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Effects of bath relaxation on dissipative two-state dynamics
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Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 21 June 1999; accepted 26 January 2000!

A formal solution to the two-state Liouville equations is used to derive quantum equations of motion
for dissipative two-state systems without making the assumption of a harmonic bath. The first-order
equation of motion thus obtained is equivalent to the noninteracting blip approximation and can be
systematically improved by introducing high-order cumulants. The second-order equation of motion
incorporates effects of bath relaxation on two-state dynamics and leads to an effective nonadiabatic
rate expression, which in the classical limit reduces to the well-known electron transfer rate formula.
Numerical results with an Ohmic bath show saturation at large coupling constants due to the
rate-limiting effect of relatively slow bath relaxation, and a comparison with classical calculations
demonstrates larger rate constants at low temperature when quantum coherence is taken into
account. ©2000 American Institute of Physics.@S0021-9606~00!50515-7#
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I. INTRODUCTION

A typical quantum tunneling system exhibits transitio
between well-defined quantum states that are coupled
heat bath. Such a dissipative two-state model captures
basic physics of varieties of condensed phase quantum
cesses, most notablely electron transfer, energy transfer
quantum Brownian motion at low temperature, and elect
tunneling in amorphous materials.1–3 For an incoherent tun
neling system, its transition rate is determined primarily
quantum and thermal fluctuations of the relative energy
ference between the states, i.e., energy dephasing. Thu
first order, dissipative two-state systems can be well
scribed by master equations derived from the Redfi
theory4,5 or from the noninteraction blip approximation.6,7

Often, these derivations are limited to effective harmo
baths and relatively small coupling constants. General
pressions for the rate constant have been derived by mea
the projection method or cumulant expansion, and hig
order corrections of various forms have been obtained
compared.8–11

In this paper, we present a novel approach to der
first-order and second-order quantum master equati
which do not invoke the harmonic assumption and which
be systematically generalized to higher orders. The seco
order equation of motion can be interpreted as the influe
of bath relaxation on two-state tunneling dynamics. Beca
of the finite response time of the bath, transitions betw
the two states perturb the equilibrium distribution; hence,
effective transition rate is reduced by the relaxation time
the bath to restore equilibrium. For a classical bath, sev
authors have analyzed the effect of dynamic friction
outer-sphere electron transfer in polar solvents.1,12,13Zusman
predicted the saturation for the electron transfer rate at la
electronic coupling constants;14 Sumi and Marcus extende
the Agmon-Hopfield model to electron transfer;15 Hynes ap-
plied the stable state picture to model solvent diffus

a!Electronic mail: jianshu@mit.edu
6710021-9606/2000/112(15)/6719/6/$17.00
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effects;16 and Sparpaglione and Mukamel used the project
technique to derive rate expressions for quantum and cla
cal solvents.8 This paper focuses on master equations a
rate expressions for a quantum bath and establishes a rel
between classical and quantum rate constants.

Master equations for dissipative two-level systems ha
attracted the attention of theorists. Several derivations
particularly relevant in the current context. Formally, t
projection operator technique can be used to formulate m
ter equations accurate to all orders.8,17–19For a general elec-
tron transfer system, Hu and Mukamel derived the mas
equation formalism applicable to long-range transfer syste
and studied the issue of coherent versus sequential tran
Because of the generality of the projector operator techniq
these formalisms are not limited to harmonic baths or
small coupling regime.17 Cumulant expansion of the Liou
ville operator provides another general way to obtain ma
equations, which was employed by Skinner and coworker
their study of non-Markovian effects in electron
dephasing.9,20 Coalson and Evans also started from the Lio
ville equation and obtained first-order equations of motion21

The expressions derived from our approach are equivalen
those derived from the projection operator technique or fr
a general cumulant expansion method. Besides being a
ferent way to derive master equations, the approach
sented here explicitly expands the reduced Liouville equa
term by term, thus clarifying the approximation involved
the master equation, and allowing for possible analysis
higher-order corrections. This study is also motivated by
efforts to describe electron transfer beyond the nonadiab
limit.

