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Abstract

An adiabatic picture is proposed to analyze short-time electronic coherence and dephasing in mixed-valence systems,
which cannot be described by the Redfield equation or the golden-rule rate theory. In this picture, electronic coherence arises
from Rabi oscillations between two adiabatic surfaces and decays as a result of inhomogeneous distributions and thermal
fluctuations of Rabi frequencies. The initial preparation and wavepacket dynamics modulate Rabi oscillations and thus
influence electronic coherence. Comparisons between exact numerical results and the prediction from the proposed theory
verify the accuracy of the adiabatic approximation in describing the short-time electronic dynamics. q 1999 Elsevier Science
B.V. All rights reserved.

1. Introduction

Ž .Quantum coherence in electron transfer ET re-
veals the nature of condensed-phase quantum pro-
cesses and hence has become a subject of recent
experimental and theoretical studies. Oscillations in
electronic dynamics have been observed in photo-
synthetic reaction centers and other ET systems and

ware believed to arise from vibrational coherence 1–
x3 . In the weak electronic coupling limit, non-equi-

librium golden-rule rate formulae can be derived to
analyze the role of wavepacket coherence and its

w xinitial preparation 4,5 . Recent experiments on
photo-induced electron transfer in mixed-valence
compounds have demonstrated oscillations in elec-

w xtronic populations on the femtosecond timescale 6 .

) E-mail: jianshu@mit.edu
1 This Letter is dedicated to Professor Kent Wilson.

w xDetailed path-integral simulations 7,8 suggest that
such oscillations take place in ET systems with large
electronic coupling constants and are sensitive to the
initial preparation of the nuclear bath modes associ-
ated with the transfer processes.

ŽAs a function of the ratio between l the bath
. Žreorganization energy and V the electronic cou-

.pling constant , there is a transition in electronic
dynamics from the localized regime to the delocal-

w x Ž . Žized regime 9–13 . i In the localized regime l4

.V , the large induced reorganization energy destroys
electronic coherence; hence, population transfer is an
incoherent rate process, which can be described by
the non-interacting blip approximation or golden-rule
rate in the non-adiabatic limit and by transition state

w x Ž .theory in the adiabatic limit 14–16 . ii In the
Ž .delocalized regime l(V , the electronic wave-

function extends to both the donor and acceptor
states and electronic coherence persists over several
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w xoscillations 9 . It is these initial oscillations and their
immediate decay that we will focus on in this Letter.

The electronic coupling constant of mixed-va-
lence compounds is estimated to be in the range of
103 cmy1, which is in the same order as the reorga-

w xnization energy 1,8 . Because of the delocalization
nature of electronic states, adiabatic surfaces are a
simpler representation than localized diabatic sur-
faces. In the adiabatic picture, electronic coherence
arises from Rabi oscillations between two adiabatic
surfaces and decays because of electronic dephasing.
Thus, initial preparation and wavepacket dynamics
can modulate Rabi oscillations and the overall elec-
tronic dynamics. As demonstrated below, such an
adiabatic picture can be useful for understanding fast
electronic dynamics in strongly coupled systems.

2. Theory

The ET Hamiltonian can be written as

< : ² < < :H sH q 1 1 qH q 2Ž . Ž .ET 1 2

=² < < : ² < < : ² <2 qV 1 2 q 1 2 , 1Ž . Ž .
where H and H are the diabatic Hamiltonians of1 2

donor and acceptor states, respectively, and V is the
electronic coupling constant between the two dia-
batic states. The diabatic Hamiltonians are functions
of a set of nuclear bath coordinates. Formally, if the
quantity of interest is electronic dynamics, the donor
state population can be expressed as

² < < 2:P t s c t , 2Ž . Ž . Ž .1 1

where the average is taken over all possible bath
Ž .trajectories. Here, c t is the solution to the time-de-

pendent Schrodinger equation¨

˙i"c t sH q t c t , 3Ž . Ž . Ž . Ž .ET

for a given bath trajectory. For a Gaussian bath
linearly coupled to electronic states, this formal ex-
pression forms the basis for the stochastic Gaussian

w xbath method 17 and other related path-summation
methods.

