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Abstract

Joint Block Diagonalization (JBD) of a given Hermitian matrix set A = {Ai}pi=0 is to find
a nonsingular matrix W such that WHAiW for i = 0, 1, . . . , p are all block diagonal matrices
with the same prescribed block diagonal structure. General JBD (GJBD) attempts to solve JBD
without knowing the block diagonal structure. GJBD arises in Independent Subspace Analysis
(ISA)/Blind Source Separation (BSS), and is more difficult than JBD. In this paper, we show
that GJBD of {Ai}pi=0 is strongly connected with the eigeninformation of the associated matrix
polynomial PA(λ) =

∑p
i=0 λ

iAi. Under the assumption that PA(λ) has only simple eigenvalues,
a solvability theory for GJBD is established and the solutions of GJBD are characterized by
the eigeninformation. Based on the established theory, a numerical method is proposed to solve
GJBD. Numerical tests show that this method is not only feasible for exact GJBD, but also able
to handle approximate GJBD to certain extend.

Key words. general joint block diagonalization, polynomial eigenproblem, tensor decomposition

AMS subject classification. 15A69, 65F18.

1 Introduction

In recent years, the problem of estimating the joint eigen-structure of matrix sets (or tensors) has
found a variety of applications, especially in Blind Source Separation (BSS), in which one aims to
recover source signals from the observed mixtures, without knowing either the distribution of the
sources or the mixing process[5][6]. Joint (Block) Diagonalization has become an important tool in
Independent Component/Subspace Analysis based BSS. If the source signals are mutual statistical
independent, the mixing or demixing system can be estimated by Joint Diagonalization (JD) of
a matrix set, which is used in the well-known JADE [8], eJADE [16], SOBI [2] and Hessian ICA
[23][17]. Moreover, if there exist groups of signals of interest, where components from different
groups are mutually statistically independent and statistical dependence occurs between components
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in the same group, known as multidimensional BSS (MBSS) or group BSS, the mixing or demixing
system can be solved by Joint Block Diagonalization (JBD) [18, 4].

Theoretically, it is well know that JD for a single Hermitian matrix A0 can be solved by an
unitary matrix; J(B)D for two Hermitian matrices {A1, A0} can be solved by the eigenvector matrix
of the corresponding Generalized Hermitian Eigenvalue Problem (GHEP) A0x = λA1x; J(B)D for
more than two matrices is in general impossible, except two special cases: all of the matrices are
commutable; three Hermitian matrices satisfying A1A

−1
2 A0 = A0A

−1
2 A1 with A2 positive definite

[7]. However, in practical applications, solutions to J(B)D do exist, but in “approximate” sense.
Hereafter, we call J(B)D with exact and approximate solutions as exact J(B)D and approximate
J(B)D, respectively.

Great efforts have been devoted to solving J(B)D, and there is a long list of studies on this subject,
from unitary JD to non-unitary JD, then to unitary and non-unitary JBD. Overall speaking, current
numerical methods can be classified into two categories: Jacobi-like methods and gradient-based
methods. Jacobi-like methods for unitary J(B)D are achieved by successive Givens rotations, see
JADE[8, 3], eJADE[16], SOBI[2] for unitary JD and [1] for unitary JBD. Following the idea of Jacobi
rotations, Jacobi-like methods for non-unitary JBD can be achieved via elementary matrix rotations
[21]. A number of gradient-based methods have been proposed for J(B)D. To name a few, for JD, the
alternate column diagonal center algorithm (ACDC) by Yeredor [24], the gradient descent algorithm
by Joho and Mathis [14]; for JBD, several gradient descent methods by Ghennioui et. al [12, 13],
and by Zhang et. al [25]. For more information, we refer interested readers to [20, 25] and reference
therein.

Most of the JBD algorithms for MBSS in literature assume that the block diagonal structure is
known, which requires that one needs to known the number of groups and the size of each group
beforehand. In practice, however, such an assumption does not often hold. Hereafter we will refer
JBD with unknown block structure as general JBD (GJBD). Due to its difficulties, GJBD is not well
studied, both in theory and algorithm. So far, GJBD is solved simply by JD algorithms followed by
a permutation recovering algorithm. However, this method is based on a conjecture[1], and is only
partially proved[19]. In [9], GJBD for three Hermitian matrices with one of them positive definite, is
solved by a quadratic eigenproblem approach, which is actually a byproduct of an inverse eigenvalue
problem. Inspired by this idea, we will study GJBD by a Polynomial Eigen-Problem (PEP) approach.

What follows we first give a definition, then formulate Unitary/Non-Unitary JBD and GJBD
mathematically.

Definition 1.1. We call τn = (n1, n2, . . . , nt) a partition of positive integer n if n1, n2, . . . , nt are
all positive integers and the sum of them is n, i.e.,

n1 + n2 + · · ·+ nt = n.

The integer t is called the cardinality of the partition τn, denoted by card(τn).

