多层介质阻抗匹配对隔爆效果的影响

陈 闯, 王晓鸣, 李文彬, 贾方秀, 殷婷婷

(南京理工大学 智能弹药技术国防重点学科实验室,南京 210094)

摘 要:为了有效提升隔爆结构衰减爆炸冲击波的性能,将45#钢、铝和有机玻璃进行不同组合,设计了顺序波阻 抗梯度、逆序波阻抗梯度以及硬软硬三种多层隔爆结构。利用锰铜压阻传感器测压实验和数值计算对多层介质阻抗匹配 特性对隔爆效果的影响进行了研究,获得了多层介质的不同组合引起的冲击波在传播过程中各层介质压力,理论分析、数 值计算与实验结果吻合较好,并分析了第三层介质能量与冲量的变化规律。从不同方面得到的结果表明:逆序波阻抗梯 度的输出冲击波压力最小,其第三层的能量与冲量最小,隔爆效果最佳。

关键词: 隔爆;多层介质;阻抗匹配;冲击波

中图分类号: 0381 文献标志码: A

DOI:10.13465/j. cnki. jvs. 2014.17.019

Influence of multilayered media impedance matching on explosion interruption effect

CHEN Chuang, WANG Xiao-ming, LI Wen-bin, JIA Fang-xiu, YIN Ting-ting (National Defense Fundamental Science Key Lab of Intelligent Munitions Techniques, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: In order to improve the performance of explosion interruption structures to attenuate explosion shock wave effectively, the explosion interruption structures with sequential impedance matching gradient, reverse impedance matching gradient and hard-soft-hard layers were designed through different combinations of 45 # steel, Aluminum and PMMA. The influence of multilayered media impedance matching property on the explosion interruption effect was studied by using a manganin pressure-resistance sensor and numerical calculation. The pressure of each layer media was obtained due to shock wave caused with different combinations of multilayered media in a process of shock wave transmission. The test results were consistent with those of the theoretical analysis and numerical calculation, the change rules of energy and impulse in the third layer were analyzed as well. The results from different aspects showed that the structures with reverse impedance matching gradient have an optimal explosion interruption effect, their output shock wave pressure is the minimum, their third layer's energy and impulse are the minimum too.

Key words: explosion interruption; multilayered media; impedance matching; shock wave

战斗部在冲击波作用下的响应研究对弹药安全技 术发展有重要意义,外界冲击波首先作用于战斗部的 壳体,冲击波在壳体中的衰减和耗散直接决定战斗部 中炸药的响应程度,因此高效隔爆结构的设计已成为 弹药领域的热点研究问题。传统的单一材料对爆炸冲 击波的衰减已进行了大量研究^[1-4],获得了冲击波在 不同材料中的衰减规律,但单一材料只能依靠增加介 质厚度来提高隔爆结构的抗冲击能力,这将导致战斗 部的重量及成本的增加。 近年来,多层组合介质用于隔爆吸能方面已得到 国内外很多学者的关注。Tedesco 等^[5]提出采用分层 结构能够更有效的削弱爆炸冲击波,并从界面反射率 和透射率出发,研究了分层材料对冲击波的衰减特性; Petel 等^[6]通过改变一定厚度的钢和泡沫材料的层分 布,设计了三种多层方案,结果表明冲击波压力的衰减 随着介质层数的增加而加快。石少卿等^[7]设计了一种 钢一泡沫铝一钢复合结构隔爆装置,并利用 LS - DY-NA 软件对其隔爆性能进行了计算,达到了较好的吸能 减振效果;王宇新等^[8]对应力波在复合介质中的衰减 进行了一维理论分析,得到了多层材料能提高结构的 抗冲击能力及有效衰减冲击波透射强度;唐廷等^[9]运 用应力波理论研究了夹芯板中爆炸冲击波的传播规 律,获得了夹芯板的运动规律和破坏特征。但是多层

基金项目:国家自然科学基金项目(11202103) 收稿日期:2014-01-28 修改稿收到日期:2014-04-10

第一作者 陈闯 男,博士生,1987 年生

通信作者 王晓鸣 男,教授,博士生导师,1962 年生

介质的组合方式对隔爆效果有着重要的影响,如何组 合几种不同材料实现最佳衰减冲击波的性能,在设计 隔爆结构时需重点考虑材料的阻抗匹配,在多层介质 阻抗匹配特性对隔爆效果的影响等方面还很少见诸 报道。

