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A mathematical formalism is developed to map a physical system described by a general potential
energy function onto one consisting of effective harmonic oscillators. The present focus is on

many-body systems characterized by a temperature, so the theoretical effort is devoted to the
partition function through a diagrammatic representation of its cumulant expansion in the quadratic

reference system. Appropriate diagram summation and renormalization strategies lead to an
“optimized quadratic approximation(OQA) for both the quantum and classical partition functions

of general systems. Diagrammatic methods are also used to develop accurate higher order
corrections to the OQA. Applications to representative problems are presented with good

success. ©1995 American Institute of Physics.

I. INTRODUCTION summation techniques, along with a renormalization of the
two basic diagram elements, leads to a set of highly accurate
Many challenges faced by the theorist have a single oriself-consistent equations for the centroid density and related
gin: Virtually all nontrivial physical problems cannot be guantities. This analytical thednexplores the specific dia-
solved exactly with known mathematical techniques. Yet’grammatic representation of the well-known Feynman—
this situation also gives rise to many stimulating opportuni-pinns variational theory for the centroid density and a

ties for one to develomgpproximatetechniques to analyze more accurate effective quadratic approximafibit?
such problems. For example, computational approaches haY

. _ o o ﬁereby providing a systematic way to improve upon those
grown enormously in popularity within this context, yielding
. S : . .2 schemegsee also Ref. 14
important new insights into the behavior of complex physical Math ticallv. the treat tin Ref. 2 is simol i
systems. Another fruitful approach has been to model com- atematicatly, the freaiment in =et. = 1S simply a gen
plex systems by simpler “zeroth-order” systems whicn era_llzed theory of Gaussian expansions .Wlth special care ex-
be analyzed exactly, and to then use perturbation theory tgrused tp enforce- thfe centroid constraint. Though th-e dia-
quantify that which is missing from the zeroth-order descrip-9rammatic analysis in that paper was developed in the
tion. Yet another strategy is to map the solution of a difficultcontext of the centroid density, the basic methodology is by
problem onto one which is easier to understand mathematP0 means limited to treating only quantum thermal fluctua-
cally. This latter approach falls within the domain\aria-  tions around the path centroid. In fact, the only assumption
tional theory out of which has grown such important tech- for the validity of this diagrammatic analysis is the quadratic
niques as self-consistent and mean field methods, basis s#ture of the reference system. In the present paper, there-
expansions, density functional methods, wave packet dynanfere, the perspective is significantly broadened to develop a
ics, effective potential theories, etc. One drawback of thegeneral quadratic reference theory for thartition function
variational method, however, is that it can often be uncleain both quantum and classical equilibrium statistical mechan-
how to judge the accuracy of the variational solution andics. The theory approximates the physipatentialas being
then to systematicallimprove uporthat solution. The focus  gescribed by an effective quadratic function, not just the part

of the present paper, therefore, is devoted to the latter issygascribing the contribution to the action from the Feynman
within the context of one particular variational theory. In path fluctuations.

particular, the technique of representing a general nonlinear
potential energy function by an effective harmonic funCtlonvariables can be uniquely expressed in terms of its first and

(see, e.g., _R‘?f-)l"v'” be f(_)rmally analyz_ed yv|th|n the con- second moments. In particular, the partition function can be
text of statistical mechanics, and then it will be shown how

. . o . expanded in an arbitrary quadratic reference frame, and the
to systematically improve upon the variational solution to . . ) . .
this problem. topological reduction of the diagrammatic representation of

In an earlier stud§,a theory was developed for the equi- tr'ns. expansion leads to a cumulant expansion. Unlike the
librium path centroid density in the Feynman path integrals'm'lar expansion (_)f thg centr0|d_den3|ty Where.the centroid
representation of quantum statistical mechahts.In that ~ Of the path fluctuations is constraingthe expression for the
work, the Feynman patfiuctuationsabout the centroid vari- Partition function includes both the first and second moments
able were expressed in terms of a quadratic reference actig® that additional effort is required in the summation and
functional. A one-to-one correspondence was developed b&enormalization scheme. Such a procedure treats the classical
tween a diagrammatic representation and the cumulant exand quantum thermal fluctuations in a most general fashion,
pansion of the centroid density in this reference system. Iteading to something we term the “optimized quadratic ap-
was shown that diagrammatic topological reduction andoroximation” (OQA) and higher order corrections. At ex-

It is well known that any analytic function of Gaussian
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tremely low temperatures, the OQA and higher order correc-  Since the correlation function in ER.2) is defined with
tions can be shown to be equivalent to a quantunrespect to the reference mean, an arbitrary Feynman path can
perturbation theory calculation. At high temperatures, thebe decomposed ag(7)=q,+q(7), whereq(7) is the ther-
OQA approximation does not recover the exact classicaial fluctuation about the reference mean. A Fourier decom-
limit as does the centroid theory. Indeed, in the classicaposition of the fluctuation pathg(r) can now be introduced
OQA the potential is still modeled by an optimized quadraticsuch that

function. .

The formal OQA theory is presented in Sec Il, with ~ A _i0r
some aspects of the diagrammatic analysis having been al- q(m)= _E Un€
ready elaborated in Ref. 2 to which the reader is referred for e
more details. In ?ec. III,'appIications of the OQA theory aréyyhere the summation is over all integers, @gis the Mat-
presented. Specifically, in order to demonstrate the validity ;5,4 frequency defined bBY,=2mn/% 8. (It should be
and utility of the OQA scheme and higher order correctionsygteq that the above path decomposition is different from

the classical and quantum partition functions for a particle inp4¢ in Ref, 2 where the path fluctuations about the centroid
a one dimensional anharmonic potential are calculated &f5riaple where studiedAs a next step, the imaginary time

several temperatures. The comparison with the exact resullgion in the quadratic reference system is specified to have a
obtained by path integral Monte Carlo simulatidrearly ?uadratic form in the variablg(s) such that

indicates a consistent improvement as the higher levels o
corrections are included. Next, the nonlinear dipolar interac- 1 hB m

tion in fluids is formulated in the context of the OQA equa-  Seef Q(7)1/fi= 7 > dr > (1) + Ve (7)1
tions. Combination of this formalism and the mean field ap- 0

proximation (MSA)**~1° provides a means to study the
dielectric response of polarizable fluids including nonlinear _ 2
dipolar interactions. To probe the extremely quantum me-
chanical limit of the theory, the ground state energy shift of a
Drude oscillator in the presence of an electfois calcu-  wherea, defines the reference correlation function such that
lated. The results are compared with the exact data computed

via path integral Monte Carlo simulations. Finally, the ana- _ - CiQr

lytic continuation of imaginary time correlation functions a(n)= 2 ape”. (2.5
generated from the OQA theory is employed to study in- n=-e

tramolecular vibrational relaxation in polyatomic molecules,.l.0 be specific, for the effective quadratic reference potential,

demonstrating a connection to some expressions derived b@fven byV f(q)=(1/2)mw2(q—a)2 one has according to
re r 1