Non-Unitary JBD (nu-jbd). Given a matrix set A = {Ai}pi=0 with Ai Hermitian matrix of order
n, and a partition τn = (n1, n2, . . . , nt). Find a nonsingular matrix W = W (τn) such that

WHAiW = diag(Ai1, Ai2, . . . , Ait), for i = 0, 1, 2, . . . , p, (1.1)

where Aij ∈ Cnj×nj for j = 1, 2, . . . , t.

If W = W (τn) in (1.1) is required to be unitary, then the problem is referred to as u-jbd.
Obviously, nu(u)-jd can be deemed as a special case of nu(u)-jbd by taking τn = (1, 1, . . . , 1).
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Non-Unitary GJBD (nu-gjbd). Given a matrix set A = {Ai}pi=0 with Ai Hermitian matrix of
order n. Find a partition τ ′n = (n′1, n

′
2, . . . , n

′
t) and a nonsingular matrix W = W (τ ′n) such that

card(τ ′n) = max{card(τn)
∣∣ there exists a nonsingular matrix W = W (τn) solves nu-jbd.}

Notice that if (τn,W ) is a solution to nu-gjbd for matrix set {Ai}pi=0 with Ap = In, and
WHApW = WHW = diag(Ap1, Ap2, . . . , Apt) is block diagonal, then (τn,WD) is a solution to u-jbd

for matrix set {Ai}p−1
i=0 , where D = diag(D1, D2, . . . , Dt) with DH

j ApjDj = Inj for all j = 1, 2, . . . , t.
This provide us a way to solve u-gjbd by nu-gjbd, so throughout the rest of this paper, we will only
need to concentrate on nu-gjbd.

Our contributions in this paper are three folds: first, we extend the idea in [9] to nu-gjbd, a
solvability theory for nu-gjbd is established; second, the solutions to nu-gjbd are also characterized
by the eigeninfomation of the corresponding matrix polynomial; third, a numerical method is given,
numerical tests show that this method is not only feasible to solve exact nu-gjbd, but also able to
handle approximate nu-gjbd to certain extend.

This paper is organized as follows. In section 2, we give some preliminary results on polynomial
eigenvalue problem (PEP) and inverse polynomial eigenvalue problem (IPEP). In section 3, a solv-
ability theory for nu-gjbd is established and the solutions are also characterized. The numerical
method and numerical examples are given in section 4. Finally, we present some conclusion remarks
in section 5.

2 Preliminary

First, we present some results on PEP and Inverse PEP, which will be used in subsequent sections.

We call the matrix polynomial of the form

P (λ) = λpAp + λp−1Ap−1 + · · ·+A0 (2.1)

regular self-adjoint matrix polynomial, if Ai is Hermitian matrix of order n for i = 0, 1, . . . , p and Ap
is nonsingular. We will show in the next section that GJBD of a Hermitian matrix set A = {Ai}pi=0

is strongly connected with the self-adjoint polynomial P (λ) (2.1), denoted by PA(λ).

Given the matrix coefficients A0, . . . , Ap, the task of finding scalars λ ∈ C and nonzero vectors
x, y ∈ Cn satisfying

PA(λ)x = 0, yHPA(λ) = 0 (2.2)

is known as the polynomial eigenvalue problem (PEP). The scalars λ and the corresponding nonzero
vectors x, y are called, respectively, the eigenvalues, the right eigenvectors and the left eigenvectors
of the matrix polynomial PA(λ). It is easy to see that for self-adjoint matrix polynomial, if x is a
right eigenvector corresponding to λ, then x is also a left eigenvector corresponding to λ̄. Similarly,
if y is a left eigenvector corresponding to λ, then y is also a right eigenvector corresponding to λ̄.

It is well known that PEP can be transformed to Generalized Eigenvalue Problems(GEP) via
linearization. Linearization is not unique, what follows we transform PEP PA(λ)x = 0 to a GEP via
a special linearization.

For any nonzero vector x ∈ Cn and scaler λ ∈ C, define

u = u(x, λ) :=
[
x> λx> . . . λp−1x>

]>
. (2.3)
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Let

L =


−A0 0 · · · 0

0 A2 · · · Ap
...

... . .
.

0 Ap

 , M =


A1 A2 · · · Ap

A2 A3 . .
.

... . .
.

Ap

 . (2.4)

Then it follows that

PA(λ)x = 0 =⇒ Lu = λMu. (2.5)

Conversely, for any nonzero u =
[
u>1 u>2 . . . u>p

]> ∈ Cpn, if Lu = λMu, then u is of the form
(2.3) and PA(λ)x = 0 with x = u1, i.e.,

Lu = λMu =⇒ PA(λ)x = 0. (2.6)

Definition 2.1. [11] A pair of matrices (X,Λ) ∈ Cn×pn×Cpn×pn is called a standard pair of PA(λ)
if and only if

U = U(X,Λ) :=
[
X> (XΛ)> . . . (XΛp−1)>

]>
(2.7)

is nonsingular and it holds

ApXΛp +Ap−1XΛp−1 + · · ·+A0X = 0, (2.8)

or equivalently,
LU = MUΛ. (2.9)

It follows from (2.5),(2.6) and (2.9) that

PA(λ)x = 0 ⇐⇒ Lu = λMu ⇐⇒ (λI − UΛU−1)u = 0 ⇐⇒ (λI − Λ)(U−1u) = 0. (2.10)

Therefore, all eigen-information of PA(λ) can be obtained from a standard pair (X,Λ), vice versa.

