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Abstract. In this paper, we present a global invariant, called renormal-
ized volume, which can be defined for a large class of conformally compact
manifolds. We use this definition to show a local volume comparison of
conformally compact manifolds with scalar curvature R ≥ −n (n− 1) and
also the rigidity result when the renormalized volume is zero.

Dans cet article, nous introduisons un invariant global appelé vol-
ume renormalisé et qui peut être défini pour une large classe de variétés
conformément compactes. Nous nous servons ensuite de cette définition
pour montrer un théorème de comparaison locale pour les variétés con-
formément compactes dont la courbure scalaire satisfait R ≥ −n(n − 1).
Nous donnons également un résultat de rigidité lorsque le volume renor-
malisé est nul.

1. Introduction

Volume is one of the natural geometric quantities which is often used to
explore geometrical and topological properties of a Riemannian manifold.
Classical examples in this direction are various volume comparison theorems
which turned out to be fruitful in Riemannian geometry. In order to use
those volume comparison theorems efficiently, we have to assume certain
lower bound on the Ricci curvature of the manifold. Obviously, we can not
expect the same results still to be true if we only assume lower bound on scalar
curvature. However, in [11], R.Schoen proposed the following conjecture on
the volume functional V (·) on a closed hyperbolic manifold.

Conjecture 1.1. Let (Mn, g̃) be a closed hyperbolic manifold. Let g be an-
other metric on M with R(g) ≥ R(g̃), then V (g) ≥ V (g̃).
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Recently, inspired by Bray’s thesis [1], a notion of renormalized volume for
some asymptotically Anti-deSitter-Schwarzschild manifolds was introduced
in [2] and an interesting inequality was established when the dimension n = 3
and the mass m > 0.

With these facts in mind, it may be natural to ask whether or not a version
of Schoen’s Conjecture which is in terms of renormalized volume introduced
in [2] is true for conformally compact manifolds. In order to state our main
results, let us recall some basic definitions. Suppose that Mn is a smooth
manifold with boundary ∂M . A defining function τ of the boundary in Mn

is a smooth function on Mn such that τ > 0 in Mn; τ = 0 on ∂M ; dτ ̸= 0
on ∂M . A complete non-compact Riemannian metric g on M is said to be
conformally compact of regularity Ck,µ if τ 2g extends to be a Ck,µ Riemannian
metric on M̄ . The metric τ 2g induces a metric ĝ on the boundary ∂M, and
the metric g induces a conformal class of metric [ĝ] on the boundary ∂M
when defining functions vary. The conformal manifold (∂M, [ĝ]) is called the
conformal infinity of the conformally compact manifold (M, g).

Given a C2,α conformally compact manifold (Mn, g) and a representative
ĝ in [ĝ] on the conformal infinity ∂M, there is a uniquely determined defining
function τ such that, in a neighborhood of the boundary [0, τ0)× ∂M ⊂ M,
g has the form

g = τ−2(dτ 2 + gτ ),

where gτ is a 1−parameter family of metrics on ∂M with gτ |τ=0 = ĝ. We call
this τ the special defining function associated with ĝ.

Let us see some properties of a C2,α conformally compact manifold (Mn, g̃) .
In order to avoid the complexity of the end structure of conformally compact
manifold, we always need the concept of an essential set. Please see Definition
1.1 in [7] for the definition of an essential set. In [6]Lemma 2.5.11 and Corol-
lary 2.5.12 , Gicquaud proved that if a complete non-compact manifold is C2

conformally compact then it contains essential sets. Once a conformally com-
pact manifold (Mn, g̃) has an essential set D, the volume vol(Bg̃(x, 1)) has a
lower bound Λ= Λ (g̃, n) for all x ∈M whereBg̃(x, 1) is geodesic ball of radius
1 and center x. Hence if a metric g satisfies ∥g− g̃∥C0(Mn,g̃) ≤ ϵ, it follows that
there exists some v = v (Λ, ϵ, n) = v (g̃, ϵ, n) > 0 such that vol(Bg(x, 1)) ≥ v
for all x ∈M. It follows immediately from the well-known result (see Lemma
3.1 in [10]) that there exists some i = i (k, v, n) = i (k, n, ϵ, g̃) > 0 such that
the injectivity radius of (M, g) satisfies inj(M,g) ≥ i provided |secg| ≤ k.

Now let g̃ be a arbitrary Riemannian metric on Mn. We can define the
renormalized volume functional with respect to g̃ (see the same definition in
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[2]):

Vg̃ : M∞ (M) −→ R

g 7−→
∫
M

(√
|g| −

√
|g̃|
)
dx

where M∞ (M) denotes the space of smooth Riemannian metrics on M, |g|
and |g̃| denote determinants of metrics g and g̃ under the local coordinates
(x1, · · · , xn). Obviously, V(g) is independent of the choice of (x1, · · · , xn).
The well-posedness of the renormalized volume functional will be proved in
Lemma 3.1.

Let us recall the non-degeneracy of a conformally compact Einstein metric
g, which is defined to be the first L2-eigenvalue of the linearization of the
curvature tensor Ric+ (n− 1) g,

λ = inf
u

∫
M
⟨(∆L + 2 (n− 1))u, u⟩gdµg∫

M
∥u∥2gdµg

where the infimum is taken among all non zero symmetric 2-tensors u such
that ∫

M

(
∥u∥2g + ∥∇u∥2g

)
dµg <∞

and ∆L is the Lichnerowicz Laplacian with respect to the metric g on sym-
metric 2-tensor u, i.e.,

∆Luij = −∆uij − 2Ripjqu
pq +Riqu

q
j +Rjqu

q
i

where Ripjq, and Rij = gpqRipjq are the components of the Riemann curvature
tensor and the Ricci curvature tensor of the metric g respectively.

Our first result is:

Theorem 1.2. Suppose that (Mn, g̃) is a C2,α conformally compact Einstein
manifold with non-degeneracy λ > 0. For n ≥ 4, and

δ ∈

n− 1,
(n− 1) +

√
(n− 1)2 + 4 (n− 1)

2

 ,

there exists some ϵ = ϵ (n, k, λ, g̃) such that if g is a Riemannian metric on
Mn satisfying

∥g − g̃∥C1(Mn,g̃) ≤ ϵe−δρ,

∥Rm (g) ∥ ≤ k,

|R(g) + n(n− 1)| ≤ Ce−δρ, for a constant C > 0

and
R (g) ≥ −n (n− 1)
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where ρ = dg̃(·,D) is the distance function to some essential set D ⊂M with
respect to g̃. R(g) denotes the scalar curvature of g. Then

Vg̃(g) ≥ 0.

