced by Stil
inger and Weber.24–26

Aside from calculating statistical properties, another mo
tivation of the present research is to provide a basis for co
structing dynamical theories. In fact, in a forthcomin
paper34 the OQA solutions will be used to develop a theor
for dynamical time correlation functions in liquids. This
theory differs from one based on the concept of instant
neous normal modes,28,29providing a sort of ‘‘dynamical in-
herent structure’’ perspective for liquid state dynamic
Given that so much is known about the statistical and d
namical behavior of harmonic systems, it seems likely th
the present work will also lead to other interesting and use
effective harmonic models of realistic physical systems.
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