In this Letter, we seek a closed-form approximate
Ž .solution to Eq. 2 . Strongly mixed ET systems are

characterized by electronic timescales much faster
than nuclear timescales. Consequently, we can in-

voke the adiabatic approximation such that the solu-
tion to a constant two-level Hamiltonian is used to
represent the electronic wavefunction, giving

< < 2 < < 2c t y c tŽ . Ž .1 2

1
2s U t U 0 qV cos u t 4Ž . Ž . Ž . Ž .� 4

v t v 0Ž . Ž .
Ž . Ž .with the initial condition c 0 s1 and c 0 s0. In1 2

Ž . Ž .Eq. 4 , Us H yH r2 is the potential difference2 1
2 2'between the two diabatic surfaces, vs U qV
Ž .is the instantaneous Rabi frequency, and u t s

t Ž X. X2H v t d t is the phase difference between the two0
Ž .electronic states. Here, the time dependence in U t

Ž .and v t arises implicitly from the functional depen-
dence on the bath trajectory. For simplicity, the
Planck constant " is assumed to be unity. This type
of adiabatic approximation has been used to solve
optical Bloch equations under slowly varying laser
fields and is the working principle for population

w xinversion by adiabatic frequency sweeping 18 .
To proceed, we take the integration of the

Ž .second-order time derivative of Eq. 4 so that

d P tŽ .1
k t syŽ .

d t

v tXŽ .t X X2s2V R d t exp iu t , 5Ž . Ž .H¦ ;v 0Ž .0

where R denotes the real part of a complex func-
tion, the time-derivative is applied only to the phase

˙ ˙Ž . Ž .factor u , and the identity P t syP t is used.1 2
Ž .Next, the integral in Eq. 5 is factorized and approx-

imated by the corresponding mean values, i.e.,

² X :v tŽ .t X X2 ² :k t f2V R d t exp iu t , 6Ž . Ž . Ž .H ² :v 0Ž .0

and the exponential part is truncated to second order
in cumulant expansion, i.e.,

² :exp iu tŽ .
t t t² :sexp i2 v t d t y2 d t d tŽ .H H H1 1 1 2½

0 0 0

² : ² : ² := v t v t y v t v t .Ž . Ž . Ž . Ž .1 2 1 2 5
7Ž .

Further, nuclear trajectories are represented by the
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Ž . Ž .mean q t and the deviation from the mean d q t ,
Ž . Ž . Ž .i.e., q t sq t qd q t . On expanding the exponent

to second order in d q, we have

² :exp iu tŽ .
t t t1² :sexp i2 v t d t y h tŽ . Ž .H HH1 1 1½

0 0 0

=h t C t ,t d t d t , 8Ž . Ž . Ž .2 1 2 1 2 5
Ž . Ž .where the coefficient h t is defined as h t s

w Ž .x Ž .2Ev q t rEq t and the time-correlation function is
Ž . ² Ž . Ž .:defined as C t , t s d q t d q t y1 2 1 2

² Ž .: ² Ž .:d q t d q t . To be consistent, the time-de-1 2

pendent frequency is also truncated to second order
in d q, giving

² : ² :v t s v q tŽ . Ž .
2E v q tŽ .

1fv q t q C t ,t . 9Ž . Ž . Ž .2 2
Eq tŽ .

