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Effects of bath relaxation on dissipative two-state dynamics
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A formal solution to the two-state Liouville equations is used to derive quantum equations of motion
for dissipative two-state systems without making the assumption of a harmonic bath. The first-order
equation of motion thus obtained is equivalent to the noninteracting blip approximation and can be
systematically improved by introducing high-order cumulants. The second-order equation of motion
incorporates effects of bath relaxation on two-state dynamics and leads to an effective nonadiabatic
rate expression, which in the classical limit reduces to the well-known electron transfer rate formula.
Numerical results with an Ohmic bath show saturation at large coupling constants due to the
rate-limiting effect of relatively slow bath relaxation, and a comparison with classical calculations
demonstrates larger rate constants at low temperature when quantum coherence is taken into
account. ©2000 American Institute of Physids$s0021-9606)0)50515-7

I. INTRODUCTION effects® and Sparpaglione and Mukamel used the projection

. . - .. technique to derive rate expressions for quantum and classi-
A typical quantum tunneling system exhibits transitions g solvent€ This paper focuses on master equations and

between well-defined quantum states that are coupled 0 @y eypressions for a quantum bath and establishes a relation
heat bath. Such a dissipative two-state model captures ﬂl?etween classical and quantum rate constants

basic physics of varieties of condensed phase guantum pro- Master equations for dissipative two-level systems have

cesses, most nqtablely € lectron transfer, energy transfer, a%qtracted the attention of theorists. Several derivations are
guantum Brownian motion at low temperature, and electron

L 1 . particularly relevant in the current context. Formally, the
tunneling in amorphous materidis® For an incoherent tun- S :
. ) . : . S projection operator technique can be used to formulate mas-
neling system, its transition rate is determined primarily by

; -19 :
guantum and thermal fluctuations of the relative energy dif-ter equations accurate to all ordérS*For a general elec
QN transfer system, Hu and Mukamel derived the master

ference between the states, i.e., energy dephasing. Thus, ) ; )
first order, dissipative two-state systems can be well degquation formalism applicable to long-range transfer systems

scribed by master equations derived from the Redfielcf"nd studied the issue gf coherent versus sequential trapsfer.
theory® or from the noninteraction blip approximatiés. Because of tr_\e generality of the projector ope_ratortechnlque,
Often, these derivations are limited to effective harmonicthese formalisms are not limited to harmonic baths or the
baths and relatively small coupling constants. General exsmall coupling regimé! Cumulant expansion of the Liou-
pressions for the rate constant have been derived by means\§flé operator provides another general way to obtain master
the projection method or cumulant expansion, and highegquations, which was employed by Skinner and coworkers in
order corrections of various forms have been obtained antheir study of non-Markovian effects in electronic
compared ! dephasing:?° Coalson and Evans also started from the Liou-
In this paper, we present a novel approach to deriveville equation and obtained first-order equations of motfon.
first-order and second-order quantum master equationdhe expressions derived from our approach are equivalent to
which do not invoke the harmonic assumption and which carthose derived from the projection operator technique or from
be systematically generalized to higher orders. The secon@ general cumulant expansion method. Besides being a dif-
order equation of motion can be interpreted as the influencierent way to derive master equations, the approach pre-
of bath relaxation on two-state tunneling dynamics. Becaussented here explicitly expands the reduced Liouville equation
of the finite response time of the bath, transitions betweeterm by term, thus clarifying the approximation involved in
the two states perturb the equilibrium distribution; hence, thehe master equation, and allowing for possible analysis of
effective transition rate is reduced by the relaxation time forigher-order corrections. This study is also motivated by our
the bath to restore equilibrium. For a classical bath, severadfforts to describe electron transfer beyond the nonadiabatic
authors have analyzed the effect of dynamic friction on|imit.
outer-sphere electron transfer in polar solvérts:*Zusman Recently, we have developed a general approach to de-
prediCted the saturation for the electron transfer rate at Iarggcribe Condensed phase dynamics: the spectra' ana'ysis
electronic coupling constant§;Sumi and Marcus extended method, which is based on eigen-structures of dissipative
the Agmon-Hopfield model to electron transféﬂ;—lynes.ap-. systems instead of dynamic trajectorféaVhen applied to
plied the stable state picture to model solvent diffusiong|ectron transfer in Debye solvents, the analysis allows us to
characterize multiple time scales in electron transfer pro-
3Electronic mail: jianshu@mit.edu cesses, including solvent relaxation, electronic coherence,
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activated curve crossing or barrier crossing. In this approach,