本文将45#钢、铝和有机玻璃三种材料组合成顺序 波阻抗梯度、逆序波阻抗梯度以及硬软硬三种多层隔 爆结构,对不同组合方式的多层介质进行了隔爆实验 和数值模拟。研究了各层介质冲击波峰值压力、第三 层介质能量与冲量的变化规律,分析了阻抗匹配特性 对分界面透射系数的影响。

多层介质阻抗匹配对透射冲击波强度的影响分析

相比于单层材料的隔爆结构,多层介质衰减爆炸 冲击波的能力有着显著的提高。阻抗是计算介质在动 载荷作用下响应规律的重要条件^[10],组合介质的阻抗 匹配特性是影响冲击波衰减的关键因素,不同的阻抗 匹配会导致界面处的冲击波的反射与透射存在差异。 因此,多层介质存在最佳的排序方式削弱爆炸冲击波。

本文选择 45#钢、铝和有机玻璃三种材料进行组 合,材料的阻抗^[11]如表1所示。根据材料的阻抗大小, 设计了阻抗由小到大的顺序阻抗、阻抗由大到小的逆 序阻抗和两端阻抗大中间阻抗小的硬软硬三种方案, 每种方案的组合方式如表2所示。表中第一层为距离 炸药最近的介质,第三层与炸药的距离最远。

	表1	三种材料阻抗
Tab. 1	The	impedance of materials

材料	密度/(kg・m ⁻³)	声速/(m・s ⁻¹)	阻抗/(kg・m ⁻² ・s ⁻¹)
45#钢	7 800	3 570	2.78×10^{7}
铅	2 700	5 350	1.44×10^{7}
有机玻璃	1 190	2 600	3.09×10^{6}

	表 2	2 组合方案		
Tab. 2	The	combination	scheme	

140.2	I IIU	comonia		Senenia	
	lete	. 🗖	lete -		

方案	第一层	第二层	第三层	阻抗关系	
А	有机玻璃	铝	45#钢	顺序阻抗	
В	45#钢	铝	有机玻璃	逆序阻抗	
С	45#钢	有机玻璃	铝	硬软硬	

由冲击波理论^[12]可知,冲击波在两种介质分界面 处反射波的类型取决于介质的阻抗。当冲击波从介质 I传播至介质II时,如果介质 I的阻抗大于介质 II,界 面处将会反射稀疏波,反之反射波为冲击波。当药柱 与可压缩介质接触爆炸,在炸药与介质的分界面处产 生的入射冲击波压力取决于介质的阻抗。方案 A 第一 层介质有机玻璃的阻抗小于炸药阻抗,反射波类型为稀疏波,而方案 B 和方案 C 的反射波类型为冲击波。 根据炸药的状态方程、冲击波 Hugoniot 方程、爆轰波 CJ 面上产物参数和爆轰产物等熵方程可以计算出不同反 射波类型的分界面处入射冲击波压力和质点速度的 关系。

当反射波为稀疏波时:

$$u_{i} = \frac{D}{\gamma + 1} \left[1 - \frac{\left(\frac{p_{i}}{p_{cj}} - 1\right)\sqrt{2\gamma}}{\sqrt{(\gamma + 1)\frac{p_{i}}{p_{cj}} + (\gamma - 1)}} \right] \quad (1)$$

当反射波为冲击波时:

$$u_{i} = \frac{D}{\gamma + 1} \left\{ 1 + \frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{p_{i}}{p_{cj}}\right)^{\frac{\gamma - 1}{2\gamma}} \right] \right\}$$
(2)

式中:u_i为波后质点速度;p_i为分界面处入射冲击波压 力;D 为炸药爆速;γ 为炸药多方指数;p_{cj}为炸药 CJ 爆 轰压力。

利用介质中透射冲击波前后质量守恒方程、动量 守恒方程和固体中冲击压缩规律可以求得:

$$p_{i} = \rho_{0m} (c_{m} + s_{m} u_{i}) u_{i}$$
(3)