We now state the spectral decomposition theorem.

Theorem 2.1. [11](Spectral Decomposition) Given a standard pair (X,Λ) of a regular self-adjoint
polynomial PA(λ). Let U = U(X,Λ),

S0 = (UHMU)−1, (2.11)

where M is defined in (2.4). Then the coefficient matrices {Ai}pi=0 of PA(λ) can be represented in
terms of X, Λ and S0:

Ai =

{
(XΛp−1S0X

H)−1, i = p;

−
∑p

k=i+1AkXΛk+p−i−1S0X
HAp, i = p− 1, p− 2, . . . , 0.

(2.12)

IPEP, in contrast, is to reconstruct the coefficient matrices of a matrix polynomial from some
known information of its eigenvalues and eigenvectors, which can be stated as follows when all eigen-
information is given.

IPEP: Given (X,Λ) ∈ Cn×pn × Cpn×pn with U = U(X,Λ) nonsingular, construct the coefficient
matrices A0, A1, . . . , Ap of a regular self-adjoint matrix polynomial PA(λ) such that

ApXΛp +Ap−1XΛp−1 + · · ·+A1XΛ +A0X = 0.

In order to state the IPEP theorem, we introduce the following notations.
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Definition 2.2. Given (X,Λ) ∈ Cn×pn × Cpn×pn, define

1. SΛ := {S ∈ Cpn×pn | SH = S,ΛS = (ΛS)H .}

2. S(X,Λ) := {S ∈ SΛ | XΛkSXH = 0, k = 0, 1, . . . , p− 2.}

Note here that S(X,Λ) is a linear subspace of (np)2R, 1 and not null since S0 defined in (2.11)
belongs to S(X,Λ).

By applying the well-known GLR theory [10][11][15], it is easy to derive the following result.

Theorem 2.2. (IPEP) Given (X,Λ) ∈ Cn×pn × Cpn×pn with U = U(X,Λ) nonsingular, if there
exists a nonsingular S ∈ S(X,Λ), then (X,Λ) is a standard pair of PA(λ), whose coefficient matrices
{Ai}pi=0 are given by (2.12).

For nu-gjbd of a Hermitian matrix set A = {Ai}pi=0, there corresponds a self-adjoint matrix
polynomial PA(λ), vice versa. For the ease of our following discussions, we will make the following
two assumptions throughout the rest of the paper.

A1. Ap is nonsingular;

A2. The self-adjoint matrix polynomial PA(λ) has only simple eigenvalues.

Assumption A1 is only a technique requirement, assumption A2 is critical, which leads to a simple
representation of the element in SΛ. Direct calculation gives rise to the following lemma.

Lemma 2.1. For a given matrix Λ in the form

Λ = diag(λ1, λ̄1, . . . , λ`, λ̄`, λ2`+1, . . . , λpn), (2.13)

where Im(λj) 6= 0 for j = 1, 2, . . . , `, λj ∈ R for j = 2` + 1, . . . , pn and (λi − λj)(λi − λ̄j) 6= 0 for
i 6= j, then S ∈ SΛ if and only if S is in the form

S = diag

([
0 s1

s̄1 0

]
, . . . ,

[
0 s`
s̄` 0

]
, s2`+1, . . . , spn

)
, (2.14)

where s1, . . . , s` ∈ C, s2`+1, . . . , spn ∈ R.

We will use the following definition to partition eigenvalue matrix Λ and S ∈ SΛ.

Definition 2.3. For a given matrix Λ in the form (2.13), a permutation matrix P is said to be
Λ-structure preserving if

P>ΛP = diag(Λ11,Λ22, . . . ,Λkk)

and Λjj is also in the form (2.13) for j = 1, . . . , k.

Notice that if P is Λ-structure preserving, then it also preserves the structure of S ∈ SΛ, i.e.,
P>SP = diag(S11, S22, . . . , Skk) with Sjj also in the form (2.14).

The following lemma will be used in the next section, and the proof of it is similar to that of
Lemma 3.1 in [9].

1The Hermitian complex matrices of n-by-n do not form a subspace over C, but a subspace of n2R over R.
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Lemma 2.2. Given (X,Λ) ∈ Cn×pn×Cpn×pn with U = U(X,Λ) nonsingular. For any S, S̃ ∈ S(X,Λ)

nonsingular, we have

US̃S−1U−1 = Ip ⊗ (Ã−1
p Ap), (2.15)

where Ap and Ãp are given by (2.12) with S0 = S and S0 = S̃, respectively, and the symbol ⊗ denotes
the Kronecker product.