the first nonzero eigen value of the kinetic spectrum can be Pi(t)=— fOKl(t—t')Pl(t’)dt'

identified as the electron transfer rate. The rate constant thus

obtained agrees with the diffusion-limited nonadiabatic rate , o

expression in the weak electronic coupling limit, but demon- + fOKZ(t_t )Po(t")dt, (58
strates large deviations from the previous theory as the elec-

tronic coupling constant increases to the adiabatic regime. t

The discrepancy with theoretical predictions becomes par- Pz(t)=—f Ka(t=t")Py(t")dt’

ticularly important in the inverted reginfé,which has been 0

extensively explored in recent experiments on long-range t

electron transfer in biological systems. Therefore, it is nec- + fOKl(t_t')Pl(t’)dt" (5b)
essary to further examine relaxation effects on dissipative

two-state dynamics when the solvent is treated fully quantuniyhich are accurate to linear orderf. The rate kernels are
mechanically. defined as

K, (7)=(W),=2V2RTr(e "“21"pb )
II. QUANTUM MASTER EQUATIONS . o
. _ =2VZRTi{e oM. pp T, (6)
A two-state system coupled to its low-frequency bath is
described by where u=1 and u=2 denote the forward and backward
transitions, respectively, anéH(t) is the interaction repre-
= + + + . A 4
H=Ha(@)| 1)1+ Ha(a)[2)¢2]+ V(|1)(2] +[1)2), sentation of the hamiltonian difference between the two
o states, i.e., H,(t)=eM1'(H,—Hy)e M1t and 6H,(t)
whereH; and H, are the hamiltonians of the two states, — giHt(H, —H,)e M2!, Evidently, the forward and back-
respectively, and/ is the coupling constant between the two ywarq rate kernels are the same quantum operator evaluated
states. The evolution of this system bath, Hamiltonian obeysg,itn respect to different equilibrium bath distributions.

the two-state Liouville equations, The approach developed above is simple and robust: In a
p1At) = —iLzp1+iV(p1—p2), (22 similar fashion, substituting the solutions far andp, into
_ _ _ Eq. (29 results in master equations for describing dephasing.
p1(t)=—iL1p1+1V(p12—p21), (2b)  In addition, functional forms for the coupling can be intro-
p2(t)=—1Lopr =iV (p12=p21), (2¢ duced to better approximate many physical systems, and

nonequilibrium bath configurations can be easily incorpo-
where the Liouville operators are defined@sA=[H1,A],  rated to reflect realistic conditions in ultrafast experiments.
LoA=[H3,A], Li,A=H1A—AH,, and the off-diagonal |n particular, when time dependence is incorporated into
matrix elements satisfy,,=p3;. The Planck constart is  electronic coupling, the formalism can be used to describe
omitted here and hereafter for simplicity of notation. Thephotoinduced electronic transition, thus leading to applica-
off-diagonal matrix elemen;, in Eq. (2a) can be integrated tions in condensed phase spectrosédpand quantum coher-

to yield ence controf® Furthermore, our approach can be generalized
t to multiple states for studying electronic energy trarfséed
plz(t)zif e L2V py(7)—po(7)]dT, (3)  long-range electron transfét.
0