式中:ρ_{0m}为介质的初始密度; c_m为介质的声速; s_m为与 材料性质相关的常数。

联立方程(1)~(3),各材料参数参见文献[12], 计算出方案 A 的入射冲击波压力为 24.2 GPa,方案 B 和 C 的入射冲击波压力为 39.8 GPa。

冲击波在介质中传播时,压力峰值随传播距离呈 指数衰减,衰减方程表示为:

$$p_{\rm x} = p_{\rm i} {\rm e}^{-\alpha x} \tag{4}$$

式中:*p*_x为冲击波传播至距离 x 时的压力; α 为衰减系数。根据文献[3]中的实验数据, 拟合得到的冲击波在 45#钢、铝和有机玻璃中的衰减系数分别为 0.076、 0.058、0.045。

当冲击波传播至两层介质分界面处,反射波与透 射波的计算采用介质 Hugoniot 关系曲线计算,如图 1 所示。曲线 1~3 分别表示不同介质的 Hugoniot 关系 曲线,介质的阻抗越大,由原点出发的与雨果尼奥曲线 上点的连线斜率越大。因此 1~3 表示的介质分别为 铝、45#钢和有机玻璃。

当冲击波从介质1 传入介质2 时, 压力为 *p_h*, 分界 面处的状态既应在反射波雨果尼奥曲线1'上, 又应在 介质2 的右传透射波雨果尼奥曲线2上, 即*f*点的状 态,其中曲线1和1'呈镜像对称关系。同理, 冲击波从 介质1 传入介质3 时, 状态从*h*点变为*k*点。曲线1' 可以表示为:

 $p_{f} = \rho_{1} [c_{1} + s_{1} (2u_{h} - u_{f})] (2u_{h} - u_{f})$ (5) 式中: $p_{f} \pi u_{f} \beta B \beta f$ 点冲击波压力和质点速度; $u_{h} \beta h$ 点的质点速度; ρ_1 , c_1 和 s_1 分别为介质1的初始密度、声速、与介质1性质相关的参数。

图 1 反射波与透射波 Hugoniot 曲线 Fig. 1 Hugoniot curves of reflection and transmission wave

通过入射压力、衰减、反射和透射等冲击波传播过 程的计算,求出最终从第三层介质输出的压力 p_o。从 而求出冲击波透射系数 T 为:

$$T = \frac{p_{o}}{p_{i}} \tag{6}$$

根据以上分析过程计算出三种方案的冲击波透射 系数分别为0.31、0.05、0.08。透射系数越小,说明衰 减冲击波能力越强。以下分别从冲击波峰值压力、能 量和冲量等不同方面分析,通过实验和数值模拟来研 究阻抗匹配对多层介质隔爆效果的影响。

2 实验研究

2.1 实验装置和测试系统

多层介质隔爆装置的实验测试系统示意图如图 2 所示,实验测试系统由爆炸装置、锰铜压阻传感器、高 速同步脉冲恒流源、示波器、触发探针及同轴电缆组 成。药柱采用密度为 1.6 g/cm³的黑索金(RDX),装药 直径为 60 mm,装药高度为 45 mm,采用 8#电雷管在药 柱顶部中心起爆。为了减小爆炸后侧向稀疏波对测试 结果的影响,与药柱接触的隔板直径为 200 mm,厚度 为 10 mm。约束板的直径为 200 mm,厚度为 8 mm,中 间隔板的直径为 60 mm,每种介质的厚度为 20 mm。

测试系统的工作过程为:炸药爆轰后,触发探针被 导通,向恒流源发出信号使其开始给锰铜压阻传感器 供电,同时示波器开始采集数据。当冲击波传至锰铜 压阻传感器处,其电阻将发生变化,在示波器中显示为 电压变化。冲击波压力可以根据传感器标定公式计算 出来。

实验中采用 H 型锰铜压阻传感器,电阻为 0.1 Ω, 传感器与示波器、恒流源之间通过 50 Ω 同轴电缆连 接,如图 3 所示。利用 0.2 mm 聚四氟乙烯薄膜包覆锰 铜压阻传感器,将包覆的锰铜压阻传感器的敏感中心 对准隔板中心。将传感器放置在多层介质之间,为保