Recently, we have developed a general approach to
scribe condensed phase dynamics: the spectral ana
method, which is based on eigen-structures of dissipa
systems instead of dynamic trajectories.22 When applied to
electron transfer in Debye solvents, the analysis allows u
characterize multiple time scales in electron transfer p
cesses, including solvent relaxation, electronic coheren
9 © 2000 American Institute of Physics
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activated curve crossing or barrier crossing. In this approa
the first nonzero eigen value of the kinetic spectrum can
identified as the electron transfer rate. The rate constant
obtained agrees with the diffusion-limited nonadiabatic r
expression in the weak electronic coupling limit, but demo
strates large deviations from the previous theory as the e
tronic coupling constant increases to the adiabatic regi
The discrepancy with theoretical predictions becomes p
ticularly important in the inverted regime,23 which has been
extensively explored in recent experiments on long-ra
electron transfer in biological systems. Therefore, it is n
essary to further examine relaxation effects on dissipa
two-state dynamics when the solvent is treated fully quan
mechanically.

II. QUANTUM MASTER EQUATIONS

A two-state system coupled to its low-frequency bath
described by

H5H1~q!u1&^1u1H2~q!u2&^2u1V~ u1&^2u1u1&^2u!,
~1!

where H1 and H2 are the hamiltonians of the two state
respectively, andV is the coupling constant between the tw
states. The evolution of this system bath, Hamiltonian ob
the two-state Liouville equations,

ṙ12~ t !52 iL12r121 iV~r12r2!, ~2a!

ṙ1~ t !52 iL1r11 iV~r122r21!, ~2b!

ṙ2~ t !52 iL2r22 iV~r122r21!, ~2c!

where the Liouville operators are defined asL1A5@H1 ,A#,
L2A5@H2 ,A#, L12A5H1A2AH2 , and the off-diagonal
matrix elements satisfyr125r21* . The Planck constant\ is
omitted here and hereafter for simplicity of notation. T
off-diagonal matrix elementr12 in Eq. ~2a! can be integrated
to yield

r12~ t !5 i E
0

t

e2 iL12tV@r1~t!2r2~t!#dt, ~3!

where r12(0)50 is assumed. Substituting the solution f
r12 into the Liouville equations forr1 andr2 leads to

ṙ1~ t !52 iL1r1~ t !2E
0

t

W~ t2t8!@r1~ t8!2r2~ t8!#dt8,

~4a!

ṙ2~ t !52 iL2r2~ t !2E
0

t

W~ t2t8!@r2~ t8!2r1~ t8!#dt8,

~4b!

with W(t)5V2(e2 iL12t1e2 iL21t) denoting the coheren
propagator. Now we invoke the approximation that the d
sity matrix elementsr1(t) and r2(t) can be factorized as
r1(t)5P1(t)rb1 and r2(t)5P2(t)rb2 , respectively, where
P1(t) and P2(t) are the populations in state 1 and 2, a
whererb1}e2bH1 andrb2}e2bH2 are the equilibrium bath
distributions associated with each state. Then, averaging
the equilibrium bath distribution, we arrive at the reduc
equations of motion for the two-state system
Downloaded 26 Mar 2001 to 18.60.2.110. Redistribution subject
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Ṗ1~ t !52E
0

t

K1~ t2t8!P1~ t8!dt8

1E
0

t

K2~ t2t8!P2~ t8!dt8, ~5a!

Ṗ2~ t !52E
0

t

K2~ t2t8!P2~ t8!dt8

1E
0

t

K1~ t2t8!P1~ t8!dt8, ~5b!

which are accurate to linear order inV2. The rate kernels are
defined as

Km~t!5^W&m52V2RTr~e2 iL21trbm!

52V2RTr@e2 i *0
tdHm~ t8!dt8rbm#, ~6!

where m51 and m52 denote the forward and backwar
transitions, respectively, anddH(t) is the interaction repre-
sentation of the hamiltonian difference between the t
states, i.e., dH1(t)5eiH 1t(H22H1)e2 iH 1t and dH2(t)
5eiH 2t(H12H2)e2 iH 2t. Evidently, the forward and back
ward rate kernels are the same quantum operator evalu
with respect to different equilibrium bath distributions.

