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Spectral analysis of electron transfer kinetics. I. Symmetric reactions
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A spectral analysis method is proposed to characterize multiple time scales in electron transfer
processes, including vibrational relaxation, electronic coherence, activated curve crossing, or barrier
crossing. Within this unified framework, observed rate behavior, biexponential and multiexponential
decay, and population recurrences and oscillations are different components of the same kinetic
spectrum; thus, several existing theoretical models, developed for limiting cases of electron transfer,
can be analyzed, tested, and extended. In particular, the rate constant extracted from the analysis
does not saturate as the electronic coupling increases but shows a crossover from the nonadiabatic
to adiabatic limits, and the kinetic spectrum in the large coupling regime reveals the nature of the
localization—delocalization transition as the consequence of two competing mechanisms. Though
the analysis is presented in the context of electron transfer, this approach provides a different
perspective for understanding dissipative dynamics and hence can be applied to study
condensed-phase laser spectroscopy, quantum coherence control, energy transfer, and other charge
transfer processes. @000 American Institute of Physids$S0021-96060)50410-3

I. INTRODUCTION delocalized regimé.Similar transitions have been predicted
) ) ) for two-level systems coupled to low temperature phonon
Multiple time scales characterize many complex dy-modesd~19 |t has recently been suggested that the delocal-

namic systems, especially chemical and biological systems;e( electronic state is responsible for population oscillations
A classical example is electron transfer procesgeshich  gpserved in mixed-valence systeMs.

tronic coherence, and activated curve crossing or barrighased on the assumption that solvent relaxation is instanta-
crossing. Recent studies of electron transfer processes haygoys so that thermal equilibrium is maintained at the tran-
revealed rich kinetic behavior, which cannot be described byjtion state (or equivalently, the crossing point in curve
the classical Marcus electron transfer theory. For examplegrossing. In reality, the finite response time of solvents im-
the increase of electronic coupling constants leads to a trafspses an upper-bound for the measured electron transfer rate.
sition from nonadiabatic to adiabatic electron transfer, a”‘?zreating solvent relaxation as a competing mechanism, one
this transition is influenced by the dynamic nature of thecan invoke the stable state picture to construct a general ex-
solvent. Further, electron transfer in mixed-valence mo"pression for observed electron transfer ratek=11/kgr
ecules and other strongly-coupled electronic systems demorn: 1/Kp ,*> wherekgr is the thermal rate for electron trans-
strates underdamped oscillations. The goal of this article is tg, andk,, is the spatial-diffusion-limited reaction rate. Rig-
illustrate a spectral method to analyze various time scales iBroust, this relation holds only in the nonadiabatic regime
electron transfer systems showing that experimentally obgitp ker=Kya .2 As seen from the above discussions, exist-
served rate behavior, biexponential decay, population recUing models apply to limiting cases of electron transfer;
rences, and oscillations are simply components of the samgance, the spectral method we propose in this article will

kinetic spectrum. _ provide a unified approach to analyze, test, and extend exist-
Several kinetic regimes of electron transfer have beefyg rate theories.

transfer is the crossover from the nonadiabatic regime in Figmethod is introduced in Sec. I, the two-state diffusion model
1@ (V<kgT) to the adiabatic regime in Fig.() (V  for electron transfer is analyzed in Sec. IIl, numerical results

>kgT), due to the increase of the electronic coupling con-of spectral analysis are then presented in Sec. IV, and finally
stantV. At high temperature, the Landau—Zener expressiony symmary in Sec. V concludes the article.

allows us to interpolate rate constants between these two

limits.>* At low temperature, rate is enhanced by quantum

tunneling effects, and a nonadiabatic instanton theory has

been developed to account for the crossover in the quantuh'] SPECTRAL ANALYSIS METHOD
regime® Further, when the coupling constai)(approaches
half the reorganization enerdy/2) as in Fig. 1c), there is a
transition in the electronic state from the localized to the

Simply put, spectral analysis is to treat dissipative dy-
namics as an eigenvalue problem. In general, the evolution
of a dynamic system follows the equation of motion