2.3

, (2.9

1 . . .
others?! Concluding remarks are given in Sec IV. Eq. (2.4)
! 2.6
T mB0Zt 0?) 28
Il. THEORY which leads to the imaginary time correlation function
A. Exact diagrammatic representation of the partition
function A cosh(1—2u)b/2]

a(T)= : , 2.7
For the sake of simplicity, the OQA theory will be de- 2Me sinf(b/2)
veloped in this section for a one-dimensional quantum Palwhereb=#Bw and u=4p4. In the classical limita(7) re-
ticle. From this analysis, the generalization to multidimen-g,ces to the constant=1/(mw?g) and all «, vanish except
sional space is straightforward. The classical limit may beg, ap.
recovered by taking Planck’s constanto zero. In terms of the quadratic reference system introduced
Two basic elements are required to specify a generaypove, one can express the partition function as
guadratic reference potentidlt) the average position in the

reference system, given by Z=Z(exp — ﬁﬁ)),ef, (2.8

ar:<q>ref 2.1

and (2) the imaginary time correlation function in the refer-
ence system, given by

a(1)=((a(m)—a)(a(0) = a) )rer, (2.2

wherer is the imaginary time on the intervakO<#g. Itis  and AV=V—V,4 is the deviation of the real potentid
well known that any function of a Gaussian variable can bdrom the reference potentidq.

expressed in terms of its meap and its mean squared de- In order to develop a diagrammatic theory for the parti-
viation a(7). All average values in the quadratic referencetion function, one must first Taylor expand the average in Eq.
potential are denoted by the symKol-),. (2.8), giving

whereAV is the imaginary time average

— 1 (B
AV—@L dr AV(q(7)), 2.9
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(exp(— BAV)) et connecting two vertices at timesand r; denotes a reference
correlation functiona( 7, — 7;). Whenever a line connects to

n a vertex, a spatial derivative is applied to the potential so that

> , the order of the derivative is equal to the number of lines that
ref connect to the vertex. A negative sign and a factor éféle

assigned to each vertex. The value of a diagram is the prod-

. N . -

1 f Bde % A\A/(k)e”‘q(ﬂ > | uct of all the composing elements multiplied by a symmetry

0 2m ref

20l

1 (%8
_gfo dr AV(q(7))

7 coefficient determined by the topological structure of the dia-

2l

gram.
R (210 With the above definitions, a one-to-one correspondence
whereAV (k) is the spatial Fourier transform of the potential can be established between each distinct perturbation term
differenceAV(q) with respect to the variablg. Sinceq(7;) and each diagram. The expansion series in(E4.0 is then
is a Gaussian variable in the reference system at any imagihe collection of all topologically different diagrams and all
nary time slicer,, the cumulant expansion of a linear com- possible combinations. It is well known that an infinite series
bination of those variables truncates at second order, givingf all possible topologically different diagrams, and their
combinations, is equal to the exponential of all possible to-
n pologically different connected diagrarffsFor a connected
[] eiat diagram, any two parts of the diagram are linked to each
i1 other by at least one line, one vertex, or one path of lines.
ref Therefore, one can express the quantum partition function as

n n n
_ 1
=exp) |2 kig+5 2 2 kikja(r— 1) Z=Z e eXp.7), (212
i=1

i=1j=1
(2.11
where.” is given by

in which the mean and the Gaussian width are given in Eq.
(2.1) and Eq.(2.2), respectively. It is noted that in a similar
expansioffor the centroid density there exist no terms linear . 7= © + o--- + @ + O—0 4 ren (2.13
in k; or terms containingy, according to the definition of the
centroid variable. This difference leads to additional factors
in Eq. (2.12) which do no appear in the theory for the cen- Though the topological reduction performed in the present
troid density. case is equivalent to a diagrammatic representation of the

By substituting the Taylor expansion of E@.11) into ~ cumulant expansion, the cumulant expansion itself becomes
Eq. (2.10, and transforming back into coordinate space, oné€omplex in higher orders and there are a large number of
arrives at the final expression in terms of the mean coordicancellations not explicitly obvious in the cumulant rela-
nate, the Gaussian width, the partial derivatives of potentialtions. It therefore proves to be much easier to keep track of
and integrations over the imaginary timelt is not particu-  higher order terms using the diagrammatic representation.
larly useful to explicitly write out this lengthy expression  To illustrate the usage of the diagrammatic expansion,
here even though the perturbation series gives, in principle, &vo simple identities must first be established, i.e.,
complete description of the quantum canonical ensemble. In-
stead, a set of diagrammatic symbols will be introduced to
aid in specifying the pertinent analytical expressions. It is
likely that in higher orders the expansion terms become in—BAV(Q;)= 0 + - + -c-0wen 4 ...
creasingly complicated and a low order calculation will not
provide a reasonable physics picture of a quantum system
havi'ng large anhgrmonicities. A'suitably devised diagram—WhiCh evaluates the potential at positign, and
matic representation, therefore, is not only a useful tool to
keep track of the expansion terms but also a powerful way to
analyze the perturbation series. This is no different from a
host of other applications of diagrammatic methods in physi- -
cal sciencegsee, e.g., Refs. 22 and )23 —B{AV(Q))e= o + @ * CO e, (2.19

There are three basic elements composing the diagrams
in the expansion of Eq(2.8): vertices, dashed lines, and
solid lines. Each vertex is associated with the potential, or itsvhich yields a Gaussian averaged potential at the origin, the
derivatives and an imaginary time to be integrated from Gaussian width being given by
7,.=0to ,=7%B. The potential terms are to be evaluated at the
origin of coordinate space. Each dashed line with only one
end attached to a vertex and the other end fa@eopen ling
is designated as the reference mean vajueEach solid line