The approach developed above is simple and robust:
similar fashion, substituting the solutions forr1 andr2 into
Eq. ~2a! results in master equations for describing dephas
In addition, functional forms for the coupling can be intr
duced to better approximate many physical systems,
nonequilibrium bath configurations can be easily incorp
rated to reflect realistic conditions in ultrafast experimen
In particular, when time dependence is incorporated i
electronic coupling, the formalism can be used to descr
photoinduced electronic transition, thus leading to appli
tions in condensed phase spectroscopy24 and quantum coher
ence control.25 Furthermore, our approach can be generaliz
to multiple states for studying electronic energy transfer2 and
long-range electron transfer.26

To examine the nature of the approximations involved
the derivation of Eqs.~5a! and~5b!, we first rewrite the Liou-
ville equation in Eqs.~4a! and ~4b! as

r~ t !5U~ t !r~0!2E
0

tE
0

t1
U~ t2t1!W~ t12t18!r~ t18!dt1dt18 ,

~7!

where the population vector isr5@r1 ,r2#, the population
matrix operator isUmn(t)5dmne2 iLmt and the coherence
matrix operator isWmn(t)5(2dmn21)W(t). Formally, Eq.
~7! can be cast into a more compact form,r5Ur(0)
2UWr, so that the formal solution becomes

r~ t !5~U2UWU1UWUWU2UWUWUWU

1¯ !r~0!, ~8!

where each matrix multiplication is implicitly associate
with a time integration, eachW factor represents a coherenc
interval or a tunneling event, and eachU factor represents a
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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bath relaxation interval which has no effect on an equil
rium bath. Taking the bath average of Eq.~8!, we obtain a
formally exact expression for the two-state population,

P~ t !5~ I 2^W&1^WUW&2^WUWUW&1¯ !P~0!,
~9!

where thermal equilibrium is assumed for the bath at
initial time. To first order inV2, we can take the bath ave
age of each factor in Eq.~9! independently, i.e.,̂U&5I and

^W&5K5S K1 2K2

2K1 K2
D , ~10!

such that

P~ t !'~ I 2K1KK2KKK1¯ !P~0!

5P~0!2E
0

t

dt1E
0

t1
dt18K~ t12t18!P~ t18!, ~11!

which is exactly the same as Eqs.~5a! and~5b!. It is evident
from the above analysis that the first-order equation of m
tion contains contributions from individual transition even
but ignores correlations between different transition eve
Therefore, the two-state dynamics described by Eq.~11!
arises solely from dephasing and is accurate only if the c
pling V2 is small or the bath correlation time i
short.4,5,27–30,10,11

To incorporate the next order correction (V4), we define
the second-order cumulant

~12!

which describes the correlation between two neighboring
herence intervalst1 andt2 separated by a relaxation interv
j. The contribution from the linear term is subtracted to is
late the correlation effect. With this definition, the third ter
in Eq. ~9! becomes

~13!

and the forth term in Eq.~9! becomes

~14!

where the terms represented by the dots include the cor
tion between thet1 andt3 coherence intervals and the co
Downloaded 26 Mar 2001 to 18.60.2.110. Redistribution subject
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relation of all three coherence intervals. We can, in princip
examine higher-order expansion terms in Eq.~9! in this fash-
ion and evaluate only the terms corresponding to the dep
ing of individual coherence intervals and the correlation b
tween neighboring coherence intervals. All these terms
be resumed to give the second-order equation of motion
the two-state system

~15!

which reduces to Eq.~11! whenF50. Equation~15! is the
central result of this paper and can by systematically
proved by incorporating higher-order cumulants.

The second-order forward rate kernel in Eq.~12! con-
tains two terms,

F15(
m

^WUmW&12^W&m^W&15(
m

~Fm,18 2KmK1!,

~16!

where the second-order moments are

F1,18 5^W~t1!U1~j!W~t2!&1

52Rf ~t1 ,j,t2!12Rf ~2t1 ,j1t1 ,t2!, ~17a!

F2,18 5^W~t1!U2~j!W~t2!&1

52Rf ~2j,2t1 ,t11j1t2!