To examine the nature of the approximations involved in
where p;,(0)=0 is assumed. Substituting the solution for the derivation of Eqs(5a) and(5b), we first rewrite the Liou-

p1o into the Liouville equations fop, andp, leads to ville equation in Eqs(4a) and(4b) as
p 1 ! ! ! ’ ! t t
0= LapaO= [ W) 0a) =018, pit)=U(e)p(0)- [ [ ue- - tppatdy,
(4a) (7)
t . . .
bz(t)Z—iﬁzpz(t)—f W(t—t")[po(t')—py(t))]dY, where the population vector ig=[p4,p,], the population
0 matrix operator isU#,,(T)zﬁwe*"iﬂ and the coherence

(4b)  matrix operator iV, (7)=(26,,—1)W(7). Formally, Eq.
with W(7)=V?(e £127+ e f21) denoting the coherent (7) can be cast into a more compact form=Up(0)
propagator. Now we invoke the approximation that the den—UWp, so that the formal solution becomes
sity matrix elementsp4(t) and p,(t) can be factorized as
p1(1) =P (t)pp1 and p,(t) =P,(t)pp,, respectively, where p(t)=(U-UWU+UWUWU-UWUWUWU
P,(t) and P,(t) are the populations in state 1 and 2, and +--9)p(0), (8)
wherep,,ce” A1 and p,,ce 12 are the equilibrium bath
distributions associated with each state. Then, averaging overhere each matrix multiplication is implicitly associated
the equilibrium bath distribution, we arrive at the reducedwith a time integration, eacWV factor represents a coherence
equations of motion for the two-state system interval or a tunneling event, and eadhfactor represents a
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bath relaxation interval which has no effect on an equilib-relation of all three coherence intervals. We can, in principle,
rium bath. Taking the bath average of E§), we obtain a examine higher-order expansion terms in E).in this fash-
formally exact expression for the two-state population, ion and evaluate only the terms corresponding to the dephas-
_ ing of individual coherence intervals and the correlation be-
P(t)=(1—(W)+{WUW)—(WUWUW+---)P(0), . i i
(== (W)+ W= W PO 9) tween neighboring coherence intervals. All these terms can

o ] be resumed to give the second-order equation of motion for
where thermal equilibrium is assumed for the bath at th§pe two-state system

initial time. To first order invV2, we can take the bath aver-

age of each factor in Eq9) independently, i.eU)=1 and ¢
——
K, —K, P(t)~P(0)—(W)P+(WW)P
(W)=K= ; (10
—Ki K

t t
=P(0)— | dt f dt!K(t;—t)p(t)HP(t]
such that (0) .fo L], 41 (t.r—t)p(t))P(t])
P(t)~(l —-K+KK—-KKK+---)P(0) t f . ty
+ [ | at [ fas [ "avprn -, 0-w),
0 0 0 0

t ty
=P(0)— | dt dt;K(t,—t7)P(ty), 11
©- [ ot [ "tk ey 1y D IP(D,

(15
which is exactly the same as E¢5a) and(5b). It is evident
from the above analysis that the first-order equation of mo-

tion contains contributions from individual transition eventsyich reduces to Eq11) whenF=0. Equation(15) is the
but ignores correlations between different transition eventsgentral result of this paper and can by systematically im-
Therefore, the two-state dynamics described by 8d) proved by incorporating higher-order cumulants.

arises solely from dephasing and is accurate only if the cou-  The second-order forward rate kernel in E@2) con-
pling V2 is small or the bath correlation time is tains two terms,

ShOI’t4'5’27_3O'10’11
To incorporate the next order correctiod’), we define

the second-order cumulant Fi= 2 (WU M= (W), (W= 2 (FL1= KKy,

2 ®
(16)
£
———— _
Fry,6,1) = (W(r)W(r)y =(W(r)U(£)W(7,)) where the second-order moments are
F1,1:<W( U1 (EOW())1
—(Wr))W(n)), (12 =2Rf(71,8,72) + 2RE(— 71,6+ 71, 72), (173
which describes the correlation between two neighboring co- ~ F21= (M) U2(§)M(72))1
herence intgrva!sl and 7, sepgrated by a relaxation inter\_/al —2Rf(—&— 71y, + E+ 1)
& The contribution from the linear term is subtracted to iso-
late the correlation effect. With this definition, the third term +2RE(=&—711,71,E+ 72), (170
In Bq. (9) becomes with the generic functiori given explicitly by
(W(r)U(EW(r)) f(71,€,70)=V*4Tre™ fane ke famzp),
LTyt Et T ’ ’ LT ' !
¢ :\/4-|-|.[e—|fé+§ 1sH(t")dt e—ljozaHl(t )dt Pbl]-
=(W(r)XW (1)) +{(W(r)W(1)), (13 (18)