(2.19

k4

h
a(0)= me coth(b/2). (2.19

Downloaded-25-Jun—2004-t0~18.21.0.92- K8 i S Yhjd 02 Noh B A2ReRUANA89Rht, ~see-http:/jcp.aip.org/icp/copyright.jsp



3340 J. Cao and G. A. Voth: Effective harmonic oscillators

Combination of the above two expressions leads to the aver- Clearly the linear force termig adds to the diagrams for
age potential in the reference system, giving 7 in EqQ. (2.13 a solid or dashed line with one end associ-
ated withf, giving

—B(AV)e= 0 + O--- 4 @ o
(2.1 (@)= ---- + o— =+ Co— + -0+ e (2.29

which consists of all topologically different decorations de-

rived from the diagrams in Eq2.14 and Eq.(2.15. Since  Making use of the identity in E¢2.17), one can renormalize
the mean and the width of the reference quadratic potentia major portion of the above infinite series by defining
uniquely define an infinite set of Gaussian variab]gs},

one can equivalently denote the average in the reference sys- = -.--. = ----- + o— (2.22
tem as
1 or in an explicit analytical form as
(V= (AV(ar+a)e= o0 [ daavia 4=, ~ BaolAVI(G+ ), (2.23
~ - Hereafter, quantities with bars stand for renormalized quan-
_ 12
+a)exd —q%/2e(0)], (2.18 tities which are represented in the diagrams by bold lines or

where the Gaussian width is defined in E@.16. The Plack vertices. Unlike the centroid density where the mean of
simple diagram series in E2.17) then yields the leading the Gaussian average is fixed, the additional subset of dia-

approximation to the partition function, i.e., grams !n Eq(2.13 I_ea_ds to a self—consi_st_ent equation which
determines the optimized average position.
Z=Z ¢ eXp — B{AV) e, (2.19 To renormalize the lines, one can adopt the chain collec-

tion of Eq. (3.39 of Ref. 2, which leads to the following

which sets an upper bound to the true partition functigm self-consistent equation:

application of the Gibbs—Bogoliubov variational principle to
Eqg. (2.19 will lead to an optimized quadratic reference po- — N _aave L fﬁﬁ P ,
tential which will be derived from a different point of view a(n)=alr)=BAV aB Jo dr’ a(r=7)a(r).

in the next subsection. (2.29

The open line equation in E@R.23 can be rewritten as
q=0,~ BagAV (2.29

which is to be solved simultaneously with the bold line

As.dhzs b9e§n de_mf?nstrated n thef p;;eymas work 0_3 th?enormalization equation in ER.24). Here, the average po-
centroid density,a similar expression foy in the centrol tential or its derivative is fully renormalized and is given by
density expansion consists of closed diagrams, i.e., there ex-

ists no class of diagrams i with single lines hanging AVIV=(AVM(q+d))4 (2.26
outside the main diagram or connecting two separate parts Qfich implies that each black vertex is attached with all

diagrams. Therefore, the expression.fofin Eq. (2.13 rep-  yossible decorations of single line diagrams, the loops and
resents a larger set of diagrams than in the centroid theorﬁngs_

and additional renormalization schemes must be introduced “Tnere is a simple solution to Eq&2.24—(2.25 if the
to simplify the summation of diagrams. This procedure Iead?ollowing conditions are satisfied:

to equations for the average position and the self-consistent .

frequency, thus resulting in the general optimized quadratic (AVY(q+4))z=0, (2.27
approximation. In the context of the diagrammatic theory (2) (T f) -

developed in Ref. 2, the present study is devoted to the con- (av (Q+ﬂ)>‘i 0 _ (2.28
sequences of including in the theory an additional set ofvhich leads togq=q, and a=«(0). One can thus introduce

B. Optimized quadratic approximation

diagrams having single connected lines. the optimized quadratic approximatid®QA), where the
To address the effects due to the presence of the dashégference potential takes the form of
lines, the average positigi) is first introduced through the Voor= Ima?(q—q)2 (2.29

differentiation of a generating functional. An imaginary time- _ .
independent force (1) is introduced into the action func- with the parameterso and q implicitly defined by Egs.
tional by replacingv[q(7)] with V[q(7)]+f(7)q(7). The (2.27—(2.28. The OQA potential of Eq(2.29 represents

average position is then given by the best quadratic fit to an anharmonic potential. If the aver-

age is constrained at a fixed position as in the case of the

(@)= lim—# 6 In Z[f] (2.20 centroid density, all the results in Ref. 2 can be recovered.
-0 6f(0) ' Unlike the centroid theory which is exact in the classical

limit, the OQA theory and higher order corrections forms an
where Z[ f] is the corresponding partition function for the approximate representation of classical systems. The validity
potentialV+ fq. of the theory in either case depends on the anharmonicity of
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the potential and the temperature of the system. At low temene includes a sufficient number of terms the series will
peratures, quantum thermal fluctuations play a major role; agield the desired accuracy. Nevertheless, a good choice of
higher temperatures, the system is more likely to experiencthe reference potential will give improved convergence and
nonlinear regions of large anharmonicities. The presensimplify the diagrammatic analysis; in particular, the OQA
theory incorporates these effects in a self-consistent fashiomeference potential will bear the closest resemblance to the
manifested by the interplay between the average posgion real potential. The OQA conditions specify that all vertices

and the effective frequency. linked to one line or two lines will vanish, i.e.,
As in the formulation of the locally optimized quadratic
approximation to the centroid dengity}*3and the centroid- o —0 (2.31)

constrained propagatbrthe OQA equations can also be ob-

tained by applying the Gibbs—Bogoliubov variational proce-

dure to maximize the right-hand side of E®.19 with

respect to the parametersanddq, leading to Eqs(2.27) and —e— =0 (2.32
(2.28. On the other hand, the diagrammatic representation

provides a systematic study of the formally exact perturbayhere the lines can be either solid or dashed. Furthermore, if
tion series, reveals the relationship between the variationgjne chooses the origin gtand redefines the coordinate ac-
method and the renormalization of the perturbations termgqrding tog=q— g, all the dashed lines will vanish. Conse-
and, more importantly, makes it possibleiprove uporthe  quently, imposing the optimization equations eliminates a
variational OQA approach by including higher order dia-|3rge number of diagrams containing the above two ele-
grammatic corrections. ments.