We will see later that the number of distinct eigenvalues of S̃S−1 and their corresponding multi-
plicities play an important role in nu-gjbd. Now we summarize the properties of the eigenvalus of
S̃S−1, and then give some definitions for the ease of the following discussions.

P1. For any S, S̃ ∈ S(X,Λ) nonsingular, it follows from Lemma 2.1 that

S̃S−1 = diag(θ1, θ̄1, . . . , θ`, θ̄`, θ2`+1, . . . , θpn), (2.16)

where θj =
s̃j
sj

for all j, and θj ∈ C for j = 1, 2, . . . , `, θj ∈ R for j = 2`+ 1, . . . , pn.

P2. For any S, S̃ ∈ S(X,Λ) nonsingular, it follows from Lemma 2.2 that each eigenvalue of S̃S−1

repeats p times.

Definition 2.4. For any S, S̃ ∈ S(X,Λ) nonsingular, let λd(S̃S
−1) = {µ1, µ2, . . . , µt} be the distinct

eigenvalues of S̃S−1 within the closed upper complex plane iC+ = {a+ b i | a ∈ R, b ≥ 0}, Im(µj) > 0

for j = 1, . . . , ˆ̀, µj ∈ R for j = ˆ̀+ 1, . . . , t. 2 Assume the multiplicity of µj is pmj, then define

eigenvalue multiplicity vector ζn for S̃S−1 as

ζn = ζn(S̃S−1) = (2m1, . . . , 2mˆ̀,mˆ̀+1, . . . ,mt). (2.17)

and the eigenvalue multiplicity vector ζopt
n for S(X,Λ) as

ζopt
n = ζopt

n (S(X,Λ)) = argmax{card(ζn) | ζn = ζn(S̃S−1), S, S̃ ∈ S(X,Λ) nonsingular.} (2.18)

Remark 2.1.

1. Notice here that ζn is a partition of n, and t = card(ζn).

2. card(ζn(S̃S−1)) is the number of distinct eigenvalues of S̃S−1 within the upper closed complex
plane, and card(ζopt

n ) is the maximal.

3. In the definition of ζopt
n , S can be fixed as S0, i.e.,

ζopt
n = ζopt

n (S(X,Λ)) = argmax{card(ζn) | ζn = ζn(S̃S−1
0 ), S̃ ∈ S(X,Λ) nonsingular.} (2.19)

As a matter of fact, if S, S̃ ∈ S(X,Λ) are chosen such that ζopt
n (S(X,Λ)) = ζn(S̃S−1), then let

S̃S−1 = diag(θj), SS
−1
0 = diag(θ

(0)
j ), for any α ∈ R and

α /∈ {α | α =
θjθ

(0)
j − θiθ

(0)
i

θ
(0)
i − θ

(0)
j

, θ
(0)
i − θ

(0)
j 6= 0},

it holds ζopt
n (S(X,Λ)) = ζn((S̃ + αS)S−1

0 ).

2Note that ˆ̀≤ ` since for j = 1, . . . , `, θj ∈ C in (2.16) can be real.
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3 NU-GJBD Theory

In this section, we will establish a theory on nu-gjbd. First, we give the following theorem, which
gives necessary and sufficient conditions for nu-jbd.

Theorem 3.1. Let (X,Λ) be a standard pair of PA(λ) , U = U(X,Λ) and S0 =
(
UHMU

)−1
. Given

a partition τn = (n1, n2, . . . , nt), then the following statements are equivalent:

(1). There exists a nonsingular matrix W = W (τn) which solves nu-jbd;

(2). There exists a nonsingular matrix W = W (τn) and a Λ-structure preserving matrix P such
that

W−1XP = diag(X11, X22, . . . , Xtt), (3.1)

where Xjj ∈ Cnj×pnj for j = 1, 2, . . . , t;

(3). There exists a nonsingular matrix S̃ ∈ S(X,Λ) and a Λ-structure preserving matrix P such that

P>S̃S−1
0 P = diag(D11, D22, . . . , Dtt), (3.2)

where Djj ∈ Cpnj×pnj for j = 1, 2, . . . , t with λ(Dii) ∩ λ(Djj) = ∅ for i 6= j.

Proof. We proceed by showing that (1)⇒ (2)⇒ (3)⇒ (1).

(1) ⇒ (2). Given τn, suppose W = W (τn) solves nu-jbd. Then there exists a Λ-structure
preserving matrix P such that P>ΛP = diag(Λ11,Λ22, . . . ,Λtt) with the spectrum of Λjj equals the
spectrum of Pj(λ) =

∑p
i=0 λ

iAij for j = 1, . . . , t. Now we can rewrite
∑p

i=0AiXΛi = 0 as

p∑
i=0

(WHAiW )(W−1XP )(P>ΛP )i = 0.

That is

p∑
i=0

diag (Ai1, Ai2, . . . , Ait) (W−1XP ) diag(Λ11,Λ22, . . . ,Λtt)
i = 0.

Denote

W−1XP =


X11 X12 · · · X1t

X21 X22 · · · X2t

...
...

. . .
...