When Vg̃(g) = 0, we have:

Theorem 1.3. Under the assumptions of Theorem 1.2 suppose that Vg̃(g) =
0. Then there exists a C∞ diffeomorphism Φ :M −→M, such that g = Φ∗g̃.

It is known that many conformally compact Einstein manifolds are non-
degenerate, for examples, any conformally compact Einstein manifolds with
nonpositive sectional curvature and nonnegative Yamabe invariant of its con-
formal infinity boundaries is non-degenerate (see Theorem A in [8]). In par-
ticular, the hyperbolic space Hn is a non-degenerate conformally compact
Einstein manifold, hence as a corollary, we have

Theorem 1.4. Suppose that (M, g) is a C2,α conformally compact manifold
with topology Hn and satisfies

(1) ∥g − h∥C1(Hn,h) ≤ ϵe−δρ

where h is the hyperbolic metric, ρ is a distance function to some essential set

D ⊂ M with respect to h, and δ ∈
(
n− 1,

(n−1)+
√

(n−1)2+4(n−1)

2

)
. If n ≥ 4,

and R ≥ −n (n− 1) , and |R(g)+n(n−1)| ≤ Ce−δρ, for a constant C > 0 then

Vh(g) ≥ 0,

provided that ϵ is small enough. The equality holds iff (M, g) is a standard
hyperbolic space.

The above results can be regarded as a version of Schoen Conjecture in the
case of conformally compact manifolds. We suspect that such kind of results
might be true without assumption (1). We will use normalized Ricci-DeTurck
flow (see (2) below) as a tool to investigate the behavior of the renormalized
volume. Indeed, we are able to show that our renormalized volume is non-
increasing along the flow (See Proposition 3.3) and will converge to zero as
time goes to infinity. In order to get these properties, we need to estimate
on the gauge and the scalar curvature (see Lemma 2.7 and Lemma 2.8). We
cannot get the estimate like

∥g − g̃∥ ≤ Ce−σte−δρ, δ > n− 1,

and we believe that such estimate is not true. One possible reason is that
the coefficient of the n − 1 term g(n−1) in the expansion of an conformally
compact Einstein manifold at infinity is undetermined. Another renomilized
volume for conformally compact manifolds was also introduced in an interest-
ing paper [3], and monotonicity of this quantity along the normalized Ricci
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flow was also obtained in the paper. However, our renomilized volume is
different from that in [3]. We use a non-degenerate conformally compact
Einstein metric g̃ as ground state in our definition of Vg̃(g), and in the case
that R ≥ −n(n − 1), we get a rigidity result when Vg̃(g) = 0. Therefore, in
some sense, our renomilized volume Vg̃(g) can be viewed as a kind of mea-
sure of deviation of a conformally compact manifold and the ground state
Einstein manifold. Actually, this observation is one of our main motivation
of this paper.

This paper is organized as follows. In Sect.2 we will show the long-time ex-
istence and convergence of NRDF and prove Theorem 2.1. In Sect.3 we show
that the renormalized volume is well-defined under some circumstances first
and then give some basic estimates, finally we prove our main results The-
orem 1.2 and Theorem 1.3. We fix the notation that the positive constants
ϵ with subscripts are always sufficiently small and the positive constants C
with subscripts are big and bounded, meanwhile, ϵi, i = 1, 2 . . . depend on-
ly on n, k, λ, g̃, and sometimes may depend on the existence time. Cj,
j = 1, 2 . . . depend only on n, ϵ, k, λ g̃, and sometimes may depend on the
decay order with respect to space infinity. In the sequel, we will omit the
subscript g̃ of the renormalized volume functional. ∥ · ∥, ⟨·, ·⟩, dµ and ρ are
all with respect to g̃ unless otherwise stated.

Acknowledgements The authors are grateful to Professor Jie Qing and
Dr. Romain Gicquaud for their interests in this work and helpful conversa-
tions.

2. Long-Time Existence and Convergence of NRDF

In this section, we will frequently use the normalized Ricci-DeTurck flow
(NRDF for short in the sequel) with background metric g̃ as well as the nor-
malized Ricci flow (NRF for short in the sequel). We first consider the exis-
tence and convergence of NRDF with a non-degenerate conformally compact
Einstein metric g̃ as a background metric, and then we show the behavior of
the normalized scalar curvature R+n (n− 1) and the gauge V under NRDF.
The NRDF with background metric g̃ is

(2)

{
∂
∂t
gij = −2(Rij + (n− 1)gij) +∇iVj +∇jVi on M

n × (0, T ),
g (·, 0) = g.

where Vj = gjkg
pq
(
Γk
pq − Γ̃k

pq

)
and Γ̃ are the Christoffel symbols of the metric

g̃.
Assume that Φt :M

n −→Mn solves{
∂
∂t
Φt (·, t) = −V (Φt (·, t) , t) ,

Φt (·, 0) = id,
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where the components of V are given by V i := gijVj, then we obtain a family
of smooth diffeomorphisms Φt for t > 0 such that if g(t), t ∈ [0, T ) is a
solution to NRDF (2), ḡ(t) := Φ∗

tg(t), t ∈ [0, T ) is a solution to the following
NRF:

(3)

{
∂
∂t
gij = −2(Rij + (n− 1)gij) on M

n × (0, T ).
g (·, 0) = g.

In [12], Schnürer, Schulze and Simon use the NRDF to get the stability
of hyperbolic space under this flow. To be precise, under the assumptions
that ∥g− h∥C0(Hn) ≤ ϵ and

∫
Hn ∥g− h∥2dµh ≤ K, the NRDF starting from g

with background metric being hyperbolic metric h exists globally. Moreover,
there exists a constant C = C (n,K) > 0 such that

∥g(t)− h∥ ≤ C · e−
1

4(n+2)
t

for all t ∈ [0,∞), together with some interior estimates and interpolation,
which implies that NRDF converges to h exponentially in Ck as t→ ∞ for all
k ∈ N. However, in this paper we need to consider a certain non-degenerate
conformally compact Einstein manifold as a background manifold.

It is well known that the curvature tensor of a n ≥ 4 dimensional Rie-
mannian manifold decomposes into orthogonal parts as follows

Rm = W +
1

n− 2
A⊙ g +

R

2n(n− 1)
g ⊙ g,

where W , A := Ric − R
n
g and R are the Weyl tensor, the traceless Ricci

tensor and the scalar curvature respectively; and ⊙ represents the Kulkarni-
Nomizu product, which takes two symmetric (0, 2)−tensors h, k and gives
a (0, 4)−tensor with the same algebraic symmetries of the curvature tensor,
defined by

h⊙ k(v1, v2, v3, v4) =h(v1, v3) · k(v2, v4) + h(v2, v4) · k(v1, v3)
−h(v1, v4) · k(v2, v3)− h(v2, v3) · k(v1, v4).

