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Spectral analysis of electron transfer kinetics. I. Symmetric reactions
Jianshu Caoa) and Younjoon Jung
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 20 August 1999; accepted 13 December 1999!

A spectral analysis method is proposed to characterize multiple time scales in electron transfer
processes, including vibrational relaxation, electronic coherence, activated curve crossing, or barrier
crossing. Within this unified framework, observed rate behavior, biexponential and multiexponential
decay, and population recurrences and oscillations are different components of the same kinetic
spectrum; thus, several existing theoretical models, developed for limiting cases of electron transfer,
can be analyzed, tested, and extended. In particular, the rate constant extracted from the analysis
does not saturate as the electronic coupling increases but shows a crossover from the nonadiabatic
to adiabatic limits, and the kinetic spectrum in the large coupling regime reveals the nature of the
localization–delocalization transition as the consequence of two competing mechanisms. Though
the analysis is presented in the context of electron transfer, this approach provides a different
perspective for understanding dissipative dynamics and hence can be applied to study
condensed-phase laser spectroscopy, quantum coherence control, energy transfer, and other charge
transfer processes. ©2000 American Institute of Physics.@S0021-9606~00!50410-3#
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I. INTRODUCTION

Multiple time scales characterize many complex d
namic systems, especially chemical and biological syste
A classical example is electron transfer processes,1,2 which
involve time scales associated with solvent relaxation, e
tronic coherence, and activated curve crossing or bar
crossing. Recent studies of electron transfer processes
revealed rich kinetic behavior, which cannot be described
the classical Marcus electron transfer theory. For exam
the increase of electronic coupling constants leads to a t
sition from nonadiabatic to adiabatic electron transfer, a
this transition is influenced by the dynamic nature of t
solvent. Further, electron transfer in mixed-valence m
ecules and other strongly-coupled electronic systems dem
strates underdamped oscillations. The goal of this article i
illustrate a spectral method to analyze various time scale
electron transfer systems showing that experimentally
served rate behavior, biexponential decay, population re
rences, and oscillations are simply components of the s
kinetic spectrum.

Several kinetic regimes of electron transfer have b
modeled and calculated. An important feature of elect
transfer is the crossover from the nonadiabatic regime in
1~a! (V!kBT) to the adiabatic regime in Fig. 1~b! (V
.kBT), due to the increase of the electronic coupling co
stantV. At high temperature, the Landau–Zener express
allows us to interpolate rate constants between these
limits.3,4 At low temperature, rate is enhanced by quant
tunneling effects,5 and a nonadiabatic instanton theory h
been developed to account for the crossover in the quan
regime.6 Further, when the coupling constant (V) approaches
half the reorganization energy~l/2! as in Fig. 1~c!, there is a
transition in the electronic state from the localized to t

a!Electronic mail: jianshu@mit.edu
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delocalized regime.7 Similar transitions have been predicte
for two-level systems coupled to low temperature phon
modes.8–10 It has recently been suggested that the deloc
ized electronic state is responsible for population oscillatio
observed in mixed-valence systems.11

As for all statistical arguments, thermal rate theories
based on the assumption that solvent relaxation is insta
neous so that thermal equilibrium is maintained at the tr
sition state ~or equivalently, the crossing point in curv
crossing!. In reality, the finite response time of solvents im
poses an upper-bound for the measured electron transfer
Treating solvent relaxation as a competing mechanism,
can invoke the stable state picture to construct a genera
pression for observed electron transfer rate, 1/k51/kET

11/kD ,12,13 wherekET is the thermal rate for electron trans
fer andkD is the spatial-diffusion-limited reaction rate. Rig
orously, this relation holds only in the nonadiabatic regim
with kET5kNA .14 As seen from the above discussions, exi
ing models apply to limiting cases of electron transf
hence, the spectral method we propose in this article
provide a unified approach to analyze, test, and extend e
ing rate theories.

The article is organized as follows: the kinetic spect
method is introduced in Sec. II, the two-state diffusion mo
for electron transfer is analyzed in Sec. III, numerical resu
of spectral analysis are then presented in Sec. IV, and fin
a summary in Sec. V concludes the article.