3Electronic mail: jianshu@mit.edu p(t)=Lp(1), D
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complete range of parameter space. In a similar fashion,
biexponential decay, multiexponential decay, and damped
(a) oscillations can also be predicted and analyzed.
Furthermore, observed kinetics can be predicted by iden-
tifying the kinetic eigenstate corresponding to the experi-
mental time scale, and the initial preparation in ultrafast ex-
periments can be interpreted as projections to different
kinetic eigenstates. This is particularly useful for studying
(b) coherent excitatiol? and laser spectroscoffyin condensed
phase systems, which can now be treated in the same fashion
as gas phase systems. For example, relationships between
photoexcitation and kinetic modes can be established, which
can be used as a guide for the design of laser pulses for
selective photochemistry.
Earlier, the kinetic spectral method has been used to
(c) study one-dimensional and two-dimensional diffusive barrier
crossing'’'® Cukier and co-workers have also applied the
method to calculate electron transfer rate constants in the
small electronic coupling regimé.The goal of this study is
to use the kinetic method to explore various kinetic regimes
of electron transfer.

FIG. 1. Adiabatic potential surfacgsolid curve$ vs. diabatic potential
surfaces (dotted curves The diabatic Hamiltonians ared,(E)=(E
+X\)2/(4\) and H,(E)=(E—\)?%/(4\) with BA=8. The three diagrams

represent three kinetic regime® BV=0.1, (nonadiabatig (b) 3V=1.0,
(adiabatig; (c) BV=4.0, (delocalized stafe For all the figures in the article Iil. ANALYSIS OF ELECTRON TRANSFER RATE

time and energy variables are scaled by the thermal engrggdz is taken A. Two-state diffusion equation
as unity.
Since most chemical and biological processes take place
_ S - o ) in over-damped solvent environments, electron transfer pro-
where p(t) is the distribution function in multidimensional esses can be modeled as two-state dynamics in Debye sol-
space, and is the Liouville operator. For classica_l systems, yents. Taking the over-damped limit of two-state quantum
Eq. (1) takes the form of the Boltzmann equation or thedissipative equation¥:2%®\we obtain a set of classical dif-

Fokker—Planck equation. For quantum systems, (Egcan  fsion equations for two-coupled surfaces,
be formulated with influence functionals, semiclassical ap-

proximations, and Bloch—Redfield equations. For a dissipa- P1=£1p1=1V(p12—p21), (4a)
tive system, the Liouville operator has a non-Hermitian part,

- o : . : . : p2=Lopa+iV(p12—p2y), (4b)
which is responsible for irreversible mechanisms in the pro-
cess. The non-Hermitian Liouville operatat, can then be p15= Liop1o—iw1p1oFiV(pr—p2), (40
diagonalized, giving where L1,=(Lq+ £,)12, hiwi=U(E)—U,(E), and £ is
P-LHR=7,, (2 1D Fokker—Planck operator  Lp=Dg[ 9%/ JE?

+ BdldEU'(E)]p, defined on potential surfadg, or U,,

L R . .
where¢"™ and 4™ are the left and right eigenvectors, reSpec'respectively. Here, the stochastic variaBlés the electronic

tively, andZ is the corresponding eigenvalue. Just as elgen'energy, which is a function of solvent configuration: the

states of the Schdinger equatlon_ are dynamic normal large number of degrees of freedom in the solvent defines a
modes,¢ can be understgod as kinetic normal modes, Ol ssian process, thus giving, =(E+\)%(4\) and U,
dlss_lpa_tlve eigenstates, witRZ the decay rate c_':lndZ the_ =(E—)\)%(4\)+e, with \ the reorganization energy amd
oscillation frequen(_:y. _Thus, the sef[ of eigensolution he free energy biasDg is the energy diffusion constant,
{Z“’?s“} forms_ th_e k!nepc spectrum,wh|c_h (_:om_pletely Char'DE=Qa, where Q) is the solvent relaxation rate and
acterizes the |ntr|n_S|c time sc_ales of a dissipative system. —2kgT\ is the mean-square fluctuation of the energy. This
Formally, the time evolution can be expanded as set of equations is also known as the stochastic Liouville