For complicated potential surfaces, and especially for  sjnce all diagrams containing the above elements will

many-body systems, there are many possible solutions tganish the leading corrections i in Eq. (2.13 are then
OQA equations. Physically all of these solutions correspongiyen by

to metastable potential wells. Under the condition that the 1 B (8 _
wells are reasonably separated, i.e., the barrier between ayy, = ST 7 f dr a3(7)(AV®)2 (2.33
two neighboring wells is significantly higher than the aver- o 0
age thermal energy, one can assume the partition function ignd
given by a linear superposition for all the metastable solu- 1 B[ B
tions. In this spirit, the partition function in the OQA can be € > =57 | dr a*(7)(AV#®)2 (2.39
written as 2141 i Jo
_ where all quantities are evaluated in the OQA reference sys-
Z=2 7, exp(— BAV)), (2.30  tem. The above two terms provide an improvement to the
I OQA partition function, giving
where{l} denotes the set of distinct solutions to E(s27)— — 1 fzb) [ A\ - N2
(2.28. In general, all expectation values evaluated in theZ=ZoQa EXF’[ B AV—T;;! P (m_a) (AVE)
OQA theory would follow this superposition principle.
In a way, one can attribute the differences between lig- 1 fub) [ A \* AV 23
uids and solids to the nature of the OQA solutions for the ~ 214! %@ |mo ( e (239

many-body configurations. Indeed, this important Concep%hereb:ﬁaﬁ. Here, f,(b) is a dimensionless coefficient
makes it possible to define for liquids inherent structuresy fined by TN ’

which were previously proposed and pursued from the per-
spective of quenched potential minirffa?’ and to make a ¢ (b _(_)n_lfl 1—2u)b/2 "
connection with the somewhat different concept of instanta- n(b)= b 0 sinh(b/2) cosH u)

neous normal mode$NM ),28-31which provide an extension (2.3

of the phonon picture of solidS:* However, the unstable \ypich becomes a constant in the latydimit. More correc-
modes in the INM theory present a conceptual difficulty;ns can be included by adding more diagrams.
when formulating the INM expression for dynamical corre- At extremely low temperatures, the quantum partition

lation functions(i.e., they must be thrown out or the INM  ¢,nction is dominated by the contribution from the ground
expression will unphysically diverge at long time3he in- o0 e

herent normal modes, defined as solutions to the OQA equa-
tions, are free Qf such unstable modes by. dgfinition, a.nd thus Eo= lim i In Z(B). (2.37
appear to provide a more accurate description of liquid state
dynamical correlations. Progress on this latter aspect of the
theory will be presented in a forthcoming papér. It is therefore an important test to calculate the ground state
energy from the OQA theory. This procedure can be shown
to be equivalent to the quantum perturbation theory expres-
sion based on a basis set consisting of LHi@ear harmonic

In principle, the perturbation series does not depend on ascillato eigenstates. As an example, consider the cubic os-
specific effective quadratic reference potential because whetillator potential, given by

b/2
du

— 00

C. Higher order corrections to the partition function
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V(q) = sme?g®+cq’. (2.38 o 72 82Z[f(7)]
<Q(T)q(0)>—fllm 7 5t 8f0)" (2.43

The reference potential is simply the LHO term, i.e., 0

V,e=(1/2)mw?q?. Though the reference potential is not op- N . _
timized, a single vertex and all the vertices linked to one lingHere, the partition functioZ[f(7)] is understood to be a
or two lines will vanish. Therefore, the leading correction functional of the extra time-dependent foréér) and is

terms to the partition function are given as therefore the generating functional for the imaginary time
. correlation function.
I= (O = . (2.39 Following the diagrammatic notation introduced in the

previous subsections, one can formally express the correla-
which then leads to the expression for the ground state enion function as:

ergy
1 CZ C2 0 — smsn 2 4
Eo=> fio—9 —— N6—2 —— N6+, (2.40 (a(na)= i1+ — (2.44
2 hw hw
Here, the following relations in the low temperature limit are yhere the bold solid line stands for the collection of all the
used possible connected diagrams linking two ends associated
with f(7) and f(0), and the bold dashed line stands for the
lim f,(b)= ST (2.41)  average position. To simplify the analysis, we redefine the
B position correlation function as
and C(n)={(a(n)—{a))(q(0)—(a))) (2.49
lim a(0)= h =\2 (2.42 in which the average positiom) can be_the exact result
e om evaluated from simulations or the analytical solution calcu-

lated from the renormalization equation Eg.25. With this

with A being the width of the ground state LHO wave func- definition in hand, the evaluation of the correlation function
tion. It can be readily verified that the first correction corre-C(7) is equivalent to the renormalization of the solid line
sponding to the first diagram in E(R.39 is identical to the [i.e., the bold solid line in Eq2.44)], explicitly given by Eq.
second order perturbation expression due to the coupling b€3.33 in Ref. 2. Here, as stated earlier, all the decorations
tween the zeroth and the third LHO eigenvector, and theattached to the intermediate vertices can be removed if the
second correction corresponding to the second diagram ivertex is renormalized. This operation is achieved by replac-
Eq. (2.39 is identical to the second order perturbation ex-ing all the AV’s by AV’s, giving

pression due to the coupling between the zeroth and the first — .