II. SPECTRAL ANALYSIS METHOD

Simply put, spectral analysis is to treat dissipative d
namics as an eigenvalue problem. In general, the evolu
of a dynamic system follows the equation of motion

ṙ~ t !5Lr~ t !, ~1!
6 © 2000 American Institute of Physics

 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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wherer(t) is the distribution function in multidimensiona
space, andL is the Liouville operator. For classical system
Eq. ~1! takes the form of the Boltzmann equation or t
Fokker–Planck equation. For quantum systems, Eq.~1! can
be formulated with influence functionals, semiclassical
proximations, and Bloch–Redfield equations. For a diss
tive system, the Liouville operator has a non-Hermitian p
which is responsible for irreversible mechanisms in the p
cess. The non-Hermitian Liouville operator,L, can then be
diagonalized, giving

fn
LLfn

R5Zn , ~2!

wherefL andfR are the left and right eigenvectors, respe
tively, andZ is the corresponding eigenvalue. Just as eig
states of the Schro¨dinger equation are dynamic norm
modes,f can be understood as kinetic normal modes,
dissipative eigenstates, withRZ the decay rate andJZ the
oscillation frequency. Thus, the set of eigensolutio
$Zn ,fn% forms the kinetic spectrum, which completely cha
acterizes the intrinsic time scales of a dissipative system

Formally, the time evolution can be expanded as

r~ t !5 (
n50

`

eZntufn
R&^fn

Lur~0!&, ~3!

where r(0) is the initial distribution function. Based o
simple physical considerations, the real part of any eig
value must be less or equal to zero,RZ1<0, and the ground
state is thermal equilibrium with zero eigenvalue,Z050. If
the first nonzero eigenvalue is well-separated from ot
nonzero eigenvalues, then the long-time behavior is do
nated by exponential decay with rate constantk52RZ1 .
This argument allows us to extract rate constants for

FIG. 1. Adiabatic potential surfaces~solid curves! vs. diabatic potential
surfaces ~dotted curves!. The diabatic Hamiltonians areH1(E)5(E
1l)2/(4l) and H2(E)5(E2l)2/(4l) with bl58. The three diagrams
represent three kinetic regimes:~a! bV50.1, ~nonadiabatic!; ~b! bV51.0,
~adiabatic!; ~c! bV54.0, ~delocalized state!. For all the figures in the article
time and energy variables are scaled by the thermal energyb, and\ is taken
as unity.
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complete range of parameter space. In a similar fash
biexponential decay, multiexponential decay, and dam
oscillations can also be predicted and analyzed.

Furthermore, observed kinetics can be predicted by id
tifying the kinetic eigenstate corresponding to the expe
mental time scale, and the initial preparation in ultrafast
periments can be interpreted as projections to differ
kinetic eigenstates. This is particularly useful for studyi
coherent excitation15 and laser spectroscopy16 in condensed
phase systems, which can now be treated in the same fas
as gas phase systems. For example, relationships bet
photoexcitation and kinetic modes can be established, wh
can be used as a guide for the design of laser pulses
selective photochemistry.

Earlier, the kinetic spectral method has been used
study one-dimensional and two-dimensional diffusive barr
crossing.17,18 Cukier and co-workers have also applied t
method to calculate electron transfer rate constants in
small electronic coupling regime.19 The goal of this study is
to use the kinetic method to explore various kinetic regim
of electron transfer.

III. ANALYSIS OF ELECTRON TRANSFER RATE

A. Two-state diffusion equation

Since most chemical and biological processes take p
in over-damped solvent environments, electron transfer p
cesses can be modeled as two-state dynamics in Debye
vents. Taking the over-damped limit of two-state quantu
dissipative equations,14,20,16we obtain a set of classical dif
fusion equations for two-coupled surfaces,

ṙ15L1r12 iV~r122r21!, ~4a!

ṙ25L2r21 iV~r122r21!, ~4b!

ṙ125L12r122 iv12r121 iV~r12r2!, ~4c!

where L125(L11L2)/2, \v125U1(E)2U2(E), and L is
1D Fokker–Planck operator Lr5DE@]2/]E2

1b]/]EU8(E)#r, defined on potential surfaceU1 or U2 ,
respectively. Here, the stochastic variableE is the electronic
energy, which is a function of solvent configuration: th
large number of degrees of freedom in the solvent define
Gaussian process, thus givingU15(E1l)2/(4l) and U2

5(E2l)2/(4l)1e, with l the reorganization energy ande
the free energy bias;DE is the energy diffusion constan
DE5Va, where V is the solvent relaxation rate anda
52kBTl is the mean-square fluctuation of the energy. T
set of equations is also known as the stochastic Liouv
equation, which was first used by Zusman for studying d
namic solvent effects on electron transfer in the nonadiab
limit.