For an Einstein metric g̃, the components of a Riemann curvature tensor is

R̃ijkl = W̃ijkl − (g̃ikg̃jl − g̃ilg̃jk)

satisfying g̃pqW̃ipjq = 0. Hence, the only thing that will cause trouble in
generalizing the work of [12] is the Weyl curvature tensor. On the other
hand, if we let u (t) = g (t) − g̃ where g (t) is the NRDF with background
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metric g̃, as R̃ij + (n− 1)g̃ij = 0 and Ṽi = 0, then u (t) fulfills

∂

∂t
uij

= −2(Rij + (n− 1)gij) +∇iVj +∇jVi −
(
−2(R̃ij + (n− 1)g̃ij) +∇iṼj +∇jṼi

)
= −

(
∆̃L + 2 (n− 1)

)
uij + F (g, g̃, u)

where F is the remainder of the linearization of the normalized Ricci-DeTurck
operator, see (7) below for the specific expression.

Therefore, if we deal with the Weyl curvature tensor carefully and use the
non-degenerate condition instead of the spectrum of the hyperbolic metric to
promise the exponential decay with respect to time, we can obtain the fol-
lowing stability of a non-degenerate conformally compact Einstein manifold:

Theorem 2.1. Let n ≥ 4. Suppose that (Mn, g̃) is a C2,α conformally com-
pact Einstein manifold with non-degeneracy λ > 0. If

∥g − g̃∥C1(Mn,g̃) ≤ ϵe−δρ and ∥Rm (g) ∥ ≤ k,

where δ > n−1
2
, then there exists some ϵ = ϵ (λ, k, n, g̃) > 0, such that the

normalized Ricci-DeTurck flow (2) with background metric g̃ starting from g
exists globally and converges exponentially to g̃.

Since ∥g − g̃∥C1(Mn,g̃) ≤ ϵe−δρ, due to Theorem 1.1 in [13], there exists
some T = T (n, g̃) and a family of metrics g (t) for t ∈ [0, T ) which solves the
NRDF (2) starting from g = g0. In addition,

(4) ∥g (t)− g̃∥ ≤ 2ϵ, t ∈ [0, T ).

Since g0 is Lipschitz, the estimates on the derivatives were improved in [13]
Lemma 2.1, hence there exist some constants ϵ1 and ϵ2 which only depend
on ϵ, n g̃ and T such that

(5) ∥∇̃g(t)∥ ≤ ϵ1,

and

(6) ∥∇̃2g(t)∥ ≤ ϵ2√
t

for all t ∈ (0, T ). If we assume that T ≤ 2, then ϵ1 and ϵ2 can be independent
of T.

In the following we compute some evolution equations under the NRDF
which will be used later.
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Lemma 2.2. Let g(t), t ∈ [0, T ) be a solution to NRDF (2). Assume that
∥W̃∥ ≤ l. Then for all t ∈ [0, T ), there exists ϵ3 and ϵ4 such that

∂

∂t
∥g − g̃∥2 ≤gij∇̃i∇̃j∥g − g̃∥2 − (2− ϵ3) ∥∇̃g∥2 + (4 + 4l + ϵ4) ∥g − g̃∥2

∂

∂t
∥∇̃g∥2 =gij∇̃i∇̃j∥∇̃g∥2 − 2gabg̃mng̃ikg̃jl∇̃a∇̃ngij · ∇̃b∇̃mgkl

+ ∇̃g ∗ ∇̃g ∗ ∇̃2g + ∇̃g ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g + ∇̃g ∗ ∇̃g
∂

∂t
∥∇̃2g∥2 =gij∇̃i∇̃j∥∇̃2g∥2 − 2gabg̃mng̃ikg̃jlg̃pq∇̃a∇̃m∇̃pgij · ∇̃b∇̃n∇̃qgkl

+ ∇̃g ∗ ∇̃2g ∗ ∇̃3g + ∇̃2g ∗ ∇̃2g ∗ ∇̃2g + ∇̃2g ∗ ∇̃2g ∗ ∇̃g ∗ ∇̃g
+ ∇̃2g ∗ ∇̃2g + ∇̃2g ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g + ∇̃2g ∗ ∇̃g ∗ ∇̃g

where ∗ denotes linear combinations with g(t), g̃ and their inverse.

Proof. Since the background metric is Einstein, we can see that

R̃ijkl = W̃ijkl − (g̃ikg̃jl − g̃ilg̃jk)

satisfying g̃pqW̃ipjq = 0. Then a metric g solving the NRDF (2) fulfills

∂

∂t
gij = gab∇̃a∇̃bgij − 2gijg

kl (gkl − g̃kl) + 2 (gij − g̃ij) +
1

2
gabgpq

·
(
∇̃igpa∇̃jgqb + 2∇̃agjp∇̃qgib − 2∇̃agjp∇̃bgiq − 2∇̃jgpa∇̃bgiq − 2∇̃igpa∇̃bgjq

)
−
(
gkl − g̃kl

)
(gip − g̃ip) g̃

pqW̃jkql −
(
gkl − g̃kl

)
(gjp − g̃jp) g̃

pqW̃ikql

− 2
(
gkl − g̃kl

)
W̃ikjl

Comparing with the evolution equations whose background metric is the
standard hyperbolic metric h in [12] Lemma 2.1 and Lemma 2.2, the evolution
equations with CCE metric g̃ as background metric have some extra terms
involving the Weyl tensor, together with the assumption and Lemma 2.2 in
[12], we have that

∂

∂t
∥g − g̃∥2 ≤ gij∇̃i∇̃j∥g − g̃∥2 − (2− ϵ3) ∥∇̃g∥2 + (4 + 4l + ϵ4) ∥g − g̃∥2,

By direct computation, we can get the other two evolution equations. �
Lemma 2.3. Let g(t), t ∈ [0, T ) be a solution to the NRDF (2). Then there
exists some constants L (t) depends only on t such that

∥g − g̃∥ ≤ L (t) e−δρ and ∥∇̃g∥ ≤ L (t) e−δρ

for all t ∈ [0, T ) and δ > n−1
2
.
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Proof. Let ψ = eωρ
(
∥g − g̃∥2 + ∥∇̃g∥2

)
. It follows from Lemma 2.2 and the

estimates (4) and (5) that for t ∈ [0, T ),

∂

∂t
ψ ≤ gij∇̃i∇̃jψ +

(
C1 − ω2gij∇̃iρ · ∇̃jρ− ωgij∇̃i∇̃jρ

)
ψ

− 2ωeωρgij∇̃iρ · ∇̃j

(
∥g − g̃∥2 + ∥∇̃g∥2

)
− (2− ϵ5) e

ωρ
(
∥∇̃g∥2 + ∥∇̃2g∥2

)
In order to get the decay order of the metric, we modify the essential set to
be sufficiently large, together with that g̃ is C2,α conformally compact, by
Lemma 2.1 in [7], we have that