Xt1 Xt2 · · · Xtt

 , (3.3)

then we have

p∑
i=0

AilXljΛ
i
jj = 0, l, j = 1, . . . , t.

Since every eigenvalue of Λ is simple, it follows Xlj = 0 for l 6= j. Therefore, (3.1) holds.

(2)⇒ (3). Since P is a Λ-structure preserving matrix, we can denote

P>ΛP = diag(Λ11,Λ22, . . . ,Λtt), P>S0P = diag(S11, S22, . . . , Stt),
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where Λjj , Sjj ∈ Cpnj×pnj for j = 1, . . . , t. Then it follows Sjj ∈ S(Xjj ,Λjj). Let

S̃ = P diag(S11, 2S22, . . . , tStt)P
>,

then S̃ ∈ S(X,Λ) is nonsingular and

P>S̃S−1
0 P = diag(In1 , 2In2 , . . . , tInt),

which means (3) holds.

(3)⇒ (1). According to Lemma2.2, we have

US̃S−1
0 U−1 = Ip ⊗ (Ã−1

p Ap), (3.4)

where Ap and Ãp are given by (2.12) with S0 and S̃, respectively. Since

P>S̃S−1
0 P = diag(D11, D22, . . . , Dtt), (3.5)

with λ(Dii) ∩ λ(Djj) = ∅ for i 6= j, it follows that there exists a nonsingular matrix W such that

W−1Ã−1
p ApW = diag(F11, F22, . . . , Ftt), (3.6)

where Fjj ∈ Cnj×nj and λ(Fjj) ⊂ λ(Djj) for j = 1, 2, . . . , t.

From (3.4) and (3.5) we also have

Ã−1
p ApXP = XP diag(D11, D22, . . . , Dtt). (3.7)

Partition W−1XP as the form (3.3) and substitute (3.6) into (3.7) yield
F11

F22

. . .

Ftt



X11 X12 · · · X1t

X21 X22 · · · X2t

...
...

. . .
...

Xt1 Xt2 · · · Xtt

 =


X11 X12 · · · X1t

X21 X22 · · · X2t

...
...

. . .
...

Xt1 Xt2 · · · Xtt



D11

D22

. . .

Dtt

 .
Comparing the (i, j)−block of both sides of the equation, we get

FiiXij = XijDjj .

It follows that Xij = 0 whenever i 6= j, since λ(Fii) ∩ λ(Djj) = ∅. Therefore,

W−1XP = diag(X11, X22, . . . , Xtt).

Since P is a Λ-structure preserving matrix, we have

P>ΛP = diag(Λ11,Λ22, . . . ,Λtt), P>S0P = diag(S11, S22, . . . , Stt).

According to (2.12), we have

A−1
p = XΛp−1S0X

H = W (W−1XP )(P>ΛP )p−1(P>S0P )(W−1XP )HWH

= W diag(X11, . . . , Xtt) diag(Λ11, . . . ,Λtt)
p−1 diag(S11, . . . , Stt) diag(XH

11, . . . , X
H
tt )WH

= W diag(X11Λp−1
11 S11X

H
11, . . . , XttΛ

p−1
tt SttX

H
tt )WH

= W diag
(
(Ap1)−1, . . . , (Apt)

−1
)
WH ,
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and hence

WHApW = diag(Ap1, Ap2, . . . , Apt).

Similarly, from (2.12) we can recursively get

WHAiW = diag(Ai1, Ai2, . . . , Ait)

for i = p− 1, . . . , 0.

Remark 3.1.

1. Lemma 3.2 in [9] actually proves (3) ⇒ (1) of Theorem 3.1 for p = 2. Here we proves the
equivalences of the three statements.

2. The equality (3.1) plays a central role in Theorem 3.1, W in (3.1) solves nu-jbd, P in (3.1) is
the same as P in (3.2).

Now we are ready to give the nu-gjbd theorem.

Theorem 3.2. Let (X,Λ) be a standard pair of PA(λ), U = U(X,Λ) and S0 =
(
UHMU

)−1
. Then

there exists a nonsingular matrix W such that (ζopt
n ,W ) solves nu-gjbd, where ζopt

n is defined in
(2.18), or equivalently (2.19).

Proof. Assume ζopt
n = (n1, n2, . . . , nt). Then there exists a nonsingular matrix S̃ ∈ S(X,Λ) and a

Λ-structure preserving matrix P such that

P>S̃S−1
0 P = diag(D11, D22, . . . , Dtt),

where Djj ∈ Cpnj×pnj with λ(Dii) ∩ λ(Djj) = ∅ for i 6= j. Then according to Theorem 3.1, there
exists a nonsingular matrix W which solves nu-jbd. Consequently, it is sufficient if we can prove
that if (τn, W̃ ) also solves nu-gjbd, then card(τn) ≤ card(ζopt

n ). What follows we prove this by
contradiction.