LHO eigenvector. Evidently, a one-to-one correspondence AV=(AV({a)+0a))c(o) (2.49

can be established between perturbation terms of the groun\g(‘ere the Gaussian width is now denoted®() instead of
]

state energy calculation and higher order diagrams evaluate 0). In the case of full renormalizatiofs() is equivalent to

in th_e low t_emperature quantum mechanical limit. In the nexq[;he renormalized reference correlation functiar), and{q)
section, this method will be applied to calculate the groun s equivalent to the renormalized reference meaThese

state energy of a Drude oscillator interacting with an elec-tWO notations will not be distinguished hereafter
tron. :

L The simplest set of lines, given by E@.35 of Ref. 2,
It has been a common practice in ground state calcul P g y E@.39

. f ationall . h ¢ U5 the chain collection, which leads to the following self-
tions to first variationally parameterize the wave function . iciont equation:

from a reference potential and then the perturbation solution B

is introduced to improve on the accurdywe note that the ap=a,— BAVP a,a,. (2.4

the general quadratic theory presented here is analogous to - )

this approach, but it is extended through the incorporation oY noting thata=2ay,, it is seen that Eq2.47) is the same
thermal excitations. Moreover, as long as the potential is &S the OQA equatio(2.28 derived earlier.

regular function, one can in principle include more diagrams | he next stage in the analysis is to include all the two-

into the calculations to achieve higher accuracy. line-loop corrections in the renormalization, given by Eqg.
(3.39 of Ref. 2. It is important to incorporate infinite terms
corresponding to the same class of diagrams so that at low
D. Higher order corrections to the correlation function temperature and high anharmonicity the self-consistent equa-
The imaginary time position correlation functia®(z) tion W_|II not diverge. The infinite summ_at|on of twp-llne
i . . L loops in EQ.(3.38 of Ref. 2 can be carried out to yield a
can be introduced through functional differentiation of a gen- : .
: . . closed equation, given by
erating functional. In order to formulate such a functional, an
imaginary time-dependent fordd7) is introduced into the
action functional of the partition function such that the po- En=an—anEnBA\7<2>+ .l —
tential V[ q(7)] is replaced bw[q(7)] +f(7)g(7). The cor- 1+(1/2)a§(ﬂAV<4>)
relation function is thus given by (2.48

(1/2) apana?( BAVE)?
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which can be solved numerically. Here? is the contribu- Wherew is the set of the eigenfrequencies dhdy?] denotes
tion from the two-line-loop diagram, given by a diagonal matrix with théth diagonal element given h@z
The Gaussian width factor matrix in E(2.52) can be deter-
mined from the relation

a’= D ap_mm, (2.49 _
— C=U[l-a]UT, (2.55

whereaq, is interpreted as in E42.7) which in the classical whereU=m Y2 and the individual elements of the normal
limit becomes zero unless is zero. Sincex? is a convolu- mode thermal width factor vector are related to the normal
tion expression, the self-consistent equationdas nonlocal mode frequenciefw,} such that
in Fourier space, and therefore one can no longer seek a 1 5B |2
single effective frequency prescription as in the OQA theory. &=y ( ( ,Bw|_ ) ] (2.56
In fact, this analysis shows that the optimized quadratic ref- By | tanh(7i Bw,/2)
erence system provides the best possible quadratic potent
to approximate an anharmonic potential and any further co
rections are beyond the effective quadratic description.
The_ real-tlmg counte.rpart of the imaginary time ql'Jantum(ZISQ in N-dimensional space.
correlation functionC(7) is an essential component in de- . . .
o . . With the help of the vector and matrix notation, one can
scribing the dynamics of quantum systems. The real time and . . . .
. . . . . now rewrite the higher order corrections to the partition
imaginary time correlation functions are of course related bx‘unction in N-dimensional space as
the analytical continuatiom—it, so the detailed study of the b

rlﬂwus the set of optimized frequencigs} and average posi-
tions{q} are variationally obtained as the self-consistent so-
lution to the transcendental matrix equations, E@s50—

Euclidean correlation function presented in this section may = = 1 > D> B
eventually help to reveal the real time behavior of quantum 213! {0k {070 KD
systems®3’As an example, it will be demonstrated in Sec. 0B
Il D that Eq. (2.48 can be employed in studying intramo- xj dr Cji(7)Cjj(7)
lecular vibrational relaxation in polyatomic molecules. 0
XCkkr(T)[ﬁiﬂjakAV][air&jrakrAV] (257)

E. Multidimensional formulation and

1 B
In order to generalize the OQA theory to multidimen- < = 7] > > 7
<

sional coordinate space, a vector-matrix prescription will be DI RUS LS

introduced here to formalize the relevant expressions. Here, ]

vectors and matrices are denoted by bold fonts. X fo d7 Cii (1) Cjj (1) Che (1) Cyy (1)
First, the OQA equation$Egs. (2.27—(2.28] can be _ _

rewritten as X[ 390k AV][ ;1 dj:dy: 9 AV, (2.58
(VV(q+@))c=0 (250  where the sums run from 1 8. The multidimensional for-

— o~ malism for the renormalization equation of the correlation

(V:VV(@+@))c=K, (2.50 d

function, Eq.(2.48, can be expressed in a similar format.
whereK is the optimized effective force constant matrix and More discussion on this aspect of the theory can be found in
where V is the partial derivative vector with the elements Sec. III D.
Vi=4; . The notatior---)- here denotes a multidimensional
Gaussian average centeredjai.e.,

— . 1 - . lll. APPLICATIONS
V(g+ =———= | dq V(q+
Vat@)e Vdef{2#C] f avia+a) A. A one-dimensional example
X exp(—§-C~1-§/2) (2.52 In this section, a completely nonquadratic model poten-

tial is employed to stringently probe the accuracy of the
OQA equations and higher order corrections for both the
quantum and classical partition functions. The test calcula-
w0 tions are based on the potential

n=-—ow

where the Gaussian width factor matfx in this case, can
be formally expressed as

where the masm and# are taken to be unity. The inverse
temperatureg is thus the equivalent to the dimensionless
I%)_arameter/%w.

First, the optimized quadratic reference potential was
- found according to the variational equations E(&27—
Uku=[1-@?], (254  (2.28 which have only one solution for the potential in Eq.

Here, m is the N-dimensional mass matrix and
Q,=2mn/aB. In terms of eigensolutions, a unitary matkix
can be found which diagonalizes the mass-scaled force co
stant matrixK, giving the eigenfrequencies
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Classical Free Energy Quantum Partition Function
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) ) FIG. 2. A plot of the partition functiorZ for a quantum particle in the
FIG. 1. A plot of the negative free energy;F=InZ/g, for a classical  potential given by Eq(3.1). The solid circles depict the numerically exact
particle in the potential given by Ed3.1). The solid circles depict the reguits, while the solid line is the optimized result of E227) evaluated at
numerically exact results, while the solid line is the optimized result of Eq.potential minimum, the dashed line is the OQA result from HG27)—

(2.27) evaluated at potential minimum, the dashed line is the OQA result2 28, and the dash—dot line is the result obtained by including the higher
from Egs.(2.27—-(2.28, and the dash—dot line is the result obtained by order correction from Eq(2.35.

including the higher order correction from E@®.35.