∆̃ρ = n− 1 +O
(
e−aρ

)
for some a > 0. In the light of the estimates

gij∇̃iρ∇̃jρ ≥ (1− 2ϵ) ∥∇̃ρ∥2 = 1− 2ϵ,

gij∇̃i∇̃jρ ≥ (1− 2ϵ) ∆̃ρ = (1− ϵ6) (n− 1) ,

and

|gij∇̃iρ∇̃j∥∇̃k−1 (g − g̃) ∥2|
≤ (1 + 2ϵ) ∥∇̃⟨∇̃(k−1) (g − g̃) , ∇̃(k−1) (g − g̃)⟩g̃∥

≤ (1 + 2ϵ)

(
b2∥∇̃k (g − g̃) ∥2 + 1

b2
∥∇̃k−1 (g − g̃) ∥2

)
,

where b > 0 is arbitrary, we can choose appropriate b and see that there
exists a constant C2 > 0, depending only on ϵ, ω and n, such that

∂

∂t
ψ ≤ gij∇̃i∇̃jψ + C2ψ

Let ω = 2δ, by using maximum principle outside a sufficiently large essential
set (for the proof of this maximum principle, please see the proof of Lemma
4.2 in [10]), we get for t ∈ [0, T ),

ψ (·, t) ≤ ψ(·, 0)eC2t = 2ϵ2eC2t.

�
Now we move to the long-time existence and convergence of NRDF. In

[12] Theorem 3.1, the authors use the first eigenvalue on hyperbolic domains
to get a Lyapunov function and finally obtain the convergence. However, as
the Weyl curvature will exert a strong influence, the main point to establish
the exponential decay of the L2 norm of g (t) − g̃ with respect to time here
is to take advantage of the non-degenerate condition of the background con-
formally compact Einstein metric g̃, which leads to a linearized stability of
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g̃. We now rewrite the evolution equations of u (t) = g (t) − g̃ to which the
non-degenerate condition can be related.

Lemma 2.4. Let g(t), t ∈ [0, T ) be a solution to the NRDF (2). Then

∂

∂t
∥u∥2 ≤− 2⟨

(
∆̃L + 2 (n− 1)

)
u, u⟩+

(
gab − g̃ab

)
∇̃a∇̃b∥u∥2

+ ϵ7

(
∥∇̃u∥2 + ∥u∥2

)
.

Proof. The 2-tensor u (t) fulfills

∂

∂t
uij = −

(
∆̃L + 2 (n− 1)

)
uij + F (g, g̃, u)

where

F (g, g̃, u)

=− 2R̃ikjlu
kl − gklgipg̃

pqR̃jkql − gklgjpg̃
pqR̃ikql + R̃iku

k
j + R̃jku

k
i +

1

2
gabgpq

·
(
∇̃igpa∇̃jgqb + 2∇̃agjp∇̃qgib − 2∇̃agjp∇̃bgiq − 2∇̃jgpa∇̃bgiq − 2∇̃igpa∇̃bgjq

)
+
(
gab − g̃ab

)
∇̃a∇̃bgij − 2 (n− 1) g̃ij.

(7)

Hence

F (g, g̃, u) =
(
gab − g̃ab

)
∇̃a∇̃bgij + ∇̃g ∗ ∇̃g +Θ

where

∇̃g ∗ ∇̃g =1

2
gabgpq · (∇̃igpa∇̃jgqb + 2∇̃agjp∇̃qgib − 2∇̃agjp∇̃bgiq − 2∇̃jgpa∇̃bgiq

−2∇̃igpa∇̃bgjq)

(8)

Θ =− 2R̃ikjlu
kl − gklgipg̃

pqR̃jkql − gklgjpg̃
pqR̃ikql + R̃iku

k
j + R̃jku

k
i − 2 (n− 1) g̃ij

=− 4R̃ikjlu
kl +

(
g̃kl − gkl

)
uipg̃

pqR̃jkql +
(
g̃kl − gkl

)
ujpg̃

pqR̃ikql + 2
(
gabg̃

akg̃bl − gkl
)
R̃ikjl

=− 4W̃ikjlu
kl + 4 (g̃ij g̃kl − g̃ilg̃kj)u

kl +
(
g̃kl − gkl

)
uipg̃

pqR̃jkql +
(
g̃kl − gkl

)
ujpg̃

pqR̃ikql

+ 2
(
gabg̃

akg̃bl − gkl
)
W̃ikjl − 2

(
gabg̃

akg̃bl − gkl
)
(g̃ij g̃kl − g̃ilg̃kj)

=− 4W̃ikjlu
kl + 2

(
gabg̃

akg̃bl − gkl
)
W̃ikjl + 2

(
gabg̃

akg̃bl + gkl − 2g̃kl
)
(g̃ij g̃kl − g̃ilg̃kj)

+
(
g̃kl − gkl

)
uipg̃

pqR̃jkql +
(
g̃kl − gkl

)
ujpg̃

pqR̃ikql.

We decompose Θ into three parts

Θ = P+Q+ S
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where

P = −4W̃ikjlu
kl + 2

(
gabg̃

akg̃bl − gkl
)
W̃ikjl = −2

(
gabg̃

akg̃bl + gkl − 2g̃kl
)
W̃ikjl

Q =2
(
gabg̃

akg̃bl + gkl − 2g̃kl
)
(g̃ij g̃kl − g̃ilg̃kj)

=2
(
gabg̃

abg̃ij − gij + gklg̃klg̃ij − gklg̃ilg̃kj − 2(n− 1)g̃ij
)

and

S =
(
g̃kl − gkl

)
uipg̃

pqR̃jkql +
(
g̃kl − gkl

)
ujpg̃

pqR̃ikql.

Choose a coordinate system {xi} such that at one point, we have g̃ij = δij
and gij = λiδij with |λi − 1| ≤ 2ϵ. From the assumption,

∂

∂t
∥u∥2 =2

∑
i

uii
∂

∂t
uii

=− 2⟨
(
∆̃L + 2 (n− 1)

)
u, u⟩+ 2⟨

(
gab − g̃ab

)
∇̃a∇̃bu, u⟩

+
∑
i

(
∇̃g ∗ ∇̃g

)
ii
uii + 2

∑
i

Θiiuii.