Ž . Ž .Then, for a given q t and C t ,t , the evolution of1 2
Ž . Ž .electronic population P t or P t can be explicitly1 2

Ž . Ž .computed from Eqs. 6 and 8 .
Ž .The adiabatic approximation in Eq. 4 ignores

transitions between the two adiabatic surfaces, under
the conditions of strong electronic mixing and weak
nuclear dissipation. The resulting expression in Eq.
Ž .6 predicts the initial behavior of electron coherence
but fails to recover long-time rate behavior, espe-
cially for a fast bath and large bath fluctuations. In
comparison, the well-known non-interacting blip ap-

w x w xproximation 13 or the Redfield theory 10 leads to
Ž . t Ža convoluted rate expression: P t syH K ty0

. Ž . ` Ž .t P t dt , where k sH K t is the golden-ruleg r 0

rate. Such a convolution relation can be derived from
the diabatic representation and is valid if the elec-
tronic coupling is relatively weak or the nuclear

w xcorrelation time is relatively short 19 . At very
short-times, the convolution term in the Redfield
equation may lead to unphysical results. Therefore,
the adiabatic representation introduced here provides
a unique framework to analyze the electronic coher-
ent regime, which has not been described by other
ET theories.

To further examine the adiabatic picture, we make
the following observations:

Ž .1. Taking the second-order derivative of Eq. 4 is

intended to minimize the inhomogeneous effect
on the prefactor, so that for an adiabatic bath Eq.
Ž . Ž .6 becomes exact. The steps leading to Eqs. 6

Ž . Ž .and 8 from Eq. 8 involve the factorization in
Ž . Ž .Eq. 6 and the cumulant expansion in Eq. 8 . By

incorporating higher-order correlations, we can
systematically improve the accuracy of there ap-
proximations.

2. For a stationary bath, the correlation function is
Ž . Ž .time-invariant, i.e., C t ,t sC t y t . Then,1 2 1 2

Ž . Ž .in Eq. 8 , the time-dependence in C t is deter-
mined by the intrinsic nature of solvent fluctua-

² Ž .:tions, whereas the time-dependence in v t
reflects the wavepacket motions arising from the
non-equilibrium initial preparation. Within the
linear response regime, the central frequency re-

² Ž .:laxation, v t , and the solvent correlation func-
Ž .tion, C t , is related through fluctuation–dissipa-

tion theory, which in the classical limit can be
² Ž .: ² Ž .: Ž . Ž .expressed as v t r v 0 sC t rC 0 .

3. The above analysis holds for both classical and
quantum baths. For a quantum bath, the complex
time-correlation function satisfies the detailed bal-
ance relationship; hence, the ET system will ap-
proach thermal equilibrium asymptotically. For a
classical bath, the time-correlation function does
not guarantee energy conservation between the
bath and the ET system. Since the short-time
behavior is the focus of this Letter, the inconsis-
tency of mixed classical-quantum dynamics is not
a major concern for our purpose.

4. In the nonadiabatic golden-rule limit, the elec-
tronic coupling function V is much smaller than
the potential difference U such that vfU. Then,

Ž .Eq. 5 is reduced to

k tŽ .
Xt tX2s2V R d t exp yi U q t d t ,Ž .H H 1 1¦ ;½ 5

0 0

10Ž .

which is exactly the golden-rule expression de-
w xrived from first-order perturbation theory. 16

5. For white noise, the Redfield equation or the
non-interacting blip approximation can be re-
duced to the Bloch equation, which is valid in the
strong electronic coupling regime. However, ET
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processes take place with correlated solvent fluc-
tuations or even inhomogeneous environments as
assumed in the Marcus model, because white
noise does not localize electronic states.

3. Results and discussions

The general theory presented in the previous sec-
tion makes no assumptions about the specific form
of electronic surfaces. As an illustrative example, we
use the Gaussian bath Hamiltonian

< : ² < < : ² <H sH E 1 1 q 2 2Ž . Ž .ET b

< : ² < < : ² < < : ² <q ´qlyE 2 2 qV 1 2 q 1 2 ,Ž . Ž .
11Ž .

where H is the Gaussian bath Hamiltonian, ´ is theb

free energy difference between the donor and accep-
tor states, l is the reorganization energy, and E is
the solvent polarization energy defined with respect
to the equilibrium bath distribution at the donor state.