12Rf ~2j2t1 ,t1 ,j1t2!, ~17b!

with the generic functionf given explicitly by

f ~t1 ,j,t2!5V4Tre2 iL21t1e2 iL1je2 iL21t2rb1

5V4Tr@e2 i *
t21j

t21j1t1dH1~ t8!dt8e2 i *
0

t2dH1~ t8!dt8rb1
#.

~18!

In Eq. ~16!, F1,18 describes two consecutive forward transitio
events, andF2,18 describes a forward transition event fo
lowed by a backward transition event. If the bath relax
instantaneously to the change in electronic population,
two transition events are independent with joint rareKmK1 .
Therefore,F in Eq. ~16!, which is the difference betwee
Fm,18 andKmK1 , represents the correlation effect of the fini
relaxation time on two-state dynamics.

In the asymptotic limit, Eq.~11! defines the first
order rate constantkm

(1)5*0
`Km(t)dt, which is essentially

the golden-rule nonadiabatic rate expression, a
Eq. ~15! defines the second-order rate constantkm

(2)

5*0
`dt1*0

`dj*0
`dt2Fm(t1 ,j,t2)dt1djdt2 , which is the
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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leading order correction due to bath relaxation. Thus,
effective nonadiabatic rate constant can be expressed a

keff5k~1!2k~2!1¯'
k~1!

11k~2!/k~1! , ~19!

where the second-order correlation is extended to a non
turbative rate expression. The higher-order terms extra
lated from the second-order correction can be interprete
correlations among three or more transition events. For la
coupling constants, Eq.~19! predicts saturation due to th
rate-limiting effect of bath relaxation on nonadiabatic tran
tions and therefore fails to describe the crossover from no
diabatic transfer to adiabatic transfer.31,32,22

III. SPECIAL CASE: SPIN-BOSON MODEL

The above formulation is general and makes no assu
tions about the functional form ofH1 and H2 . In order to
evaluate the rate constant, we now specialize to the s
boson Hamiltonian,

H5Vsx2
e

2
sz1(

n

1

2
mnvn

2S x2
cn

mnvn
2 szD 2

, ~20!

wheresz andsx are the Pauli matrices ande is the energy
bias between the two states. The effect of the bath on
two-state system is contained in the spectral densityJ(v)
5p/2Snd(v2vn)cn

2/mnvn . Applying Eq. ~6! to the spin-
boson Hamiltonian yields

Km~t!5(
6t

V2 exp2 i @g~t!6et#, ~21!

where the phase-correlation function is defined by

g~ t !5
4

p E J

v2 $@12cos~vt !#coth~bv\/2!

1 i sin~vt !%dv, ~22!

which also appears in Mukamel’s formulation of condens
phase spectroscopy.24 In Eq. ~21! and thereafter, the plu
sign is for the forward transition process withm51 and the
minus sign is for the backward transition process withm
52. In the asymptotic limit, we recover the golden-ru
rate,33 which satisfies the detailed balance conditionk1 /k2

5exp(2be). The first order equation of motion in Eq.~15!
with K(t) given above is exactly the same result as obtai
from the noninteracting blip approximation~NIBA ! using
path integral analysis. The simple procedure employed
deriving Eqs.~5a! and ~5b! takes the bath averaging on th
level of the Liouville equations and thus avoids the doub
path summation in the influence functional repr
sentation.34,6,7

Further, for the spin-boson model the complex functi
in Eq. ~18! becomes

f ~t1 ,j,t2!5V4 exp@2 i ~t11t2!e2g~t1!2g~t2!

2g~t11t21j!2g~j!1g~t11j!

1g~t21j!#, ~23!
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from which the second-order cumulant in Eq.~16! and thus
the effective rate in Eq.~19! can be evaluated accordingly
The second-order equation of motion withf given in Eq.~23!
can also be derived using path integral analysis.35 It should
be noted that the influence functional method is limited
harmonic baths and hence is not as general as Eq.~15!.