We have ∑
i

(
∇̃g ∗ ∇̃g

)
ii
uii ≤ ϵ8∥∇̃u∥2

and

2⟨
(
gab − g̃ab

)
∇̃a∇̃bu, u⟩

=
(
gab − g̃ab

)
∇̃a∇̃b∥u∥2 − 2

(
gab − g̃ab

)
⟨∇̃au, ∇̃bu⟩

≤
(
gab − g̃ab

)
∇̃a∇̃b∥u∥2 + 4ϵ∥∇̃u∥2

Next we only need to examine the term
∑

i (P+Q+ S)ii uii. It is obvious
that ∑

i

Piiuii =− 2
∑
i

∑
k

(
1

λk
+ λk − 2)(λi − 1)W̃ikik

=− 2
∑
i

∑
k

(λk − 1)2

λk
(λi − 1)W̃ikik

≤ϵ8∥u∥2,
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i

Qiiuii =2
∑
i

(∑
k

λk − λi +
∑
k

1

λk
− 1

λi
− 2(n− 1)

)
(λi − 1)

=2
∑
i

(λi − 1)
∑
k ̸=i

(λk − 1)2

λk

≤ϵ8∥u∥2,

and ∑
i

Siiuii ≤ ϵ8∥u∥2.

Hence we finish the proof. �

An immediate consequence is

Theorem 2.5. Let n ≥ 4. Suppose that (Mn, g̃) is a C2,α conformally com-
pact Einstein manifold with non-degeneracy λ > 0 and g is a Riemannian
metric on M such that

∥g − g̃∥C1(Mn,g̃) ≤ ϵe−δρ

where δ > n−1
2
. Let g(t), t ∈ [0, T ) be a solution to the NRDF (2). Then∫

M

∥g (t)− g̃∥2dµ ≤ e−(2−ϵ9)λt

∫
M

∥g0 − g̃∥2dµ

for all t ∈ [0, T ) and some ϵ9 > 0.

Proof. By the assumption δ > n−1
2

and Lemma 2.3, we have that
∫
M
∥u (t) ∥2dµ

and
∫
M
∥∇̃u (t) ∥2dµ are finite for all t ∈ [0, T ). Moreover, ∥u (x, t) ∥ = 0 and

∥∇̃u (x, t) ∥ = 0 for (x, t) ∈ ∂M × [0, T ). It immediately follows from Lemma
2.4 that

∂

∂t

∫
M

∥u (t) ∥2dµ

≤
∫
M

−2⟨
(
∆̃L + 2 (n− 1)

)
u, u⟩+

(
gab − g̃ab

)
∇̃a∇̃b∥u∥2

+ ϵ7

(
∥∇̃u∥2 + ∥u∥2

)
dµ.
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Using Divergence Theorem and Kato’s inequality we have∫
M

(
gab − g̃ab

)
∇̃a∇̃b∥u∥2dµ

=−
∫
M

∇̃ag
ab∇̃b∥u∥2dµ

≤
∫
M

2ϵ1∥u∥ · ∥∇̃∥u∥∥dµ

≤ϵ1
∫
M

(
∥u∥2 + ∥∇̃u∥2

)
dµ

In light of the non-degenerate condition, we have∫
M

−2⟨
(
∆̃L + 2 (n− 1)

)
u, u⟩dµ

=− (2− a)

∫
M

⟨
(
∆̃L + 2 (n− 1)

)
u, u⟩dµ− a

∫
M

⟨
(
∆̃L + 2 (n− 1)

)
u, u⟩dµ

≤− (2− a)λ

∫
M

∥u∥2dµ+ a

∫
M

⟨∆̃u, u⟩dµ+ 2a

∫
M

R̃ipjqu
pquijdµ

≤
(
− (2− a)λ+ 2ak̃

)∫
M

∥u∥2dµ− a

∫
M

∥∇̃u∥2dµ

here and in the sequel k̃ denotes the upper bound of R̃m Therefore

∂

∂t

∫
M

∥u∥2dµ ≤
(
− (2− a)λ+ 2ak̃ + ϵ1 + ϵ7

)∫
M

∥u∥2dµ

+ (−a+ ϵ1 + ϵ7)

∫
M

∥∇̃u∥2dµ

which implies ∫
M

∥g (t)− g̃∥2dµ ≤ e−(2−ϵ9)λt

∫
M

∥g0 − g̃∥2dµ

if we choose a = ϵ1 + ϵ7. �

Now we prove the long-time existence and convergence.

Proof of Theorem 2.1. Now that we have the exponential convergence of the
L2-norm of ∥g−g̃∥, by the same idea as that in Theorem 3.3 in [12], we get ex-
ponential convergence in the sup-norm of ∥g− g̃∥. For the long-time existence
and convergence, we have to check that the injective radius is bounded along
NRDF in order that the interior estimates and gradient estimates in Theo-
rem 3.3, Theorem 3.4 and Theorem 3.5 in [12] make sense. Since ∥g (t)− g̃∥
and ∥∇̃2g (t) ∥ decay exponentially by the same arguments in Theorem 3.4
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and Theorem 3.5, together with the analysis in the introduction, the injective
radius is always bounded along NRDF. �

Now Let g and g̃ be as stated in Theorem 1.2, and

δ ∈

n− 1,
(n− 1) +

√
(n− 1)2 + 4 (n− 1)

2

 .

For t ∈ [1,∞), it follows immediately that there exist some constants σi =
σi (n, λ, ϵ, g̃) > 0 and C3 > 0 such that

(9) ∥∇̃ig (t) ∥ ≤ C3e
−σit, i = 1, 2, 3.

In the mean time, there exists some ϵ̃ > 0 which depends only on ϵ, λ, n,
k and g̃ such that

(10) ∥g (t)− g̃∥ ≤ ϵ̃

for all t ∈ [0,∞).
As a consequence of Lemma 2.2, we can prove the following:

Lemma 2.6. Let g(t), t ∈ [0,∞) be a solution to the NRDF (2). Then there
exist constants ϵ̂, ϵ̄ > 0, depending only on ϵ, λ, n, k and g̃ such that

(1) for all t ∈ [0, 1], ∥g (t)− g̃∥ ≤ ϵ̂e−δρ, ∥∇̃g (t) ∥ ≤ ϵ̂e−δρ, where

δ ∈

n− 1,
(n− 1) +

√
(n− 1)2 + 4 (n− 1)

2

 ;

(2) for all t ∈ [1,∞), ∥g (t) − g̃∥ ≤ ϵ̄e−σ4te−γρ, ∥∇̃kg (t) ∥ ≤ ϵ̄e−σ4te−γρ,
k = 1, 2, where σ4 > 0 is small and

γ ∈

n− 1

2
−

√
(n− 1)2

4
− 2,

n− 1

2
+

√
(n− 1)2

4
− 2

 .