* equation, which was first used by Zusman for studying dy-
p(t)= 20 e“'[ R} ¢nlp(0)), (3 namic solvent effects on electron transfer in the nonadiabatic
& S
limit.
where p(0) is the initial distribution function. Based on It should be noted that the two-state diffusion equations

simple physical considerations, the real part of any eigenedescribe mixed classical-quantum dynamics, where the sol-
value must be less or equal to zeRZ,;<0, and the ground vent is treated classically and the electronic coupling is
state is thermal equilibrium with zero eigenval@dg=0. If  treated quantum mechanically. In the kinetic regimes of in-
the first nonzero eigenvalue is well-separated from otheterest, the two-state diffusion equations have a well-defined
nonzero eigenvalues, then the long-time behavior is domieigenstructure, which allows us to extract rate constants and
nated by exponential decay with rate constkrt—7RZ;. to characterize kinetic mechanisms. However, in general,
This argument allows us to extract rate constants for thélewtonian dynamics is intrinsically not an eigenvalue prob-
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lem, unless classical motions become stochastic in the pres-

ence of strong friction. On the other hand, since quantum P12~ w12+i6(P1—P2), 9
dynamics described by the ScHinger equation is dictated

by the underlying eigenstructure, one may speculate thawith e=07; therefore, electron transfer is described as dif-
guantum dissipative dynamics can also be posed as an eigdinsion on the two diabatic surfaces with population exchange
value problem and the kinetic spectral analysis can be applat the crossing point,

cable. This direction will be explored in the future. 1= Lapr— B E—Eo)(pr—pa). (103

p2=Lopr+ nS(E—Ec)(p1—p2), (10b)

To study the adiabatic limit in the activated regime, Wevi/here Zthe coefﬂugnt for nonadiabatic transition i
diagonalize the two-state system at each valueEoéand _277.\/ /f.L' For un_blased electron transfee<0), a sym-
transform the two-state diffusion equations to the adiabatiénEtrIC e|genfunct|on,z//g=(\/ﬂ| 1)+ ‘./P—2|.2>)N.2’ can be
representation. Then, the two-state dynamics is simplified tgonstructeq for the ground state equn'lbrlum distribution, and
diffusion on a single potential surface=Lp=Dg[d2/9E2 &N antisymmetric eigenfunction, .l’h“:(‘/f’—ﬂ 1)

+ Bal IEUL(E)]p, whereU, is the lower adiabatic potential \/ﬁ|2>)/\/2, can be constructed as thg first exqted state.
surface defined by Her_e_, p_l=p(E+_)\) _and p2=p(Ef)\), with p bemg_ the
, equilibrium distribution. Then, to first-order perturbation, the

ES+A 1 s shift in the eigenvalue for, leads to an estimation for the
Ua(B)= — 2 VE H4V~ ®) nonadiabatic rate,

Be_caus_e th_e 1D_ Fokker—_PIanck operafois Hermiti_an, the kna=—2Z=— (| L' |y =27mp(N), (11
adiabatic diffusion equation has a set of real eigenvalues, )

{z,}, and the first nonzero eigenvalue defines the spatiaivhich is the celebrated Marcus rate expression.
diffusion-limited rate kp,=—Z,. For the symmetric double To incorporate solvent effects, the higher-order perturba-

well in Fig. 1, the diffusion rate is evaluated by the tion terms can be evaluated by applying the Goldstone’s
stationary-flux method* theorend* to obtain an expansion for the eigenvaiig

B. Adiabatic limit

1

1 Ec Eq ”
kp'=ge J efE J  ePUNEIdEdE,, ©® Z=(plt' 2 ( oA

[}

ﬁ’) |hu), (12)

where E, is the transitiqn stat(_aE(czo for the symmetric  \here £y=£,|1)(1|+ £,]2)(2| is the unperturbed operator
casg. In the Iarge-.couplmg reglmga)\>ﬁy> 1), boththe gndg’'=-— n8(E—EQ)(|1)(1]|+]2)(2|—|1)(2|—|2)(1]) is
well and the barrier are nearly quadratic and the steepesghe perturbation. For a delta function perturbation, B

descent evaluation of E¢6) leads to can be explicitly evaluated
Q /n _ —)\
kD:_'n' We BONA=V) (7) —Z:277p()\)+2772p()\)2 Pzn((o))
n+0 n

which is the strong-friction limit of the Kramers rate. The
adiabatic limit of electron transfer has been obtained previ- +273p(\) >
ously within the framework of transition state theory for an n

arbitrary solvent spectrufif. In the small-coupling regime 2mp(\)
(BV<1), the barrier becomes a cusp-ed potential and the = P OF
dominant contribution can be evaluated by linear expansion 1= 7Znz0pn(M)/Z,

at the crossing point to give

Pn(N) Pm(N)
z9 iF Z0

(13

where Zﬁo) is the unperturbed eigenvalue pf,, the nth
ko=QAp(\+€), (8)  eigensolution of odd parity. The infinite series in E¢3)