In Eq.(16), F} ; describes two consecutive forward transition
events, andF,, describes a forward transition event fol-
lowed by a backward transition event. If the bath relaxes

and the forth term in Eq(9) becomes

(W(r)U(EDW () U(§,)W(13)) instantaneously to the change in electronic population, the
two transition events are independent with joint rkrek, .
£ Therefore,F in Eg. (16), which is the difference between
=(W(r)XW(T )XW (1)) +H{W(T)W(T,)) F.1andK, Ky, represents the correlation effect of the finite

relaxation time on two-state dynamics.

In the asymptotic limit, Eqg.(11) defines the first
order rate constark)= 7K ,(r)d7, which is essentially
the golden-rule nonadiabatic rate expression, and
where the terms represented by the dots include the correl&q. (15 defines the second-order rate constakjf)
tion between ther; and 73 coherence intervals and the cor- = [qd7,[odéfgdmoF (71,6, 72)d7dédT,, which is the

&
XAW(73)) H(W(T) YW ()W (T3)) ++-+, (14
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leading order correction due to bath relaxation. Thus, the 0.3
effective nonadiabatic rate constant can be expressed as

kL 0.25
ETRTER (19

where the second-order correlation is extended to a nonper 0.2
turbative rate expression. The higher-order terms extrapo:
lated from the second-order correction can be interpreted a:
correlations among three or more transition events. For Iargekeff
coupling constants, Eq19) predicts saturation due to the
rate-limiting effect of bath relaxation on nonadiabatic transi- 04
tions and therefore fails to describe the crossover from nona
diabatic transfer to adiabatic transfér?2

ko= k(D — K@+ -

0.15

Jianshu Cao

Ill. SPECIAL CASE: SPIN-BOSON MODEL

0.05

The above formulation is general and makes no assump- v

tions about the functional form dfl; andH,. In order to

FIG. 1. Plot of the effective quantum rate constkgt as a function of the

evaluate the rate constant, we now specialize to the spirtoupling constanV for three different temperaturekg /% w.=2 (dotted

boson Hamiltonian,

€ 1 2 Cn 2
HZVO'X—EO'Z-F; Emnwn X—F(J'Z , (20)

n=n

where o, and o, are the Pauli matrices andis the energy

bias between the two states. The effect of the bath on th

two-state system is contained in the spectral den¥jty)
=7/23,8(w— wy)ci/myw, . Applying Eq. (6) to the spin-
boson Hamiltonian yields

K. (=2 VZexp—i[g(n)*er], (22)
where the phase-correlation function is defined by
4 (J
g(t)=;f F{[l—cos(wt)]cott(ﬁwﬁ/Z)

+i sin(wt)}dw, (22

which also appears in Mukamel's formulation of condensed  0.35 [

phase spectroscop§.In Eq. (21) and thereafter, the plus
sign is for the forward transition process with=1 and the
minus sign is for the backward transition process wjith
=2. In the asymptotic limit, we recover the golden-rule
rate>® which satisfies the detailed balance conditigrk,
=exp(—Be). The first order equation of motion in E¢L5)

with K(7) given above is exactly the same result as obtained

from the noninteracting blip approximatiofNIBA) using

path integral analysis. The simple procedure employed in

deriving Egs.(5a and (5b) takes the bath averaging on the

level of the Liouville equations and thus avoids the double-
path summation in the influence functional repre-

sentatior?*®7

Further, for the spin-boson model the complex function

in Eq. (18) becomes
f(r1,6,m) =V exd —i(r1+ ) e—9g(r1) —9(72)
—g(rt+ 7+ &)—9(8)+g(71+8)
T9(m2t+ &)1, (23)

curve, kgT/hw.=1 (dash curvg and kgT/%w.=0.5 (solid curvg. An
Ohmic bath,J(w) = 7w exp(—w/wy), is used in the spin-boson model with
the friction strengthy chosen to give. =5% w . In the figure, all the physi-
cal gquantities are scaled by the cutoff frequeagy kgT/A w. , Kot /o, and
Vitho,.