Proof. For t ∈ [0, 1], let ϕ = eµρ
(
∥g − g̃∥2 + ∥∇̃g∥2 + t∥∇̃2g∥2

)
. It follows

from Lemma 2.2 and the estimates (4), (5) and (6) that

∂

∂t
ϕ ≤ gij∇̃i∇̃jϕ+

(
C4 − µ2gij∇̃iρ · ∇̃jρ− µgij∇̃i∇̃jρ

)
ϕ

− 2µeµρgij∇̃iρ · ∇̃j

(
∥g − g̃∥2 + ∥∇̃g∥2 + t∥∇̃2g∥2

)
− (2− ϵ10) e

µρ
(
∥∇̃g∥2 + ∥∇̃2g∥2 + t∥∇̃3g∥2

)
+
(
1 + ϵ10

√
t
)
∥∇̃2g∥2
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Using the same way in Lemma 2.3 we see that there exists a constant C5 > 0,
depending only on ϵ, λ, n, k and g̃, such that

∂

∂t
ϕ ≤ gij∇̃i∇̃jϕ+ C5ϕ

Let µ = 2δ, by maximum principle, we get for t ∈ [0, 1],

ϕ ≤ ϵ̂2 := ϕ(·, 0)eC5 = 8ϵ2eC5 .

Hence

∥∇̃2g∥ ≤ ϵ̂√
t
e−δρ,

for all t ∈ (0, 1].
In particular, at t = 1,

(11) ∥g − g̃∥ (·, 1) , ∥∇̃g∥ (·, 1) , ∥∇̃2g∥ (·, 1) ≤ ϵ̂e−δρ.

For t ∈ [1,∞), let φ = eσ4teνρ
(
∥g − g̃∥2 + a∥∇̃g∥2 + b∥∇̃2g∥2

)
. Due to

(9) and (10), we can choose a and b such that

∂

∂t
φ ≤ gij∇̃i∇̃jφ+

(
4 + 4l + ϵ̃+ σ4 − ν2gij∇̃iρ · ∇̃jρ− νgij∇̃i∇̃jρ

)
φ

− (2− ϵ11) e
σ4teνρ

(
∥∇̃g∥2 + a∥∇̃2g∥2 + b∥∇̃3g∥2

)
− 2νeσ4teνρgij∇̃iρ · ∇̃j

(
∥g − g̃∥2 + a∥∇̃g∥2 + b∥∇̃2g∥2

)
Let c+ d = −2ν, then

− 2νeνρgij∇̃iρ · ∇̃j∥∇̃k (g − g̃) ∥2

=(c+ d) eνρgij∇̃iρ · ∇̃j∥∇̃k (g − g̃) ∥2

=ceνρgij∇̃iρ · ∇̃j∥∇̃k (g − g̃) ∥2 + deνρgij∇̃iρ · ∇̃j∥∇̃k (g − g̃) ∥2

≤|c| (1 + ϵ̃)

(
m2eνρ∥∇̃k+1 (g − g̃) ∥2 + 1

m2
eνρ∥∇̃k (g − g̃) ∥2

)
+
(
−bνgij∇̃iρ · ∇̃jρ

(
eνρ∥∇̃k (g − g̃) ∥2

)
+ dgij∇̃iρ · ∇̃j

(
eνρ∥∇̃k (g − g̃) ∥2

))
=|c| (1 + ϵ̃)m2eνρ∥∇̃k+1 (g − g̃) ∥2 + dgij∇̃iρ · ∇̃j

(
eνρ∥∇̃k (g − g̃) ∥2

)
+

(
|c| (1 + ϵ̃)

m2
− dνgij∇̃iρ · ∇̃jρ

)(
eνρ∥∇̃k (g − g̃) ∥2

)
.
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Let |c| (1 + ϵ̃)m2 = 2− ϵ11, then we have

∂

∂t
φ ≤ gij∇̃i∇̃jφ+ (−2ν − c) gij∇̃iρ · ∇̃jφ(

4 + 4l + ϵ̃+ σ4 +
(1 + ϵ̃)2 c2

2− ϵ11
+
(
ν2 + cν

)
gij∇̃iρ · ∇̃jρ− νgij∇̃i∇̃jρ

)
φ

≤ gij∇̃i∇̃jφ+ (−2ν − c) gij∇̃iρ · ∇̃jφ+ C6φ

(12)

where

C6 = 4 + 4l + ϵ̃+ σ4 +
(1 + ϵ̃)2 c2

2− ϵ11
+
(
ν2 + cν

)
(1 + ϵ̃)− ν (n− 1) (1− ϵ̃) ≤ 0

ϵ̃ and σ4 are sufficiently small, l is also sufficiently small as the the essential
set can be chosen sufficiently large, c = −ν and ν = 2γ for a given

γ ∈

n− 1

2
−

√
(n− 1)2

4
− 2,

n− 1

2
+

√
(n− 1)2

4
− 2

 .

Since we have estimates (11) at t = 1,

φ(·, 1) = eσ4e2γρ
(
∥g − g̃∥2 + a∥∇̃g∥2 + b∥∇̃2g∥2

)
≤ eσ4 ϵ̂2,

it follows from the evolution equation (12) and maximum principle that

φ (·, t) ≤ ϵ̄2 =
eσ4 ϵ̂2

min{a, b, 1}

for t ∈ [1,∞). Note that for our purpose here we need a variant of the
maximum principle in Theorem 4.2 in [10], where Qing, Shi and Wu proved
a variant of the maximum principle in Theorem 4.3 in [5], originally from [9].
The proof goes the same as that in [5] Theorem 4.3 and [10] Theorem 4.2 if
we change the time-dependent laplacian ∆gt there to be gij∇̃i∇̃j in our case.

�

Lemma 2.7. Under the NRDF, for all t ∈ [0,∞), the 1-form V satisfies

∥V (·, t) ∥ ≤ C̃e−σ̃te−δρ,

where δ ∈
(
n− 1,

(n−1)+
√

(n−1)2+4(n−1)

2

)
, C̃ depends only on ϵ, λ, n, k and

g̃, and arbitrary σ̃ > 0.
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Proof. Let E = Ric + (n− 1) g, we consider the evolution equation of V
under NRDF,

∂

∂t
Vj =

∂

∂t
[gjkg

pq
(
Γk
pq − Γ̃k

pq

)
]

= gjkg
pq ∂

∂t
Γk
pq +

∂

∂t
(gjkg

pq)
(
Γk
pq − Γ̃k

pq

)
= I+ J

where

I =
1

2
gklgjkg

pq (∇p (−2Elq +∇lVq +∇qVl) +∇q (−2Elp +∇lVp +∇pVl))

− 1

2
gklgjkg

pq (∇l (−2Epq +∇qVp +∇pVq))

=− gpq (∇pRjq +∇qRjp −∇jRpq) + ∆Vj

+
1

2
gpq (∇p∇jVq −∇j∇pVq +∇q∇jVp −∇j∇qVp)

=−
(
2 (divgRic)j −∇jR

)
+∆Vj +Rk

jVk

=∆Vj +Rk
jVk

and

J =
∂

∂t
(gjkg

pq)
(
Γk
pq − Γ̃k

pq

)
=
(
gpq (−2Ejk +∇jVk +∇kVj)− gjkg

apgbq (−2Eab +∇aVb +∇bVa)
) (

Γk
pq − Γ̃k

pq

)
≤C7∥g − g̃∥C2 · ∥g − g̃∥C1 .