wherep(E) =eXF[—(E)2/2a]/\/217_a is the equilibrium prob- can be resumed to yield the diffusion-limited rate expression

ability distribution. 1 1 1
K kKo 1
C. Nonadiabatic limit whereky, is given in Eq.(11), kp is the diffusion rate de-
In the nonadiabatic limit, curve crossing is confined to aﬁned by
small region that can be approximated by a delta function, 1 1 pn(N)
S(E—E,), at the crossing poirE;. The crossing pointi.e., YR Y E S0
I ; i kKp p(\)izo Z,
transition state E.=e€, is determined from U,(E.)
=U,(E;). A rigorous derivation leads to the nonlocalized 1 %
curve crossing, which reduces to the delta function under (N fo [G(ND—=G(A,=)]dt, (15
certain conditiong® Formally, the off-diagonal element;,
can be integrated to yield andG(E,t) is the survival probability
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wheret=tDY® andE=E/DY®. Then, the off-diagonal term
. varies on the characteristic scale@}, and the weak cou-
gz:‘;m'c pling limit can be established as
1/3
adiabatic coherent V<DE =(aQ)1/3, (19
which has been obtained earlier by several authors. In addi-
Marcus tion, the strong condition for adiabatic transfer can be esti-
rate . mated as
diffusion
limited v>pt (20)

where the upper electronic surface is not thermally accessible
V (electronic coupling constant) and the reaction takes place on the lower adiabatic surface,

FIG. 2. The validity of the Marcus rate theory is illustrated by identifying as in the case discussed in Sec. Il B.

various kinetic regime in parameter space.

Q (relaxation rate)

3. Dynamic solvation

To understand the dynamic effect induced by the sol-

G(ELN) E (E)ezot vent, we start with the Golden-rule expression
= n
) = Pn

V2 (= o
k=7J dT<eIT€ I¢<T>>so|venta (21)
. 1 E2 1-C(t) 16 -
_1/[1_(;2(t)]27mex 2a1rc®] 19 where the stochastic phase i¢(7)=[jE(s)ds. This

Golden-rule approach follows stochastic line-shape theory
by Kubo, and reduces to the Marcus rate expression in the
inhomogeneous limii.e., the static solvent limitunder the
condition

with C(t)=e~ " and G(E,*)=p(E). In the activated re-
gime (BA>1>pBV), kp can be approximated by
~QNp(\), which recoverskp in Eg. (8) for a cusp-ed bar-
rier. Equation(14) is equivalent to the nonperturbative weak-
coupling rate formula first derived by Zusman using Laplace ~ Q°<a=2\kgT. (22)
transformatiotf’ and later by several authdfs:**"**A  gniiar 1o the Stokes shift and motional narrowing in line-

similar expression for asymmetric electron transfer is derive%hape theory, when Eq22) is not satisfied, the dynamic
in the Appendix. nature of the solvent leads to deviations from the Marcus
rate, which become significant in the inverted regime. For
example, the reorganization energy in the Marcus theory de-
scribes the solvation of a static solvent, so dynamic solvation
There are three possible factors which may cause devigdeduces the reorganization energy, thus increasing the rate
tions from equilibrium rate theory: solvent diffusion, adia- constant in the normal regime and decreasing the energy bias
batic crossing, and dynamic solvation. As shown in Fig. 2for barrierless transfer. A more rigorous account of dynamic
we can establish domains in parameter space where each §dlvent effects starting from the two-state diffusion equations
these factors becomes appreciable and where Marcus eléigas been shown by Jureg al®®

D. Validity of Marcus rate expression

tron transfer rate theory can be violated. As pointed out by Hyne¥3 typical cases of outer-sphere
electron transfer reactions fall in the small-couplifig-10
1. Solvent diffusion cm 1Y) or weak-adiabatiq10—-100 cm?l) regime, so that

As demonstrated in Sec.
combined result of nonadiabatic curve crossing and diffusiv
solvent relaxation. According to Eq14), the solvent diffu-
sion effect can be ignored whég>ky,, i.€.,

Ill, the observed rate is thévlarcus rate theory can qualitatively explain experimental
dneasurements. For a typical solvent  with
(Q=1-10ps*),? the solvent diffusion effect is the limit-
ing mechanism in the rate process except in the inverted
regime where the dynamic solvation effect becomes appre-