To gain insights of the physical meaning of the secon
order correction, we explicitly evaluate the rate constant
the classical limit. The leading term of the phase correlat
function g(t) is quadratic g(t)5lt2/b1 i t so that the
golden-rule rate can be obtained from a Gaussian integr

FIG. 1. Plot of the effective quantum rate constantkeff as a function of the
coupling constantV for three different temperatures,kBT/\vc52 ~dotted
curve!, kBT/\vc51 ~dash curve!, and kBT/\vc50.5 ~solid curve!. An
Ohmic bath,J(v)5hv exp(2v/vc), is used in the spin-boson model wit
the friction strengthh chosen to givel55\vc . In the figure, all the physi-
cal quantities are scaled by the cutoff frequencyvc :kBT/\vc , keff /vc , and
V/\vc .

FIG. 2. Plot of the effective classical rate constantkeff for the same set of
parameters as in Fig. 1.
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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km
~1!5V2E

2`

`

exp@2 i ~l6e!t2lt2/b#dt

52pV2A b

4pl
expF2b

~l6e!2

4l G , ~24!

which is the product of the transition coefficient 2pV2 and
the equilibrium probability at the transition state. The Gau
ian distribution oft limits the length of the coherence inte
val to a short period of time so thatt in Eqs.~17a! and~17b!
can be expanded to quadratic order, giving

F1,18 ~t1 ,j,t2!' (
6t1 ,6t2

V4 exp$2 i ~t11t2!~e1l!

2~l/b!@t1
21t2

212t1t2C~j!#% ~25a!

and

F2,18 ~t1 ,j,t2!' (
6t1 ,6t2

V4 exp$2 i t1~e1l!

2 i t2@e2l12lC~j!#2~l/b!

3@t1
21t2

212t1t2C~j!#%. ~25b!

Here,g9(t)'2l(t)/b andg8(2t)1g8(t)5 i2l(t) are used,
l5(4/p)*J(v)/vdv is the reorganization energy in th
context of electron transfer, l(t)5(4/p)*J(v)/
v cos(vt)dv is the time-dependent reorganization ener
with l(0)5l, andC(t)5l(t)/l characterizes the bath re
laxation of the bath. Completing the time integration, w
have the second-order rate,k(2)5k(1)(k11k2), and the cor-
rection factor due to bath relaxation

km52pV2E
0

`

dj@Gm~j!2Gm~`!#, ~26!

whereG(t) is the survival probability at the transition sta

Gm~j!5A b

4pl@12C2~j!#

3expF2
b

4l

12C~j!

11C~j!
~l6e!2G . ~27!

From Eq.~19!, we have

keff5
k~1!

11k11k2
, ~28!

which reduces to the diffusion-limited nonadiabatic electr
transfer rate derived earlier.14–16,7,8,36,22

As an example, we calculate the effective rate cons
for a two-state system coupled to an Ohmic bath withJ(v)
5hv exp(2v/vc). The friction strengthh is fixed by
l/\vc54h/p with l55\vc . Here, the cutoff frequency
vc is used to scale all the physical quantities:kBT/\vc ,
keff /vc , and V/\vc . In Fig. 1, the effective quantum rat
constant defined in Eq.~19! is evaluated for three differen
temperatures,kBT/\vc52, kBT/\vc51, and kBT/\vc

50.5. Except for small values of the coupling constant,
rate curve deviates significantly from the quadratic dep
dence onV and exhibits saturation at large coupling. F
Downloaded 26 Mar 2001 to 18.60.2.110. Redistribution subject
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comparison, in Fig. 2, the classical rate computed from
~28! is plotted for the same set of parameters as in Fig
Comparing Fig. 1 and Fig. 2, the effective quantum rate
consistently larger than the effective classical rate at l
temperature. This observation is the consequence of quan
coherence in the bath motion.

IV. SUMMARY

In summary, the approach presented in this pape
based on a formal solution to the two-state Liouville equ
tions under the condition of thermal equilibrium for the in
tial bath. This derivation makes no assumption about
functional form of the bath Hamiltonian and recovers t
same first-order equation of motion as obtained from
non-interacting blip approximation. To second-order, we
corporate the role of bath relaxation in an effective nonad
batic rate, which in the classical limit reduces to the elect
transfer rate in dynamic solvents. Our theory is valid for bo
classical and quantum baths and therefore can be empl
to examine dynamic effects of intramolecular quantu
modes or phonons as well as dynamic effects of class
solvents. This subject is most relevant for long-range el
tron transfer and other charge transfer processes and wi
further studied.
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