From which the second-order cumulant in Ed6) and thus
the effective rate in Eq(19) can be evaluated accordingly.
The second-order equation of motion witgiven in Eq.(23)
can also be derived using path integral analy3i$.should

be noted that the influence functional method is limited to
harmonic baths and hence is not as general a1,

To gain insights of the physical meaning of the second-
order correction, we explicitly evaluate the rate constant in
the classical limit. The leading term of the phase correlation
function g(t) is quadraticg(t)=\7%/B+ir so that the
golden-rule rate can be obtained from a Gaussian integral,

keff

FIG. 2. Plot of the effective classical rate constlgt for the same set of
parameters as in Fig. 1.

Downloaded 26 Mar 2001 to 18.60.2.110. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 112, No. 15, 15 April 2000

k;“:vzf exd —i(\xe)T—A\7?/Bld7

=277V2\/%ex;{—,8

which is the product of the transition coefficientr2? and

(Axe)?
a4\

, (29)

Dissipative two-state dynamics 6723
comparison, in Fig. 2, the classical rate computed from Eqg.
(28) is plotted for the same set of parameters as in Fig. 1.
Comparing Fig. 1 and Fig. 2, the effective quantum rate is
consistently larger than the effective classical rate at low
temperature. This observation is the consequence of quantum
coherence in the bath motion.

the equilibrium probability at the transition state. The Gauss-

ian distribution ofr limits the length of the coherence inter-
val to a short period of time so thatin Eqs.(178 and(17b
can be expanded to quadratic order, giving

Fim &)~ 2 Viexp—i(r+m)(e+\)

*7,£7)

—(MB)[ 11+ T5+27m,C(H)]F (259
and
Fom,ém)~ >  Viexp—ir(et+\)
tTl,irz
—iT[e=N+2NC(&)]—=(N/B)
X[ 72+ 15+ 27, 7,C(€)]}. (25b)

Here,g"(t)~2\(t)/B andg’(—t)+g’(t)=i12\(t) are used,
A=(4/7)[J(w)/wdw is the reorganization energy in the
context of electron transfer, \(t)=(4/7)[J(w)/

IV. SUMMARY

In summary, the approach presented in this paper is
based on a formal solution to the two-state Liouville equa-
tions under the condition of thermal equilibrium for the ini-
tial bath. This derivation makes no assumption about the
functional form of the bath Hamiltonian and recovers the
same first-order equation of motion as obtained from the
non-interacting blip approximation. To second-order, we in-
corporate the role of bath relaxation in an effective nonadia-
batic rate, which in the classical limit reduces to the electron
transfer rate in dynamic solvents. Our theory is valid for both
classical and quantum baths and therefore can be employed
to examine dynamic effects of intramolecular quantum
modes or phonons as well as dynamic effects of classical
solvents. This subject is most relevant for long-range elec-
tron transfer and other charge transfer processes and will be
further studied.

w cost)dw is the time-dependent reorganization energy
with N(0)=X\, andC(t)=\(t)/\ characterizes the bath re- ACKNOWLEDGMENTS

laxation of the bath. Completing the time integration, we
have the second-order raté?) =k («,+ k,), and the cor-
rection factor due to bath relaxation

k= 27V? J:dg[wf)—e#(wn, (26)

whereG(t) is the survival probability at the transition state

B
Cul=N T i-co]

B1-C(H .
XeXF{—KH—C(g)()\_f)Z . (27)
From Eq.(19), we have
k(1
(28

Keff=7—,
1+ Kyt Ky
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