(3.1). The partition function was then evaluated by including@ble the particle to explore regions of high anharmonicity.

the higher order corrections in E(.35 and compared with

the exact result which was obtained by computing the

V\{e|ght|pg function in Eq.(2.10 d_|rectly by Monte Carlo g Nonlinear effects in dipolar interactions

simulations. The umbrella sampling method was employed . ) ] )

to evaluate the exact partition function. To achieve good con-  1he rapidly fluctuating motion of electrone., elec-

vergence, the path integral simulatiSremployedP=100  tronic polarization has important effects in fluids and clus-

discretizations and $MC passes. The number of quasipar- ters (see, e.g., Refs. 38 and 3% model that incorporates

ticles moved at each trial was adjusted to yield an acceptand@ectronic induction is the well studied Drude oscillator

ratio of 50%. model;>~*"***an isotropic harmonic oscillator with a fre-
In Fig. 1, the magnitude of the negative free energy,dUencyw, massm, and charges-q and —q connected by a

In Z/B, for a classical particle in the potential E.1) is harmonic spring. If the electrostatic interaction between the

plotted as a function of8. Without optimizing the equilib- Drude oscillators is treated in the dipple—dipoleﬂgprqxima-

rium position through Eq(2.27), the solution of Eq(2.28 at  tion, the problem reduces to a matrix problehf?** This

the potential minimum deviates considerably from the exac{Slm_pllfled picture of electrpnlc pplanzatlon provides a u.seful

results and the OQA results. This clearly demonstrates thyehicle for studying the dielectric and spectral properties of

necessity of adjusting the equilibrium position to the centefMany-body systems. _ o _

of thermal excitation self-consistently along with the effec- ~ On the other hand, the dipolar approximation fails to

tive thermal fluctuation lengthscalee., the curvature of the account for the fact that the high order contributions to the

effective potential Furthermore, it is seen in Fig. 1 that the Coulomb interaction become important at small distances. To

higher order corrections considerably improve upon thdake full account of the Coulomb interactions, one must re-

OQA solutions. However, all the approximation schemesSort to numerical simulations. However, the variational qua-

seem to converge at low temperatures because in this situdlfatic reference potential method developed in the present

tion a classical particle becomes trapped in the potential Paper allows one to rigorously approximate the Coulomb

minimum with diminishing thermal fluctuations. interactions by a set of general oscillators with coordinates

In Fig. 2, the partition functioZ for a quantum particle Pi» the effective potential being given by

in the potential of Eq(3.1) is plotted as a function oB. 3N p? 3N 3N
Again, the progressively improving accuracy of the OQA v =>s —+ > tijpipj+2 h.p; , (3.2
solutions and the higher order corrections is observed when 1 2 ij=1 i=1

compared to the results obtained without optimizing the
equilibrium position. In this case, however, none of the dif-WhereN is the number of Drude oscillators and the param-
ferent approximations completely recover the exact result g&ters in the model can be formally defined by the implemen-
low temperature. This error arises because of the nonvanisf@tion of the general OQA optimization equations, given in
ing quantum ground state amplitude which would requirethis case by

increasingly higher order corrections to describe accurately. 2V

The relatively large deviation at higher temperature should sl—< > ,
also be noted because the increasing thermal fluctuations en- c

Fry (3.3
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92V and Q(r,C)=Jpp(r’,C)dr’ is the charge enclosed by a
tj= apap, | (3.4  sphere of radius. Next, the OQA equations Eqé3.3) and
e (3.4) can be approximated in the MSA by the solutions

zm:<§g>, (3.5 si(R,C)=mw?+ *V(R,C)— #*(R,2C) (3.10
Ic

which can be obtained from the application of the optimiza—and

tion conditions in Eqs(2.50—(2.51). For every nuclear con- t:(R,C)=28.0:V(R,2C)— 3:0:V(R,C) (3.12)
figuration, the OQA equations specify a set of oscillators R R

which best mimics the Coulomb interacting system, althouglwhere the partial derivatives are now applied to the three
it could be a formidable numerical task to solve the multidi-components oR for any given pair of Drude oscillatofsf.
mensional equations. Eg. (3.6)].

As an alternative to the direct numerical solution of the ~ Now, one can modify the MSA equation for the opti-
OQA equations, the well-developed mean spherical approximized polarizable fluids. Among many approaches available,
mation (MSA) for polarizable fluid®~*° can be combined we adopt the matrix formulation developed for nonpolar po-
with the variational approach to yield an optimized MSA |arizable fluids,(e.g., Appendix A of the Ref. 19The renor-
equation. The self-consistence is manifested in two differeninalization equation forx and, in turn,e is given in this
aspects: the many-body polarization and the optimized quaapproach by
dratic approximation.

Consider a pair of Drude oscillators interacting through  _— a
the Coulombic potential, that is I (da)3(a) (3.1
i 1 where, can be approximated by E¢A6) of Ref. 19 with
R [R—ry the dipole—dipole interaction tensdi(R) replaced by the

tensort(R,C) from Eg.(3.11), i.e.,

1 1
V(RI1.r2)=5 mw?r?+ > mw?rs+g?