From the above discussion, it follows that for t ∈ [1,∞),

∥Rk
j + (n− 1) δkj ∥ ≤ C8∥g − g̃∥C2

and

∥V ∥ ≤ C9∥g − g̃∥C1 ,

then we have

∂

∂t
Vj ≤ ∆Vj − (n− 1)Vj + C10∥g − g̃∥C2 · ∥g − g̃∥C1 ,

where ∆ and ∇ are with respect to g, which implies that

∂

∂t
∥V ∥ ≤∆∥V ∥ − (n− 1) ∥V ∥+ C10∥g − g̃∥C2 · ∥g − g̃∥C1

≤∆∥V ∥ − (n− 1) ∥V ∥+ C10ϵ̄
2e−2σ4te−2γρ
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At t = 1, due to Lemma 2.6, we have

∥V (·, 1) ∥ ≤ ϵ13e
−δρ.

Let 2γ = δ and v = eδρ∥V ∥, we can see that v satisfies

∂

∂t
v ≤∆v − 2δ∇ρ · ∇v −

(
δ∆ρ+ n− 1− δ2∥∇ρ∥2

)
v + C10ϵ̄

2e−2σ4t

≤∆v − 2δ∇ρ · ∇v −Bv + C10ϵ̄
2e−2σ4t

(13)

where B is a positive constant when δ ∈
(
n− 1,

(n−1)+
√

(n−1)2+4(n−1)

2

)
and

we choose B ̸= 2σ4 and the essential set to be sufficiently large.
Consider ODE

(14)

{
du
dt

= −Bu+ C10ϵ̄
2e−2σ4t, t ∈ [1,∞),

u (1) = ϵ13.

the solution

u (t) = ϵ13e
Be−Bt +

C10ϵ̄
2

B − 2σ4

(
e−2σ4t − eB−2σ4e−Bt

)
.

Since u is a subsolution to the equation (13) with v(·, 1) ≤ u(1), due to
Theorem 4.2 in [10], we have v (·, t) ≤ u (t) for all t ∈ [1,∞). Hence

∥V (·, t) ∥ ≤ C11e
−σ̃te−δρ

for all t ∈ [1,∞), where σ̃ = min{2σ4, B} and C11 depends only on ϵ, λ, n, k
and g̃. Together with Lemma 2.6, we conclude that

∥V (·, t) ∥ ≤ C̃e−σ̃te−δρ

for all t ∈ [0,∞). �
Lemma 2.8. Under the NRDF, the scalar curvature R satisfies

R (·, t) ≥ −n (n− 1)

for all t ∈ [0,∞), and

|R (·, t) + n(n− 1)| ≤ C̄e−σ̄te−δρ

for all t ∈ [1,∞) where δ ∈
(
n− 1,

(n−1)+
√

(n−1)2+4(n−1)

2

)
, C̄ depends only

on ϵ, λ, n, k and g̃, and arbitrary σ̄ > 0.

Proof. By a direct computation, we see that under the NRF of ḡ, the scalar
curvature R̄ = R(ḡ(t)) satisfies the following evolution equation

∂

∂t
R̄ = ∆R̄ + 2∥R̄ic+ (n− 1)ḡ∥2ḡ − 2(n− 1)(R̄ + n(n− 1)),
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where ∆ and ∥ · ∥ḡ are with respect to the solution of NRF ḡ (t) . Let S̄ =
R̄ + n(n− 1), under NRF, it satisfies

∂

∂t
S̄ = ∆S̄ + 2∥R̄ic+ (n− 1)ḡ∥2ḡ − 2(n− 1)S̄,

with S̄(0) ≥ 0. Then by maximum principle due to Karp and Li (See Theo-
rem 7.39 in [4]), we see that

S̄(t) ≥ 0,

which means

R (ḡ (t)) ≥ −n(n− 1).

Because of the diffeomorphism invariance, we have

R (g (t)) = R (Φ∗
tg (t)) = R (ḡ (t)) ≥ −n(n− 1).

Moreover, as

∥R̄ic+ (n− 1)ḡ∥ḡ
=∥Ric (Φ∗

tg) + (n− 1)Φ∗
tg∥Φ∗

t g

=∥Ric (g (t)) + (n− 1)g (t) ∥g(t)
≤C12∥g (t)− g̃∥C2 ,

by the same arguments as those in the proof of Lemma 2.7 and note that the
constant −2 (n− 1) before the zero order term S will make B in ODE more
positive hence will bring no trouble to the order, we have

(15) |S̄| ≤ C13e
−σ5te−δρ

where C13 depends only on ϵ, λ, n, k and g̃.
For any x ∈ M and s ∈ (0, t), let γ(s) = Φs (x, s) be an integral curve of

V , together with Lemma 2.7, we see that

dg̃(Φt (x, t) , x) ≤
∫ t

0

∥γ̇ (s) ∥ds

≤ C14

∫ t

0

∥V (x, s) ∥ds

≤ C15e
−δρ

(16)
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where dg̃(, ) denotes the distance function in M with respect to metric g̃.
Hence, we get

|R (g (t)) (x) + n(n− 1)| ≤ |S̄(x)|+ |R (g (t)) (x)−R (ḡ (t)) (x)|
≤ |S̄(x)|+ |R (g (t)) (x)−R (g (t)) (Φt (x, t))|
≤ |S̄(x)|+ C16∥∇̃R∥dg̃(Φt (x, t) , x)

≤ C17e
−σ6te−δρ

where we used (15), (16) and ∥∇̃R∥ ≤ C18∥∇̃g∥C3 ≤ C19e
−σ7t for t ∈ [1,∞)

in above inequality. �

3. Some Basic Estimates and Proof of Main Results

In this section, we first show that the renormalized volume is well-defined
under some conditions and then give some basic estimates, and finally we
prove our main results Theorem 1.2 and Theorem 1.3.