It should be noted that the two-state diffusion equatio
describe mixed classical-quantum dynamics, where the
vent is treated classically and the electronic coupling
treated quantum mechanically. In the kinetic regimes of
terest, the two-state diffusion equations have a well-defi
eigenstructure, which allows us to extract rate constants
to characterize kinetic mechanisms. However, in gene
Newtonian dynamics is intrinsically not an eigenvalue pro
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lem, unless classical motions become stochastic in the p
ence of strong friction. On the other hand, since quant
dynamics described by the Schro¨dinger equation is dictated
by the underlying eigenstructure, one may speculate
quantum dissipative dynamics can also be posed as an e
value problem and the kinetic spectral analysis can be ap
cable. This direction will be explored in the future.

B. Adiabatic limit

To study the adiabatic limit in the activated regime, w
diagonalize the two-state system at each value ofE and
transform the two-state diffusion equations to the adiab
representation. Then, the two-state dynamics is simplifie
diffusion on a single potential surface,ṙ5Lr5DE@]2/]E2

1b]/]EUA8 (E)#r, whereUA is the lower adiabatic potentia
surface defined by

UA~E!5
E21l2

4l
2

1

2
AE214V2. ~5!

Because the 1D Fokker–Planck operatorL is Hermitian, the
adiabatic diffusion equation has a set of real eigenvalu
$Zn%, and the first nonzero eigenvalue defines the spa
diffusion-limited rate,kD52Z1 . For the symmetric double
well in Fig. 1, the diffusion rate is evaluated by th
stationary-flux method,21

kD
215

1

Va E
2`

Ec
ebUA~E1!E

2`

E1
ebUA~E2!dE1dE2 , ~6!

where Ec is the transition state (Ec50 for the symmetric
case!. In the large-coupling regime (bl.bV.1), both the
well and the barrier are nearly quadratic and the stee
descent evaluation of Eq.~6! leads to

kD5
V

p
A l

2V
e2b~l/42V!, ~7!

which is the strong-friction limit of the Kramers rate. Th
adiabatic limit of electron transfer has been obtained pre
ously within the framework of transition state theory for
arbitrary solvent spectrum.22 In the small-coupling regime
(bV,1), the barrier becomes a cusp-ed potential and
dominant contribution can be evaluated by linear expans
at the crossing point to give

kD5Vlr~l1e!, ~8!

wherer(E)5exp@2(E)2/2a#/A2pa is the equilibrium prob-
ability distribution.

C. Nonadiabatic limit

In the nonadiabatic limit, curve crossing is confined to
small region that can be approximated by a delta functi
d(E2Ec), at the crossing pointEc . The crossing point~i.e.,
transition state!, Ec5e, is determined from U2(Ec)
5U1(Ec). A rigorous derivation leads to the nonlocalize
curve crossing, which reduces to the delta function un
certain conditions.23 Formally, the off-diagonal elementr12

can be integrated to yield
Downloaded 26 Mar 2001 to 18.60.2.110. Redistribution subject
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with e501; therefore, electron transfer is described as d
fusion on the two diabatic surfaces with population exchan
at the crossing point,

ṙ15L1r12hd~E2Ec!~r12r2!, ~10a!

ṙ25L2r21hd~E2Ec!~r12r2!, ~10b!

where the coefficient for nonadiabatic transition ish
52pV2/\. For unbiased electron transfer (e50), a sym-
metric eigenfunction,cg5(Ar1u1&1Ar2u2&)/&, can be
constructed for the ground state equilibrium distribution, a
an antisymmetric eigenfunction, cu5(Ar1u1&
2Ar2u2&)/&, can be constructed as the first excited sta
Here, r15r(E1l) and r25r(E2l), with r being the
equilibrium distribution. Then, to first-order perturbation, th
shift in the eigenvalue forcu leads to an estimation for th
nonadiabatic rate,

kNA52Z52^cuuL8ucu&52hr~l!, ~11!

which is the celebrated Marcus rate expression.
To incorporate solvent effects, the higher-order pertur

tion terms can be evaluated by applying the Goldston
theorem24 to obtain an expansion for the eigenvalueZ1 ,

Z5^cuuL8 (
m50

` S 2
1

L0
L8D m

ucu&, ~12!

whereL05L1u1&^1u1L2u2&^2u is the unperturbed operato
and L852hd(E2Ec)(u1&^1u1u2&^2u2u1&^2u2u2&^1u) is
the perturbation. For a delta function perturbation, Eq.~12!
can be explicitly evaluated

2Z52hr~l!12h2r~l! (
nÞ0

rn~l!