! + ! (3.6
[R+r5|  [R=ry+ro[) ' s () t, (313
a)=————, .
whereR is the distance between the nuclei with nucleus 1 1—-(ta/ty)
located at the origing is the charger, andr, are the elec- where

tron displacements of two Drude oscillators, with the corre-
sponding fluctuating dipoles given as=qr, and p,=qr,, 1
and the polarizability is given as=g%/(mw?). In this sub- t,== EZPJ dR g(R)Tr(t?) (3.14
section,« denotes polarizability an@ denotes the Gaussian 3
width in the OQA. an
Under the MSA approximation, each Drude oscillator
moves in the potential of mean force due to the other induced ap?
dipoles, resulting in a larger amplitude, or equivalently a  t3= 3V delf dsz dR3THt(R;—R,)t(R,— R3)
larger polarizability. For a homogeneous polarizable fluid,
the fact that all the Drude oscillators are identical leads to the Xt(R3—R;)]93(R1,R,,R3). (3.19
self-consistency of the renormalized polarizability. Under the
MSA assumption the optimized reference oscillator for anHere,p is the densityV is the volume, andj;(R1,R5.R3) is
isotropic fluid is centered at;=0 andr,=0 soh;=0. As- the three-body equilibrium distribution function for the fluid.
suming a renormalized polarizability, the effective Gauss- By solving Egs.(3.11) and (3.12 simultaneously, an opti-
ian width is given by mized self-consistent MSA solution is obtained for the fluid
consisting of Drude oscillators. Once the renormalized polar-
C= :_Lz b/2 (3.7) izability is obtained, many properties of the Drude fluid can
Mg tanh(b/2)’ be approximated at the level of MSA theory by a dipolar

B P : ; 2_a~in) 15-17
whereb=%wpB andw is related toa through the expression fluid with the equivalent dipole mometf|*=3(a/p).

a=0g%/(mw?). Then, the Gaussian averaged Coulomb poten- t Ifttlre _d|tpole—t_d|polethap%r_?fmma:l?:n |s.assur?r<]ad toddoml—
tial is explicitly given as nate the interactions, the different Fourier path modes are

decoupled so that the dielectric constant and dielectric re-
q® = qQ(r,C) sponse are the same for a classical and a quantum nonpolar
m: fR dr re polarizable system. However, with the help of OQA theory,
(3.9 one concludes that the nonlinear interaction has a larger ef-
fect for quantum systems than for classical systems—and

d

WRQ:Jmme

wherep is the Gaussian distribution function this nonlinear effect increases as the mass and the tempera-
ture decrease. In addition, the OQA will provide a vehicle to
p(r,C)= exp(—r2/2C) (3.9 study many-bodypolarization effects beyond the dipole—
V27 C dipole approximation.
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C. Ground state energy of a perturbed Drude

oscillator L2 The Energy Correction Function

As has been demonstrated in Sec. Il C, the quantum
ground state energy can be obtained from the asymptotic LoF e
expression of the partition function in the low temperature 0.8 |
qguantum mechanical limit. It has been shown for the one —
dimensional case that the OQA equation including higher & 0.6 |
order corrections is equivalent to solving the Sdfinger © 04 L e
equation in a LHO basis set with the help of perturbation ' ' 27277 QQA with Correctons
theory. The method is below applied to the problem of a 0.2+ ; .
highly quantum mechanical Drude oscillator of massfre-
guency w, and chargeq, such that{w=0.534, m=0.245, O'OO 5 4 6 8 10
q=1.38 (which are the parameters of, e.g.,*%e This os- R

cillator is perturbed by a Coulomb interaction with an elec-
tron fixed in the space. The goal here is to calculate the ot of th functia(R) defined by E(3.9

; illatoE FIG. 3. A plot of the energy correction functi@{R) defined by Eq(3.9).
quantu.m grouf‘d Sta.te energy shift of the OSC!”. , due The solid circles are the numerically exact results, while the dashed line is
to the 'nteraCt!On W'Fh the electron. The_ positive _charge Ofthe OQA result from Eqs(2.27—(2.28, and the dash—dot line is the result
the Drude oscillator is placed at the origi®,0,0, while the  obtained by including the higher order correction from Ef35.
negative charge oscillates under the linear harmonic poten-

tial. The electron is placed at distanBeon thex axis at
(R,0,0. The potential is thus given by and very long runs because an accurate determination of the
difference between two large expectation values is required.
(3.16 One way to circumvent this difficulty is to use the residue
' ' potential, AV=V—V,, as a Monte Carlo weighting func-
. . . tion instead of a Metropolis importance sampling function.
\g?f(;g l)éiiltlgteo:jli[tﬂs)coer?teenr; O;rglﬁ (gi%agglemczzlgetﬁ;th%he potentiaV,; is an arbitrary quadratic reference potential
b=pBhw=545, tﬁe oscillator is%ominated by thé ground stateWhti.Ch \I/vas chosen to _?_re]_the OQ: pote_nlﬂEq. (2.29] for
so that the ground state energy shift is effectively the same a%a imat convergence. This procedure gives
the “solvation” energy. AZ(B,P)=(e  AIPZAVEYY (3.20
Under the condition that the separati®nis relatively
large, satisfyingR®>>(%/2mw), the dipole approximation is
valid, implying

1 1

R |R—r]

1
V(r)= 5 mw?r’—eq

where the average is taken over the configurations generated
by eSe’" In the limit of low temperatureAZ yields the
ground energy shift due taV, i.e.,

AE=—lim Iim In AZ(B,P). (3.21

ﬂ%m P—oo

1 e
Vd(r)zzmwzrz—r—gr-R. (3.17

. . . 6
As a result, the charge—dipole interaction leads to a grounffOr the potential in Eq(3.16 with b=5 and P=2", the
state energy shift of difference between the exact ground state energy and the

average energy is less than £0The NMPIMC simulations
AE4=— a€?/2R%, (3.18  were performed ab=5 andP=64. A total of 1§ indepen-
dent configurations were sampled. More details regarding
NMPIMC can be found in the relevant papé?$®

In Fig. 3, the functionc(R), as obtained from the OQA
solution and from the higher order corrections, is plotted
Ytom R=0.5 toR=10.0 along with the exact results obtained
from the NMPIMC simulation. The OQA equations and the

c(R)=AE/AE,. (3.19 higher order corrections in the three-dimensional spaae of

) ) ] are given in Sec. Il E. The considerable accuracy in the ana-

~ Forthe sake of comparison with the analytic theory, pathyica| prediction supports the validity of the theory. It must
integral Monte Carlo simulations have also been carried ouge pointed out that the OQA theory contains more informa-
to calculate the exact ground state energy shift. Path integraly, than just the ground state energy of physical systems: It
simulations are usually used to study temperature-dependeft essentially the most general possible effective harmonic

properties and are generally not efficient for calculatingtheory for describing equilibrium systems at a given tem-
ground state energies. Nevertheless, it was found that ﬂl?erature.