Lemma 3.1. Suppose that (M, g̃) is C2,α conformally compact manifold. If
g is a metric on M satisfying ∥g − g̃∥C0(M,g̃) ≤ Ke−δρ, where δ > n − 1
and ρ is the distance function to some essential set in M with respect to g̃.
Then Vg̃(g) is well-defined, i.e. for any exhausting domains {Ωi} of M with
Ωi ⊂ Ωi+1,

Vg̃(g) = lim
i→∞

Ii , lim
i→∞

∫
Ωi

(√
|g| −

√
|g̃|
)
dx,

Proof. It suffices to show that limi→∞
∫
Ωi

(√
|g| −

√
|g̃|
)
dx exists and is fi-

nite for any exhausting domains {Ωi} of M with Ωi ⊂ Ωi+1. Since (M
n, g̃) is

C2,α conformally compact, g̃ has the form

g̃ = τ−2(dτ 2 + g̃τ ),

where τ is the special defining function for some representative in the con-
formal infinity of (M, g̃) . Without loss of generality, we may assume

{x ∈M : τ(x) ≥ τi} ⊂ Ωi ⊂ {x ∈M : τ(x) ≥ τi+1},

where {τi} is a decreasing sequence approaching to 0.
By a direct computation together with the fact that 1

A
e−ρ ≤ τ ≤ Ae−ρ for

some constant A > 0, we see that for any i > j we have
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|Ii − Ij| ≤
∫
{x∈M :τi+1≤τ(x)≤τj}

|
√
|g| −

√
|g̃||dx

≤
∫
{x∈M :τi+1≤τ(x)≤τj}

|1−

√
|g|
|g̃|

|
√

|g̃|dx

≤ C (K, g̃, n)

∫ τj

0

τ δ−ndτ

≤ C (K, g̃, n, δ) τ δ−n+1
j ,

which implies that {Ii} is a convergence sequence and thus we finish to prove
the lemma.

�

Now let g and g̃ be as in Theorem 1.2.

Remark 3.2. Due to Lemma 3.1 and Lemma 2.3, we see that for each t,
V(g(t)) is well-defined.

Now, we can show that

Proposition 3.3. Let g (t) be a solution to the NRDF (2), then we have

V (g (t)) = V (g (0))−
∫ t

0

∫
M

(R (g (s)) + n (n− 1)) dµgds,

where dµg is volume element with respect to metric g(s). Moreover, V (g (t))
is non-increasing in t and

(17) lim
t→∞

V (g (t)) = 0.

Proof. Let Ω be any compact domain in M with smooth boundary, then by
a direct computation, under NRDF (2), we have

d

dt

∫
Ω

(√
|g| −

√
|g̃|
)
dx = −

∫
Ω

(R + n(n− 1)) dµg +

∫
∂Ω

⟨V, ν⟩gdσ,

where ν is the outward unit normal vector of ∂Ω, hence, we obtain∫
Ω

(√
|g(t)| −

√
|g̃|
)
dx−

∫
Ω

(√
|g(t0)| −

√
|g̃|
)
dx

=−
∫ t

t0

∫
Ω

(R (g(s)) + n(n− 1)) dµgds+

∫ t

t0

∫
∂Ω

⟨V, ν⟩gdσds
(18)
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Combine (18) with Lemma 2.7 and Lemma 2.8, and let Ω exhaust the
whole manifold M we get

(19) V (g (t)) = V (g (t0))−
∫ t

t0

∫
M

(R (g(s)) + n (n− 1)) dµgds.

Subtract (18) from (19), we get∫
M\Ω

(√
|g(t)| −

√
|g̃|
)
dx =

∫
M\Ω

(√
|g(t0)| −

√
|g̃|
)
dx

−
∫ t

t0

∫
M\Ω

(R (g (s)) + n (n− 1)) dµgds

−
∫ t

t0

∫
∂Ω

⟨V, ν⟩gdσds

(20)

Let t0 = 1 and Ωτ = {x ∈M : τ(x) ≥ τ}, we have

|
∫
M\Ωτ

(√
|g(t)| −

√
|g̃|
)
dx| ≤

∫
M\Ωτ

|
√

|g(1)| −
√

|g̃||dx

+

∫ t

1

∫
M\Ωτ

|R (g(s)) + n (n− 1) |dµgds

+

∫ t

1

∫
∂Ωτ

∥V ∥gdσds

≤ C20τ
δ+1−n,

(21)

where C20 depends only on ϵ, n, k, λ and g̃, and we have already used Lemma
2.3, Lemma 2.8, Lemma 2.7 in the last inequality. On the other hand, due
to (2) in Lemma 2.6, for any fixed τ > 0, and any small η > 0, there is a
large T0 ≥ 1 which depends only on τ and η so that for any t ≥ T0 we have

|
∫
Ωτ

(
√
|g(t)| −

√
|g̃|)dx| ≤ η

2
.

Combine this with (21) we see that for any small η > 0 there is a large T0
which depends only on η so that for any t ≥ T0

|V(g(t))| ≤ η,

which implies that

lim
t→∞

V(g(t)) = 0.

Thus we finish to prove the proposition. �
Now, we can prove our main results.
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Proof of Theorem 1.2. Consider NRDF (2) and NRF (3) starting from g =
g0, and let g (t) and ḡ (t) be the solution to (2) and (3) respectively. By
Proposition 3.3, we obtain

V(g) = V(g0) ≥ V(g(t)) ≥ 0,

that is,

V(g) ≥ 0.

�

Proof of Theorem 1.3. If equality holds, we have

V(g) = V(g(t)) = 0, for t ∈ [0,∞),

which implies ∫
Mn

(R(g(t)) + n(n− 1))dµg = 0,

together with the fact that R(g(t)) ≥ −n(n− 1), we get that on M and for
all t ∈ [0,∞)

R (g(t)) = −n(n− 1),

which means

R (ḡ(t)) = −n(n− 1).

By the evolution equation of R under NRF (3), we see that

Ric (ḡ(t)) = (1− n)ḡ(t)

for all t ∈ [0,∞). Thus the initial metric g is an Einstein metric, which
means that the NRDF (2) is just acting by diffeomorphisms. According to
the NRDF 

∂
∂t
gij = ∇iVj +∇jVi,

g (·, 0) = g = g0,

Vj = gjkg
pq
(
Γk
pq − Γ̃k

pq

)
.

and the NRF {
∂
∂t
ḡij = 0,

ḡ (·, 0) = g = g0.

Hence

g = g0 = ḡ(t) = Φ∗
t g(t).

By the same arguments in [12] Theorem 4.1 we get that if g(t), t ∈ [0,∞)
is a solution to NRDF (2), then ḡ(t) := Φ∗

tg(t), t ∈ [0,∞) is a solution to the
NRF which satisfies

ḡ(t) → Φ∗
∞g̃ in M∞ (M) as t→ ∞
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for some smooth diffeomorphism Φ∞ ofMn satisfying Φt → Φ∞ in C∞ (Mn,Mn)
as t→ ∞. Therefore

g = Φ∗
∞g̃.

and thus we finish to prove Theorem 1.3. �
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