Zn
~0!

12h3r~l! (
nÞ0

rn~l!

Zn
~0! (

mÞ0

rm~l!

Zm
~0! 1¯

5
2hr~l!

12h(nÞ0rn~l!/Zn
~0! , ~13!

where Zn
(0) is the unperturbed eigenvalue ofrn , the nth

eigensolution of odd parity. The infinite series in Eq.~13!
can be resumed to yield the diffusion-limited rate express

1

k
5

1

kNA
1

1

kD
, ~14!

wherekNA is given in Eq.~11!, kD is the diffusion rate de-
fined by

1

kD
52

1

r~l! (
nÞ0

rn~l!

Zn
~0!

5
1

r~l!
E

0

`

@G~l,t !2G~l,`!#dt, ~15!

andG(E,t) is the survival probability
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G~E,t !5(
n

rn~E!eZn
0t

5
1

A@12C2~ t !#2pa
expF2

E2

2a

12C~ t !

11C~ t !G , ~16!

with C(t)5e2Vt and G(E,`)5r(E). In the activated re-
gime (bl.1.bV), kD can be approximated bykD

'Vlr(l), which recoverskD in Eq. ~8! for a cusp-ed bar-
rier. Equation~14! is equivalent to the nonperturbative wea
coupling rate formula first derived by Zusman using Lapla
transformation14 and later by several authors.20,13,25–28 A
similar expression for asymmetric electron transfer is deri
in the Appendix.

D. Validity of Marcus rate expression

There are three possible factors which may cause de
tions from equilibrium rate theory: solvent diffusion, adi
batic crossing, and dynamic solvation. As shown in Fig.
we can establish domains in parameter space where ea
these factors becomes appreciable and where Marcus
tron transfer rate theory can be violated.

1. Solvent diffusion

As demonstrated in Sec. III, the observed rate is
combined result of nonadiabatic curve crossing and diffus
solvent relaxation. According to Eq.~14!, the solvent diffu-
sion effect can be ignored whenkD@kNA , i.e.,

2pV2,lV\, ~17!

which imposes a strong restriction on the use of the orig
Marcus rate expression.

2. Adiabatic crossing

To examine the weak-coupling limit of the two-state d
fusion equations, we rewrite the equation for electronic
herence term, Eq. 4~c!, in dimensionless unit, giving

dr12

d t̄
5L12~Ē!r122 i

v12

DE
1/3

r121 i
V

DE
1/3~r12r2!, ~18!

FIG. 2. The validity of the Marcus rate theory is illustrated by identifyi
various kinetic regime in parameter space.
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where t̄ 5tDE
1/3 andĒ5E/DE

1/3. Then, the off-diagonal term
varies on the characteristic scale ofDE

1/3, and the weak cou-
pling limit can be established as

V!DE
1/35~aV!1/3, ~19!

which has been obtained earlier by several authors. In a
tion, the strong condition for adiabatic transfer can be e
mated as

V.b21, ~20!

where the upper electronic surface is not thermally access
and the reaction takes place on the lower adiabatic surf
as in the case discussed in Sec. III B.

3. Dynamic solvation

To understand the dynamic effect induced by the s
vent, we start with the Golden-rule expression

k5
V2

\ E
2`

`

dt^ei te2 if~t!&solvent, ~21!

where the stochastic phase isf(t)5*0
tE(s)ds. This

Golden-rule approach follows stochastic line-shape the
by Kubo, and reduces to the Marcus rate expression in
inhomogeneous limit~i.e., the static solvent limit! under the
condition

V2,a52lkBT. ~22!