27VA<\QA, (17 ciable. It should be emphasized that the two-state diffusion
which imposes a strong restriction on the use of the originafnedel in this article describes electron transfer in over-
Marcus rate expression. damped solvents, where the Landau—Zener expression is not

applicable. More general cases of electron transfer have been
discussed by Wolynes.
2. Adiabatic crossing
To examine the weak-coupling limit of the two-state dif- V- NUMERICAL RESULTS
fusion equations, we rewrite the equation for electronic co- | the broad range of parameter space beyond the adia-

herence term, Eq.(4), in dimensionless unit, giving batic and nonadiabatic limits, eigensolutions to the two-state
dp o ® diffusion equation provide a reliable means to extract elec-
—12=£12(E)p12—i —12p12+i ——(p1—p2) (18)  tron transfer rate constants. As an example, electron transfer
— 13 g ' S .
dt Dg De rate constants are plotted in Fig. 3 as functions of the elec-
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Electron Transfer Rate for pQ =1 Electron Transfer Rate
0.3 T T l T T T T T 0.4
eigen-solution
/ — - non-adiabatic 0.35 -
0.25 - — — -non-adiabatic-diffusion 7]
I ----- adiabatic-diffusion 0.3 |
.2
0 0.25 |-
Bk 0.15 -Re(Z)) 0.2 -
0.15 |-
0.1
0.1}
0.05 0.05 |-
0
1 L 1 I
0 I : ’ 0 1 2 3 4 5

0 0.5 1 1.5 2 2.5 3 3.5 4

BV (electronic coupling constant) BV (electronic coupling constant)

FIG. 3. A plot of electron transfer rate constants as functions of the eIecFIG' 4. A plot of electron transfer rate constants with=8 in four differ-

tronic coupling constangV for A\ =8 andBQ=1. The long-dashed curve €Mt solvents 0=0.1, B2=0.5, 50 =1, andSQ=2).

is the Marcus rate, the dashed curve is the diffusion-limited nonadiabatic

rate(i.e., the Zusman rajethe short-dashed curve is the adiabatic diffusion

rate, and the solid curve is the eigenvalue solution to the two-state diffusio@nd decays as a result of inhomogeneous distributions and

equation. thermal fluctuations of the Rabi frequenty*?
A complete picture of the localization—delocalization
transition emerges from the kinetic spectrum of two-state
tronic coupling constanBV for BA=8 and BQ=1. Here, dynamics.. Figure 5 shows the. real parts of the_ first fqur
all ime and energy variables are scaled by the thermal erf10nzero eigenvalues as a function of the eIectrqnlc.coupllng
ergy 8 and % is taken as unity. In Fig. 3, the long-dashed cpnstant for the same set of parame.ters used in Fig. 3 The
curve is the Marcus rate computed from Etjl), the dashed diamonds on the curves represent pairs of complex-conjugate
curve is the diffusion-limited nonadiabatic rate computed€igenvalues. Clearly, the rate drop coincides with the onset
from Eq. (14), and the short-dashed curve is the adiabatic©f complex eigenvalue in the first nonzero eigenstates, which

diffusion rate computed from E@6) for the adiabatic poten- indicates that underdamped oscillations can be observed in
tial surface given by Eq(5). The solid curve is the eigen- overdamped solvents as the consequence of electronic coher-

value solution, which agrees with the nonadiabatic predic€nce: Therefore, the nature of the transition is the crossover
tions and crosses over to the adiabatic limit. Unlike theOf two competing time scales and this observation may have
prediction of Eq.(14), the rate constant from the eigensolu- Universal implications for kinetic transitions.
tion does not saturate as the coupling increases but exhibits a
transition from nonadiabatic curve crossing to adiabatic bar-
rier crossing. Better results can be obtained in the adiabatic
regime by using higher activation barriers. The calculated \ E ‘ '
rate can be approximately reproduced by the connection for- Y '
mula, 1k=1/kg+1/kp, if the kp is computed fromkp 0.8l \ Y
= —Z, on the adiabatic surface and if nonadiabatic effects \ A
are taken into full account ikgr. . .
In Fig. 4, comparison of rate constants in four different 0.6 |——-ReZ x N, Prd
solvents 0 =0.1, B0 =0.5, BO=1, and BQ=2) con- —leiez, \ AP
firms that faster solvents yield higher rate constants than "Re(2) . N ~,
slow solvents. However, around=4, which is about the 0.4
half of the reorganization energy, there is a dramatic drop in
the rate constant. From E¢b), the barrier on the adiabatic
surface disappears whét= /2 and thus the electronic state 0.2
becomes delocalized as shown in Figc)? Evidently, the
drop in the rate is correlated to the transition from localized
to delocalized states. In mixed-valence systems, the coupling 0 0 , 2 3 f, 5 6
constant is on the same scale as the reorganization energy, BV (electronic coupling constant)
and this observation suggests that experimentally observed _ _
oscillations can be understood from an adiabatiCFIG' 5. A plot of_ the real parts o_f the f|r_st four nonzero eigenvalues
. . .30.31 . . . (—RZ) as a function of the electronic coupling constax) for the same
viewpoint™°* Based on this picture, electronic coherence