Assume there exists (τn, W̃ ) solves nu-gjbd with card(τn) > card(ζopt
n ). Therefore, W̃ solves

nu-jbd. Let τn = (n′1, n
′
2, . . . , n

′
t̃
), then using Theorem 3.1, there exists a nonsingular S̃ ∈ S(X,Λ) and

a Λ-structure preserving matrix P such that

P>S̃S−1
0 P = diag(D′11, D

′
22, . . . , D

′
t̃t̃

),

where D′jj ∈ Cpn
′
j×pn′j with λ(D′ii) ∩ λ(D′jj) = ∅ for i 6= j. Consequently, card(ζn(S̃S−1

0 )) = t̃ >

card(ζopt
n ), which contradicts with the definition of ζopt

n .

Theorem 3.2 not only tells the existence of the solutions to nu-gjbd, but also together with Theo-
rem 3.1 characterize the solution by the eigeninformation of the corresponding polynomial eigenvalue
problem. See the following example.

Example 3.1. Consider the Hermitian matrix set A = {A2, A1, A0}, where

A2 =

[
2 0 0 0
0 2 0 0
0 0 −16 14
0 0 14 −16

]
, A1 =

[
0 0 −10+3i 10+3i
0 0 −10−3i 10−3i

−10−3i −10+3i 0 0
10−3i 10+3i 0 0

]
, A0 =

[−8 −4 0 0
−4 −8 0 0
0 0 12 −8
0 0 −8 12

]
.
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The corresponding quadratic matrix polynomial is

QA(λ) = λ2A2 + λA1 +A0,

and its eigeninformation can be given by (X,Λ), where

X =

[
−1 1 −1 1 2+i 2−i 1+2i 1−2i
1 −1 1 −1 2+i 2−i 1+2i 1−2i
1 1 1 1 i −i −1 −1
1 1 1 1 −i i 1 1

]
, Λ = diag(i,−i, 2i,−2i,−1 + i,−1− i, 1 + i, 1− i).

By calculations, we have

S0 =
1

8
diag

([0 −i
i 0

]
,

[
0 i
−i 0

]
,

1

30

[
0 −2 + i

−2− i 0

]
,

1

30

[
0 −2− i

−2 + i 0

])
,

and for any S ∈ S(X,Λ), it is in the following form

S = diag
([0 s

s̄ 0

]
,

[
0 −s
−s̄ 0

]
,

[
0 2r − ri

2r + ri 0

]
,

[
0 2r + ri

2r − ri 0

])
,

where s ∈ C, r ∈ R are arbitrary nonzero numbers. Then we have

SS−1
0 = 8 diag(si,−s̄i, si,−s̄i,−30r,−30r,−30r,−30r).

Consequently, by choosing s = 1
8 , r = − 1

240 , we have ζopt
n = 1

p(2 × 2, 4) = (2, 2) and card(ζopt
n ) = 2.

Using Theorem 3.2, we know there exists a nonsingular W such that WHAiW = diag(Ai1, Ai2),
where Ai1, Ai2 are all 2-by-2 Hermitian matrices for i = 0, 1, 2.

Now given τn = ζopt
n = (2, 2), using Theorem 3.1, in order to determine W , one need to first

find a Λ-structure preserving matrix P satisfying (3.2), then from (3.1) one can obtain W . In this
example, P = I8, and W can be obtained by computing a row operation matrix W−1 such that
W−1[x1 x2 Re(x5) Im(x5)] = diag(X11, X22), where X11, X22 are all 2-by-2 matrices. This is due to
the fact that span([x1 x2 x3 x4]) = span([x1 x2]), span([x5 x6 x7 x8]) = span([Re(x5) Im(x5)]).

Remark 3.2. The procedure in the above example actually give us a recipe to compute the solution
(ζopt
n ,W ) of nu-gjbd.

Next, we try to establish the relationship between card(ζopt
n ) and the dimension of S(X,Λ). Let us

first see the following two examples.

Example 3.2. Consider the Hermitian matrix set A = {A2, A1, A0}, where

A2 =

[
1 2
2 5

]
, A1 =

[
−2 −4
−4 −5

]
, A0 =

[
2 4
4 4

]
.

The corresponding quadratic matrix polynomial is

QA(λ) = λ2A2 + λA1 +A0,

whose eigeninformation can by given by (X,Λ):

X =

[
1 1 −2 −2
0 0 1 1

]
, Λ = diag(1 + i, 1− i, 1,−4).

10



By calculations, we have

S0 =
(
U(X,Λ)HMU(X,Λ)

)−1
= diag

(
1

2

[
0 −i
i 0

]
,
1

5
,−1

5

)
,

and S ∈ S(X,Λ) if and only if S is of the form

S = diag

(
s

[
0 i
−i 0

]
, r,−r

)
,

where s, r ∈ R. Therefore, we have

dim(S(X,Λ)) = 2.

On the other hand,

SS0
−1 = diag(−2s,−2s, 5r, 5r),

and hence card(ζopt
n ) = 2. So we have card(ζopt

n ) = dim(S(X,Λ)).