Ž .Here, the bath variable E t represents the collective
effect of the bath and is equivalent to the variable q

Ž .in Eq. 1 . This ET Hamiltonian is better known as
the spin-boson model or the Brownian oscillator
model.

Ž . Ž .On applying Eqs. 6 and 8 to the Gaussian bath
Hamiltonian, we obtain

² X :v tŽ .t X2ks2V R d tH ² :v 0Ž .0

=
tX tX t1² :exp i2 v t d t y h tŽ . Ž .H H H1 1 1½

0 0 0

=h t C t y t d t d t , 12Ž . Ž . Ž .2 2 1 1 2 5
where the adiabatic frequency is given as

2w x´qlyE
2vs V q , 13( Ž .

4

Ž .the mean frequency is given by Eq. 9 as
21yh tŽ .

² :v t fv t q C 0 , 14Ž . Ž . Ž . Ž .
8v tŽ .

Ž . w Ž .x Ž .with v t sv E t , and h t is given as

´qlyE tŽ .
h t s . 15Ž . Ž .

2v tŽ .

As before, we define the polarization energy as
Ž . Ž . Ž .E t sE t qdE t and hence the bath correlationp

Ž . ² Ž . Ž .:function as C t s dE t dE 0 , which can be ex-
plicitly expressed in terms of the spectrum density

w xdefined in the spin-boson model 20 .
The formulation in this Letter holds for both

classical and quantum baths; however, for simplicity,
numerical examples are given only for classical
Gaussian baths. Unless specified, the parameters in

Ž .Eq. 11 take the value of bls40, bds20, and
b´s0. To verify the accuracy of the adiabatic
approximation, we obtain exact results via a numeri-
cal path summation method, in which bath trajecto-
ries are sampled from the bath Hamiltonian, the

Ž .electronic wavefunction is solved from Eq. 3 for a
given trajectory, and electronic dynamics is com-
puted by averaging the wavefunction over the bath

Ž . w xtrajectories as in Eq. 2 17 .

3.1. Adiabatic bath: inhomogeneous dephasing

The classical rate in Marcus ET theory is derived
w xunder the assumption of an adiabatic bath 14,15 .

An adiabatic Gaussian bath has an infinitely long
correlation with only zero-frequency fluctuations.

Ž .Thus, the time-dependent expression in Eq. 6 can
be simplified to

t X X X 22 2² :k t s2V R d t exp 2i v t yh lt rb ,Ž . � 4H
0

16Ž .

Ž .where C t s2lrb. In this case, the adiabatic ap-
Ž .proximation in Eq. 4 is exact and Rabi oscillations,

which dominate the initial electronic dynamics, de-
cay because of the inhomogeneous distribution of

Ž .Rabi frequencies. The asymptotic limit of Eq. 16 is

lim k tŽ .
t™`

22
pb b 4V

2sV expy lq´ q ,Ž .( 2 ½ 54l lq´h l

17Ž .

which has the same form as the Marcus ET rate
except that the activation energy depends on elec-
tronic coupling.
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For an adiabatic Gaussian bath, the diabatic
Ž .Hamiltonians in Eq. 1 are explicitly given as H s1

2 Ž . 2 Ž .E r 4l and H sE r 4l q´yEql, which de-2

fines the Marcus parabolic curves. The adiabatic
surfaces are obtained by diagonalizing the diabatic
Hamiltonian. In Fig. 1, adiabatic and diabatic sur-
faces are plotted for bls40, b Vs20, and b´s0,
which, as described in Section 1, corresponds to a
transition between localization and delocalization.

Ž .The usual initial preparation is E 0 s0, which is
the equilibrium configuration of the donor states. For
an adiabatic bath, non-equilibrium distributions are
equivalent to a re-definition of ´ through ´

X s´y
Ž .E 0 . A barrierless ET with ´s0 or equivalently a

Ž .non-equilibrium bath with E 0 sl has the largest
oscillation amplitude and hence the strongest elec-
tronic coherence.