Similar to the Stokes shift and motional narrowing in lin
shape theory, when Eq.~22! is not satisfied, the dynamic
nature of the solvent leads to deviations from the Marc
rate, which become significant in the inverted regime. F
example, the reorganization energy in the Marcus theory
scribes the solvation of a static solvent, so dynamic solva
reduces the reorganization energy, thus increasing the
constant in the normal regime and decreasing the energy
for barrierless transfer. A more rigorous account of dynam
solvent effects starting from the two-state diffusion equatio
has been shown by Junget al.23

As pointed out by Hynes,13 typical cases of outer-spher
electron transfer reactions fall in the small-coupling~1–10
cm21! or weak-adiabatic~10–100 cm21! regime, so that
Marcus rate theory can qualitatively explain experimen
measurements. For a typical solvent wi
(V51 – 10 ps21),29 the solvent diffusion effect is the limit-
ing mechanism in the rate process except in the inve
regime where the dynamic solvation effect becomes ap
ciable. It should be emphasized that the two-state diffus
model in this article describes electron transfer in ov
damped solvents, where the Landau–Zener expression is
applicable. More general cases of electron transfer have b
discussed by Wolynes.3

IV. NUMERICAL RESULTS

In the broad range of parameter space beyond the a
batic and nonadiabatic limits, eigensolutions to the two-st
diffusion equation provide a reliable means to extract el
tron transfer rate constants. As an example, electron tran
rate constants are plotted in Fig. 3 as functions of the e
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tronic coupling constantbV for bl58 andbV51. Here,
all time and energy variables are scaled by the thermal
ergy b and \ is taken as unity. In Fig. 3, the long-dashe
curve is the Marcus rate computed from Eq.~11!, the dashed
curve is the diffusion-limited nonadiabatic rate comput
from Eq. ~14!, and the short-dashed curve is the adiaba
diffusion rate computed from Eq.~6! for the adiabatic poten
tial surface given by Eq.~5!. The solid curve is the eigen
value solution, which agrees with the nonadiabatic pred
tions and crosses over to the adiabatic limit. Unlike t
prediction of Eq.~14!, the rate constant from the eigensol
tion does not saturate as the coupling increases but exhib
transition from nonadiabatic curve crossing to adiabatic b
rier crossing. Better results can be obtained in the adiab
regime by using higher activation barriers. The calcula
rate can be approximately reproduced by the connection
mula, 1/k51/kET11/kD , if the kD is computed fromkD

52Z1 on the adiabatic surface and if nonadiabatic effe
are taken into full account inkET .

In Fig. 4, comparison of rate constants in four differe
solvents (bV50.1, bV50.5, bV51, and bV52! con-
firms that faster solvents yield higher rate constants t
slow solvents. However, aroundV54, which is about the
half of the reorganization energy, there is a dramatic drop
the rate constant. From Eq.~5!, the barrier on the adiabati
surface disappears whenV5l/2 and thus the electronic sta
becomes delocalized as shown in Fig. 1~c!.7 Evidently, the
drop in the rate is correlated to the transition from localiz
to delocalized states. In mixed-valence systems, the coup
constant is on the same scale as the reorganization en
and this observation suggests that experimentally obse
oscillations can be understood from an adiaba
viewpoint.30,31 Based on this picture, electronic coheren
arises from Rabi oscillations between two adiabatic surfa

FIG. 3. A plot of electron transfer rate constants as functions of the e
tronic coupling constantbV for bl58 andbV51. The long-dashed curve
is the Marcus rate, the dashed curve is the diffusion-limited nonadiab
rate~i.e., the Zusman rate!, the short-dashed curve is the adiabatic diffusi
rate, and the solid curve is the eigenvalue solution to the two-state diffu
equation.
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and decays as a result of inhomogeneous distributions
thermal fluctuations of the Rabi frequency.11,32

A complete picture of the localization–delocalizatio
transition emerges from the kinetic spectrum of two-st
dynamics. Figure 5 shows the real parts of the first fo
nonzero eigenvalues as a function of the electronic coup
constant for the same set of parameters used in Fig. 3.
diamonds on the curves represent pairs of complex-conju
eigenvalues. Clearly, the rate drop coincides with the on
of complex eigenvalue in the first nonzero eigenstates, wh
indicates that underdamped oscillations can be observe
overdamped solvents as the consequence of electronic co
ence. Therefore, the nature of the transition is the crosso
of two competing time scales and this observation may h
universal implications for kinetic transitions.

c-

ic

n

FIG. 4. A plot of electron transfer rate constants withbl58 in four differ-
ent solvents (bV50.1, bV50.5, bV51, andbV52!.