Example 3.3. Consider the Hermitian matrix set A = {A2, A1, A0}, where

A2 =

[
0 1
1 0

]
, A1 =

[
0 3i
−3i 0

]
, A0 =

[
0 −2
−2 0

]
.

The corresponding quadratic matrix polynomial is

QA(λ) = λ2A2 + λA1 +A0,

whose eigeninformation can be given by (X,Λ):

X =

[
1 0 1 0
0 1 0 1

]
, Λ = diag(i,−i, 2i,−2i).

By calculations, we have

S0 =
(
U(X,Λ)HMU(X,Λ)

)−1
= diag

([
0 i
−i 0

]
,

[
0 −i
i 0

])
,

and S ∈ S(X,Λ) if and only if S is of the form

S = diag

([
0 s
s̄ 0

]
,

[
0 −s
−s̄ 0

])
,

where s ∈ C. Therefore, we have

dim(S(X,Λ)) = 2.

On the other hand,

SS0
−1 = diag(−si, s̄i,−si, s̄i).

and hence card(ζopt
n ) = 1. So we have card(ζopt

n ) = 1
2 dim(S(X,Λ)).

Example 3.4. In Example 3.1, 1
2 dim(S(X,Λ)) < card(ζopt

n ) < dim(S(X,Λ)).
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As a matter of fact, we have the following inequality which reveals the relationship between
card(ζopt

n ) and dim(S(X,Λ)).

Theorem 3.3.
1

2
dim(S(X,Λ)) ≤ card(ζopt

n ) ≤ dim(S(X,Λ)).

Proof. Assume (ζopt
n ,W ) solves nu-gjbd with ζopt

n = (n1, . . . , nt). The eigeninformation of PA(λ) is
given by (X,Λ). Then there exists a Λ-structure preserving matrix P such that

W−1XP = diag(X11, . . . , Xtt), P>ΛP = diag(Λ11, . . . ,Λtt),

where Xjj ∈ Cnj×pnj , Λjj ∈ Cpnj×pnj . Now define S(Xjj ,Λjj) and ζopt
nj (S(Xjj ,Λjj)) as S(X,Λ) and

ζopt
n (S(X,Λ)) with X = Xjj , Λ = Λjj , respectively. Then we know that

dim(S(X,Λ)) =
t∑

j=1

dim(S(Xjj ,Λjj)), card(ζopt
nj

(S(Xjj ,Λjj))) = 1.

Next we show our conclusion by showing that dim(S(Xjj ,Λjj)) = 1 or 2. Define Ujj = U(Xjj ,Λjj)

as U(X,Λ) with X = Xjj and Λ = Λjj , Mjj as M in (2.4) with Ai = Aij , S
(0)
jj = (UHjjMjjUjj)

−1.

Then for any Sjj ∈ S(Xjj ,Λjj), the eigenvalues of Sjj(S
(0)
jj )−1 are the same real number or complex con-

jugates. In the former case, there exists α ∈ R such that Sjj = αS
(0)
jj , and hence dim(S(Xjj ,Λjj)) = 1;

in the latter case, if dim(S(Xjj ,Λjj)) > 2, there exist S
(1)
jj , S

(2)
jj ∈ S(Xjj ,Λjj) such that λ(S

(k)
jj (S

(0)
jj )−1) =

{αk ± iβk} with βk 6= 0 for k = 1, 2, and

1

β1
(S

(1)
jj − α1S

(0)
jj )(S

(0)
jj )−1 6= ± 1

β2
(S

(2)
jj − α2S

(0)
jj )(S

(0)
jj )−1.

Let

Sjj =
1

β1
(S

(1)
jj − α1S

(0)
jj ) +

2

β2
(S

(2)
jj − α2S

(0)
jj ),

then Sjj ∈ S(Xjj ,Λjj), and λ(Sjj(S
(0)
jj )−1) = {±3i,±i}. Consequently, card(Sjj(S

(0)
jj )−1) = 2, which

contradicts with card(ζopt
nj (S(Xjj ,Λjj))) = 1.

Remark 3.3. We can see from the proof that card(ζopt
n ) = dim(S(X,Λ)) if and only if for any

S ∈ S(X,Λ), the eigenvalues of SS−1
0 are all real numbers. If Ap is positive definite, then using

Lemma 2.2, all eigenvalues of SS−1
0 are real. Therefore, card(ζopt

n ) = dim(S(X,Λ)), which agrees with
the conclusion Theorem 3.2 in [9].

Let τn = (n1, . . . , nt), and assume (τn,W ) solves nu-gjbd, then (τnΠt,WTΠ) also solves nu-
gjbd, where Πt ∈ Rt×t is a permutation matrix, Π ∈ Rn×n is the corresponding block permutation
matrix, which can be obtained by replacing the j-th column of Πt by Inj , T is a block scaling matrix of
the form T = diag(T11, . . . , Ttt) with Tjj ∈ Cnj×nj . The “uniqueness” problem arises: is the solution
unique up to such block permutation and block scaling? The answer is yes. In fact, we have the
following theorem.