In Fig. 2, electronic populations on the donor
state are plotted for b Vs20 and b Vs5, respec-
tively. The unit of time is scaled at room temperature
Ts300 K. As shown in Fig. 2, the oscillation
amplitude and frequency increase with the electronic
coupling constant. Further, because of the broad
distribution of Rabi frequencies, the initial oscilla-

Ž .Fig. 1. Adiabatic potential surfaces solid curves versus diabatic
Ž .potential surfaces dotted curves . The diabatic Hamiltonians are

Ž . 2 Ž . Ž . 2 Ž .H E s E r 4l for the donor state and H E s E r 4l q l1 2

y E for the acceptor state, with reorganization energy bls40
and electronic coupling b V s20.

Ž .Fig. 2. Donor state population P t for an adiabatic bath with1
Ž . Ž .b V s5 upper curves and b V s20 lower curves , respectively.

The energy and time units are scaled by room temperature T s300
K. The bath is prepared from thermal equilibrium at the donor

Ž .state. The solid curves are evaluated from Eq. 16 and the dotted
curves are obtained by path-summation simulations.

tions are dissipated by inhomogeneous dephasing. At
both electronic coupling constants, the result calcu-

Ž .Fig. 3. Donor state population P t for a dynamic bath with1

bls40 and with b V s20. The bath correlation function is
Ž . Ž .exponential C t sexp yg t with bg s5. The solid curve is

Ž .evaluated from Eq. 12 and the dotted curve is obtained by
path-summation simulations.
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Fig. 4. The same plot as Fig. 3 except for the initial bath
Ž .configuration at E 0 s0.5l instead of at thermal equilibrium.

Ž .lated by the adiabatic approximation in Eq. 17
agrees well with the exact simulation results.

3.2. Dynamic bath: homogeneous dephasing

To incorporate nuclear dynamics, we assume an
Ž .exponential decay correlation function, C t s

Ž . Ž .exp yg t C 0 , with g being the decay constant and
Ž .C 0 s2lrb. The exponential decay describes a

Debye dielectric solvent or an over-damped oscilla-
tor. The adiabatic limit is recovered by taking gs0
and the Markovian limit is recovered by taking
gs`. The dissipative electronic dynamics of a
Markovian bath can be described by the Redfield
equation and does not lead to a thermal activated rate
process.

In Fig. 3, the donor state population is plotted as a
function of time for bgs5. Again, the adiabatic
approximation is verified by the numerical results. In
comparison with the adiabatic bath in Fig. 2, the
dynamics of the bath significantly enhances elec-
tronic coherence.

For a dynamic bath, the effect of the initial prepa-
ration is reflected both in the shift of the central
frequency through v and in the modulation of the
dephasing strength h. In Fig. 4, the donor state
population is plotted as a function of time for the

same system as in Fig. 3, but with a non-equilibrium
Ž .configuration E 0 s0.5l. In comparison with Fig.

3, the initial oscillations become more dramatic be-
cause of the non-equilibrium preparation.

4. Concluding remarks

The nature of the proposed adiabatic approxima-
tion is electronic dephasing between adiabatic sur-
faces and nuclear dynamics on diabatic surfaces. At
longer times, the adiabatic approximation starts to
fail because of infrequent transitions between the
adiabatic surfaces. Since the short-time electronic
dynamics is of major interest to us, the adiabatic
theory provides a simple physical picture for strongly
coupled mixed-valence ET systems as well as a
simple analytical method to model fast electron dy-
namics initiated by laser pulses. Recent studies using

w xkinetic spectra 21 and non-adiabatic steepest de-
w xscent paths 22 have demonstrated evidence to sup-

port the adiabatic picture. In the future, the proposed
method will be compared with other theories to
examine the validity of each approach.
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