normal mode path integral Monte Carlo metfdd
(NMPIMC) is at least as effective as the diffusion Monte
Carlo method DMC) for calculating the ground state energy
for the potential in Eq(3.16. The calculation of the ground
state energy shift caused by a small perturbation requires the An isolated polyatomic molecule can exhibit a charac-
simulation of a system with a large number of quasiparticlegeristic change in its nonlinear vibrational motion as its en-

where the polarizability « is explicitly given by
a=q%/(mw?). At smaller separations, the ground energy
shift AE will be reduced because of the full Coulomb inter-
action. This reduction is denoted here by the energy corre
tion functionc(R) defined as

D. Intramolecular vibrational relaxation in polyatomic
molecules
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ergy increasesgsee, e.g., Ref. 46The transition of normal- Equations(3.28 and(3.29 represent the self-consistent
mode vibrations to stochastic behavior and the rate otquations resulting from the renormalization of the dashed
intramolecular vibrational relaxatioflVR) can be studied and solid lines, and they can be solved iteratively. However,
via the techniques of quantum Green’s functfér*®Accord-  the analytical continuation requires a closed form expression
ing to the inverse Wick rotation, the analytical continuationwhich can be obtained by a perturbation approximation. The
of Euclidean correlation functions gives real time correlationfinal solution takes the simple form

function®%3" In fact, the analytical continuation in Fourier

space directly yields the Fourier transformation of the quan- 4. :ﬂ’ (3.30

tum response function, namely, the retarded Green’s func- R Y

tion. Therefore, in studying the breakdown of normal modeyhere the leading order in the self-energy term is given by
behavior in molecules the higher order corrections to the N
Euclidean correlation function presented in Sec. Il D assume B? E

an important role in the analysis. ni=% (Ciijcikk“kk(o)%,jj

Consider a system described by the Hamiltonian b=t
N 2 2 N — _
p; q7) 1 +C% > Amik@n-mii |- (3.31
H=2> 7l+wi2 7| T3y > Cidigae. (322 ey TmiddnTml
i=1 Cijk=1

In Eq. (3.3)), the first term gives the frequency shift due to
where the mass is assumed to be unigyis the frequency of  the change in the equilibrium positions and the second term
ith normal mode, and; is the cubic coupling constant. If give arise to both a frequency shift and the spectral broaden-
the normal modes are taken to be the quadratic referenGfg. Essentially, the broadening of the normal mode spectrum
system, one has is related to the vibrational relaxatiéh.Equation(3.31) is

— exactly the same as the one derived by Stuchebrukhov

ar,i =0 .23 et al?! in their study of threshold energy dependence of in-
and tramolecular relaxation in polyatomic molecules. Evidently,
1 their result is a special realization of the general theory in

— Sec. Il as applied to the Hamiltonian in E§.22).

i Bz o) 29 i e

where , is the Matsubara frequency defined earlier as
Q,=2mn/AB. SinceAV is the cubic term in Eq3.22, the  IV. CONCLUDING REMARKS
only nonvanishing vertex in the diagrammatic expression is

the one linked to three lines, i.e., In this paper, the representation of physical systems by

effective harmonic oscillators has been explored. The result-

3,AV=0, (3.29 ing optimized quadratic approximatiqd@®QA) has been de-
veloped in the general context of statistical mechafiies,
did;AV=0, (3.26 systems characterized by a temperagtudathematically, the
33,3 AV =Gy (3.27) formulation is bas_ed ona diagram_matic repr_ese_ntation of the
cumulant expansion for the partition function in terms of
Because of the cubic anharmonicity, the equilibrium positionmultidimensional Gaussian variables. In essence, both clas-
q; is shifted according to Eq2.25), giving sical and quantum statistical mechanics has been recast in
N terms of a harmonic “basis set.” Apart from its possible

physical applications, such a formal development is instruc-
(3.28 : s A
tive and meaningful in itself.

Through representative physical applications have been
where it is assumed that the renormalized correlation funcdiscussed in Sec I, the most important application of the
tion matrix is also diagonalized and Wh&;ﬁ(O)ZEnc_zn’“ ) OQA theory will be to real continuous media such as solids,
Next, the infinite summation of two-line-loop diagrams is liquids, and glasses. The multiple OQA solutions in the
carried out to yield Eq(2.48), which can be explicitly writ-  many-body hyperspace characterize the nature of the differ-
ten in the present case as ent phases in an “understandable” way and may thereby al-
low one to better isolate the physical features which lead to
the transitions between those phases. As another application,
consider the case of liquid state dynamics which may, for
transient periods of time, be described by solid state concepts

Gi=—Baoii 2 [Cijddic+ 3¢ij; 5;(0)],
k=1

N

Qi = n i — Bnii @n i 2 Ciij Q;
=1

1 N o such as “inherent structure&"~2® or “instantaneous normal
+ 5 Bagiani Y Ch X @mk@n—mijj modes” (i.e., phonons?®?° The present theory can self-
jk=1 m consistently describe transient liquid state structures and
(3.29 their thermal fluctuations, while effectively taking into ac-
' count the anharmonicity of the many-body potential surface
where the convolution results from the two-line loops. as it influences such structures. This approach thereby pro-
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vides a well-defined mathematical framework for the intui- diagrammatic analysis, thus enabling the introduction of the higher-order
tive liquid state inherent structure idea introduced by Still- corrections without having to subtract the overcounted diagrams resulting
inger and Webe%/_l—ze from the quadratic optimization. Moreover, it was shown how the lines

Aside f lculati istical . h (i.e., the centroid-constrained imaginary time propagatosld be renor-
o0 side from calculating Stat'st'ca prope_:rtles, anqt € MO- malized along with the vertices in a consistent fashion to substantially
tivation of the present research is to provide a basis for con-improve upon the accuracy of the effective quadratic variational method.

structing dynamical theories. In fact, in a forthcoming iJ Hoye and G. Stell, J. Chem. Phys, 461 (1980.
paper* the OQA solutions will be used to develop a theory - R. Pratt, Mol. Phys40, 347 (1980.

. . . . L .7 YM. 3. Th K. S. Schwei D. Chandl . Chem. .
for dynamical time correlation functions in liquids. This 112‘:3(193;”’”0”‘ S Schweizer, and D. Chandler, J. Chem. Fiys
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