FIG. 5. A plot of the real parts of the first four nonzero eigenvalu
(2RZ) as a function of the electronic coupling constant (V) for the same
set of parameters used in Fig. 3. The diamonds on the curves represent
of complex-conjugate eigenvalues.
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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More importantly, the set of eigenvalues contains co
plete information of electron transfer kinetics. For examp
on the left half of Fig. 5, the first nonzero eigenstate is we
separated from the higher states, so the single-expone
decay dominates the long-time behavior. When the real p
of two or more eigenvalues are very close, biexponentia
multiexponential decay may be observed. Further, comp
conjugate eigenvalues, indicated by the diamonds in Fig
correspond to underdamped oscillations resulting from
herence and dephasing. Detailed calculations reveal com
cated kinetic transitions including bifurcation and rotatio
of eigenvalues in complex plane.

V. CONCLUSION

To summarize, a spectral method has been presente
analyze multiple time scales in electron transfer proces
With the two-state diffusion model, we are able to quanti
tively demonstrate the following kinetic behaviors:

~i! The first non-zero eigenvalue recovers Zusma
diffusion-limited nonadiabatic rate in the small co
pling limit and Kramers’ adiabatic diffusion rate i
the large coupling limit. The calculated rate does n
saturate as the coupling constant increases, but ex
its a crossover transition from nonadiabatic cur
crossing to adiabatic barrier crossing.

~ii ! When the electronic coupling constant is about h
the reorganization energy, the two lowest nonze
eigensolutions become complex conjugate, indicat
underdamped oscillations in overdamped solvents
the consequence of electronic coherence. Thus,
localization–delocalization transition predicted fro
the lower adiabatic surface is a kinetic transition fro
incoherent to coherent electron transfer and is
consequence of two competing time-scales.

~iii ! In a faster solvent, the rate constant is higher a
coherent transfer is more dramatic than in a slow
solvent. These observations can be understood as
result of a reduced effective reorganization ener
due to the dynamic nature of the solvent~i.e., the
dynamic solvation effect!.

~iv! We analyze three possible effects which may ca
deviations from equilibrium rate theory: solvent di
fusion, adiabatic crossing, and dynamic solvation, a
establish domains in parameter space where eac
these factors becomes appreciable. In a typical no
diabatic or weak-adiabatic electron transfer, the M
cus rate theory provides a qualitative description
requires corrections when compared with the exp
mentally measured rate. In the adiabatic or coher
regimes, the spectral method provides a reliable t
to analyze the kinetics of electron transfer, which ca
not be described by the Marcus theory.

Just as eigensolutions to the Schro¨dinger equation com-
pletely determine the dynamics of a quantum system,
eigenstates of the coupled diffusion equations comple
characterize the kinetic of a dissipative system. Extens
studies are currently being carried out to investigate elec
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transfer kinetics in asymmetric two-states, in multista
transfer processes, and in strongly-coupled systems.33–35

Though presented in the context of electron transfer,
approach is general and can be applied to condensed p
spectroscopy, quantum control of dissipative systems, en
transfer, and other transfer processes.
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APPENDIX

For asymmetric electron transfer, we flip the second
abatic surface with respect to the origin,U2(E)→U2

(2E), so that the two-state diffusion equation in Eqs.~10a!
and ~10b! become

ṙ15Lr12hd~E2e!r11hd~E1e!r2 , ~A1!

ṙ25Lr21hd~E2e!r12hd~E1e!r2 , ~A2!

where the diffusion operators on the two surfaces are
same,L5L1 , but the crossing points are different. Next,
new set of density matricesr11r25r1 andr12r25r2 are
introduced to transform Eqs.~A1! and ~A2! into

ṙ15Lr1 , ~A3!

ṙ25Lr22h@d~E2e!2d~E1e!#r1

2h@d~E2e!1d~E1e!#r2 . ~A4!

Ignoring the coupling ofr1 andr2 , we can reduce Eq.~A4!
to

ṙ2'Lr22h@d~E2e!1d~E1e!#r2 , ~A5!

which is exact for symmetric electron transfer. Then, t
same procedure used in deriving Eq.~14! also applies to Eq.
~A5!, giving

kET5
kNA

f 1kNA
b

11kNA
f /kD

f 1kNA
b /kD

b , ~A6!

wherekNA
f 5hr(l1e) is the forward rate,kNA

b 5hr(l2e)
is the backward rate,kD

f is the forward diffusion rate, andkD
b

is the backward diffusion rate.
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