- - e i ’ set of parameters used in Fig. 3. The diamonds on the curves represent a pair
arises from Rabi oscillations between two adiabatic surfacesf complex-conjugate eigenvalues.

Kinetic Spectrum for fQ =2
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More importantly, the set of eigenvalues contains com-ransfer kinetics in asymmetric two-states, in multistate
plete information of electron transfer kinetics. For example transfer processes, and in strongly-coupled sysf&nis.
on the left half of Fig. 5, the first nonzero eigenstate is well-Though presented in the context of electron transfer, this
separated from the higher states, so the single-exponentiapproach is general and can be applied to condensed phase
decay dominates the long-time behavior. When the real partspectroscopy, quantum control of dissipative systems, energy
of two or more eigenvalues are very close, biexponential otransfer, and other transfer processes.
multiexponential decay may be observed. Further, complex-
conjugate eigenvalues, indicated by the diamonds in Fig. ACKNOWLEDGMENTS
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analyze multiple time scales in electron transfer processes.
With the two-state diffusion model, we are able to quantita-pppeNDIX

tively demonstrate the following kinetic behaviors: ) ) )
For asymmetric electron transfer, we flip the second di-

(i) ~ The first non-zero eigenvalue recovers Zusman'sypatic surface with respect to the origitd,(E)— U,

diffusion-limited nonadiabatic rate in the small cou- (_g) 5o that the two-state diffusion equation in E€0a
pling limit and Kramers’ adiabatic diffusion rate in 5ng (10b) become

the large coupling limit. The calculated rate does not
saturate as the coupling constant increases, but exhib- P1=£p1~ 78(E—€)p1+ n5(E+€)p,, (A1)
its a crossover transition from nonadiabatic curve po=Lpo+ n8(E—€)pi— nS(E+€)py, (A2)

crossing to adiabatic barrier crossing. o
(i)  When the electronic coupling constant is about halfwhere the diffusion operators on the two surfaces are the

the reorganization energy, the two lowest nonzeros@me,L=Ly, but the crossing points are different. Next, a
eigensolutions become complex conjugate, indicating1€W Set of density matricgs + p,=p andpl—Pzzpf are
underdamped oscillations in overdamped solvents afitroduced to transform Eq¢Al) and(A2) into
the consequence qf elgctronlc ppherencr—;. Thus, the , —r,. (A3)
localization—delocalization transition predicted from _
the lower adiabatic surface is a kinetic transition from  p-=Lp-—n[6(E—€)—S6(E+€)]p+
incoherent to coherent elec_tron_ transfer and is the — [ S(E—e)+SE+e)]p._ . (Ad)
consequence of two competing time-scales. _ .

(i) In a faster solvent, the rate constant is higher andgnoring the coupling op , andp _, we can reduce E¢A4)
coherent transfer is more dramatic than in a sloweito
solvent. These observations can be understood as the p_~Lp_ —n[S(E—e)+6E+e)]p_, (A5)

result of a reduced effective reorganization energy, .
due to the dynamic nature of the solvefie., the  Which is exact for symmetric electron transfer. Then, the

dynamic solvation effeat same procedure used in deriving Ef) also applies to Eq.
(iv) We analyze three possible effects which may causéAS), giving
deviations from equilibrium rate theory: solvent dif- kLAJrkaA

fusion, adiabatic crossing, and dynamic solvation, and  kgr= S e T
establish domains in parameter space where each of 1+kya/kp +knalkp
these factors becomes appreciable. In a typical nonavherekf ,= 7p(\ + €) is the forward ratek2,= 7p(\ — ¢)
diabatic or weak-adiabatic electron transfer, the Mar-s the backward rateka is the forward diffusion rate, adog
cus rate theory provides a qualitative description butis the backward diffusion rate.
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