图 2 实验测试系统示意图

Fig. 2 Sketch of experimental measurement system 证锰铜压阻传感器与隔板之间紧密贴合,利用三个联 接螺栓将整个装置夹紧。传感器的标定公式为:

$$p = 0.7636 + 34.628 \left(\frac{\Delta R}{R_0}\right) + 6.0076 \left(\frac{\Delta R}{R_0}\right)^2 \quad (7)$$

式中:p 为冲击波压力(GPa),测试范围为1~45 GPa; R_0 为传感器的初始电阻, ΔR 为电阻的改变量, $\Delta R / R_0$ = $\Delta U / U_0, U_0$ 为初始电压, ΔU 为冲击波传至传感器 处由于压阻效应产生的电压增量。

图 3 锰铜压阻传感器 Fig. 3 Manganin pressure-resistance sensor

2.2 实验结果

实验采用的示波器采样频率为500 MHz,示波器记录的一组典型电压信号如图4所示,两个波形反映了测试的两个不同位置电压随时间的变化。冲击波到达传感器1早于传感器2,根据压力的第一次突跃可以计算出初始电压 U,第二次突跃用来计算受冲击波作用后电压的增量△U,根据式(7)计算得到两个位置的冲击波压力,波形还可以得到冲击波压力的持续时间。从图中可以看出随着冲击波在介质中的衰减,冲击波压力峰值变小,压力持续时间变长。

为了比较各方案冲击波通过多层介质的传播特性,将锰铜压阻传感器分别放置在炸药与第一层介质 之间、不同层介质分界面处,这样每个方案就需要测试 四个位置的冲击波压力,如图2所示。为了准确测得 多层介质的输出冲击波压力,在第三层介质的下面放

图 4 示波器记录的波形

Fig.4 The waveform gathered by the oscilloscope 置一块与其相同材质的垫板。各方案测试结果见表 3, 表中 $U_x \Delta U \pi p$ 分别代表不同位置处的初始电压、电 压增量及冲击波压力,1~4 代表传感器的编号。传感 器 1~4 按照距炸药由近到远的方式布置。传感器 4 测得的压力即为多层介质输出冲击波压力。从测试结 果可以看出方案 B 的输出冲击波压力最小,方案 A 最 大,说明逆序波阻抗梯度方案的衰减冲击波能力最强, 这与以上阻抗匹配对透射系数的影响规律的分析结果 是一致的。

表 3 实验测试结果 Tab. 3 The experimental test results

传感器	测试		方案	
编号	结果	А	В	С
1	U_1/V	1.48	1.46	1.45
	$\Delta U_1/\mathrm{V}$	0.82	1.24	1.22
	p_1/GPa	21.8	34.51	34.11
	U_2/V	1.48	1.46	1.45
2	$\Delta U_2/V$	0.55	0.37	0.13
	p_2/GPa	14.46	9.92	3.92
3	U_3/V	1.48	1.46	1.45
	$\Delta U_3/V$	0.42	0.11	0.14
	p_3 /GPa	11.07	3.41	4.16
4	U_4/V	1.48	1.46	1.45
	$\Delta U_4/{ m V}$	0.22	0.05	0.07
	p_4 /GPa	6.04	1.96	2.45

3 数值仿真

3.1 计算模型

为了更直观地反映冲击波在多层介质中的传播过 程以及获得更多的数据比较不同组合方式的隔爆效 果,采用 Autodyn 有限元软件对多层介质衰减冲击波过 程进行仿真计算,仿真模型如图 5 所示。炸药的状态 方程选用 JWL(Jones-Wilkins-Lee)形式;由于 45#钢、铝 和有机玻璃这三种固体介质在受到冲击波作用时产生 的高压远超过材料强度极限,这样可以忽略固体材料 的强度,将固体作为可压缩流体处理,选取 Shock 状态 方程描述动态高压下冲击压缩过程,各材料模型参数 取自文献[13]。炸药、45#钢、铝和有机玻璃均选择 Lagrange 算法,不同 Part 之间的接触采用 Lagrange Lagrange 自由接触算法,为了获得在炸药 – 介质接触界 面和不同介质分界面处的压力变化,炸药与第一层介质的分界面处高斯点设置为 Gauge1,第一层介质与第 二层介质的分界面处高斯点设置为 Gauge2,第二层介 质与第三层介质的分界面处高斯点设置为 Gauge3,第 三层介质与垫板的分界面处高斯点设置为 Gauge4,在 图5中分别表示为1~4。通过仿真获得多层介质的不 同组合引起的冲击波在传播过程中各层介质压力、能 量与冲量的变化规律。

图 5 仿真模型 Fig. 5 The simulation model

由于多层介质组合方式对冲击波衰减的影响主要 取决于反射波类型,以方案 C 为例,不同时刻的硬软硬 结构压力云图如图 6 所示。(a)为球面爆轰波在炸药 中的传播,爆轰波阵面达到 CJ 压力;(b)此时冲击波传 入第一层介质,压力随着传播距离的增大而逐渐衰减; (c)冲击波到达钢一有机玻璃分界面,从图中可以看出 在钢中反射稀疏波,压力遭到削弱;(d)冲击波在第二 层介质中传播;(e)冲击波传播至有机玻璃一铝分界 面,在有机玻璃中产生一冲击波,压力有显著提高;(f) 冲击波传至第三层介质,压力即为最终的输出压力。 从压力云图可以清楚地观察到各阶段冲击波的衰减、 反射和透射。

图 6 硬软硬结构压力分布 Fig. 6 The pressure distribution of hard-soft-hard structure

3.2 冲击波压力衰减的理论、数值模拟与实验结果对比

为了定量研究不同介质组合造成的冲击波在介质 分界面处的反射和透射,对分界面处的冲击波压力时 程曲线进行分析。图7分别给出了方案 A~C 的不同 Gauge 点的冲击波压力随时间的变化曲线,从图中可以 看出炸药与第一层介质接触处的压力最陡,下降迅速, 随着在多层介质中的不断传入,压力下降平缓,作用时 间变长,这与图4的实验结果是相符的。由高斯点的 峰值压力可以看出冲击波在分界面处的反射情况,即 不同的阻抗匹配所引起的不同反射波类型。

Fig. 7 The curves of shock pressure time - history for different combinations

不同方案冲击波峰值压力随传播距离的变化曲线 如图 8 所示,图中分别给出了理论计算、数值模拟与实 验的结果。从图中可以看出冲击波在各层介质中的衰 减情况。从理论、仿真与实验测得的冲击波峰值压力 的比较情况来看,方案 B 和 C 在炸药与第一层介质接 触处的初始压力大于方案 A,这是由于钢的阻抗大于 炸药阻抗,而有机玻璃阻抗小于炸药阻抗。方案 B 和 C 在第一层介质中衰减速度快于方案 A,当冲击波到达 一、二层分界面处,方案 B 和 C 的压力已经小于方案 A。理论、仿真与实验结果有一定的偏差,这是由于实 验中传感器敏感中心的摆放位置会有一定的偏移,以 及两层介质间的空隙等影响造成测试的误差。理论、 实验与仿真得到的输出冲击波峰值压力由小到大分别 为逆序波阻抗梯度、硬软硬结构、顺序波阻抗梯度。逆 序波阻抗梯度的衰减冲击波性能最好,较顺序波阻抗 梯度结构的输出压力降低了约67%。

3.3 不同组合介质能量与冲量的变化

冲击波压力的不同直接影响系统内能量与动量的 分配,为了研究能量与动量的演化特性,利用仿真比较 三种方案的能量与冲量。在隔爆结构设计中,第一层 与第二层介质吸能越多对隔爆效果越有利,而输入到 第三层的能量越少越好。不同方案第三层介质的能量 随时间变化曲线如图9所示。 从图中可以看出,方案 A~C 的第三层介质最终吸 收的能量分别为4800 J、1077 J、2010 J。说明逆序波 阻抗梯度结构的方案吸能效果最好,而顺序波阻抗梯 度结构的吸能效果最差。方案 B 的吸收的能量较方案 A 减少了78%。

从各层介质的冲量角度考虑,第三层介质冲量越 大,多层介质的稳定性越差,越不利于整体结构的隔爆