Theorem 3.4. The solution to nu-gjbd is unique up to block permutation and block scaling, i.e.,
if (τn,W ) and (τ̃n, W̃ ) both solve nu-gjbd, then there exists a permutation matrix Πt ∈ Rt×t and a
block scaling matrix T such that

τ̃n = τnΠt, W̃ = WTΠ, (3.8)

where Π ∈ Rn×n is the block permutation matrix corresponding with Πt.
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Proof. As (τn,W ) and (τ̃n, W̃ ) both solve nu-gjbd, then we know that card(τn) = card(τ̃n) =
card(ζopt

n ), and hence we can assume τn = (n1, . . . , nt), τ̃n = (ñ1, . . . , ñt), where t = card(ζopt
n ).

Let (X,Λ) be the eigenformation matrix pair of PA(λ), S0 = (U(X,Λ)HMU(X,Λ))−1 with M
defined in (2.4). It follows from Theorem 3.1 that there exist nonsingular S, S̃ ∈ S(X,Λ) and Λ-

structure preserving matrices P , P̃ such that

P>SS−1
0 P = diag(D11, . . . , Dtt), P̃>S̃S−1

0 P̃ = diag(D̃11, . . . , D̃tt), (3.9)

where Djj ∈ Cpnj×pnj , D̃jj ∈ Cpñj×pñj for j = 1, 2, . . . , t, and λ(Dii)∩λ(Djj) = ∅, λ(D̃ii)∩λ(D̃jj) = ∅
for i 6= j. And also

W−1XP = diag(X11, . . . , Xtt), W̃−1XP̃ = diag(X̃11, . . . , X̃tt), (3.10)

where Xjj ∈ Cnj×pnj , X̃jj ∈ Cñj×pñj .

Now let
SS−1

0 = diag(θj), S̃S−1
0 = diag(θ̃j),

Using the fact that for any 1 ≤ i, j ≤ pn, θi 6= θj , it holds αθi + θ̃i 6= αθj + θ̃j , where α ∈ T and

T := R \ {α |α =
θ̃j − θ̃i
θi − θj

, θi 6= θj},

we know that for any 1 ≤ i, j ≤ pn, θi = θj , it holds θ̃i = θ̃j . Otherwise, for any α ∈ T , we have

card((αS + S̃)S−1
0 ) > card(ζn(SS−1

0 )) = card(ζopt
n ),

which contradicts with definition of ζopt
n . Similarly, we know that for any 1 ≤ i, j ≤ pn, θ̃i = θ̃j , it

holds θi = θj . Therefore, there exists a permutation matrix Πt such that τ̃n = τnΠt, and

ΠW̃−1XP̃ (Π> ⊗ Ip) = Π diag(X̃11, . . . , X̃tt)(Π
> ⊗ Ip) = diag(X̂11, . . . , X̂tt), (3.11)

where Π is the permutation matrix corresponding with Πt, X̂jj ∈ Cnj×pnj . Now let P̂ = P̃ (Π>⊗ Ip),
then

P̂>S̃S−1
0 P̂ = diag(D̂11, . . . , D̂tt), (3.12)

where D̂jj ∈ Cpnj×pnj for j = 1, 2, . . . , t, and λ(D̂ii) ∩ λ(D̂jj) = ∅ for i 6= j. Notice that the block

structure of P>S̃S−1
0 P is the same as that of P̂>S̃S−1

0 P̂ , so we can select Πt such that P̂ = P .
Consequently, (3.11) can be rewritten as

ΠW̃−1XP = diag(X̂11, . . . , X̂tt), (3.13)

then using (3.10), we have

diag(X̂11, . . . , X̂tt) = ΠW̃−1XP = ΠW̃−1W (W−1XP ) = ΠW̃−1W diag(X11, . . . , Xtt).

Let

ΠW̃−1W = [Tij ]
−1, (3.14)

where Tij ∈ Cni×nj for i, j = 1, 2, . . . , t, then it follows that Tij = 0 for i 6= j, and TjjX̂jj = Xjj for

j = 1, 2, . . . , t. Using the fact that both Xjj and X̂jj are of full row rank, we know that Tjj is unique
and nonsingular. Thus, T is a block scaling matrix. Our conclusion immediately follows from (3.14).
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4 Numerical Tests

In this section, we first briefly discuss the numerical methods to solve nu-gjbd, then present some
numerical results.

4.1 Numerical Method

The computation of the solutions to the nu-gjbd requires four major steps:

Step 1. Compute all the eigenvalues and eigenvectors of PA(λ) and formulate the eigeninformation
matrix pair (X,Λ);

Step 2. Find a basis of S(X,Λ);

Step 3. Determine partition τn and structure preserving matrix P ;

Step 4. Compute transformation matrix W .

The first step can be achieved by linearization and computing the general eigenvalue problem
(λM −L)u = 0, where L,M are from (2.4). The last three steps can be followed from the algorithm
in [9], we will omit the details here. As a matter of fact, Example 3.1 is carried out under such
framework. Hereafter we will refer to this method as Polynomial Eigenproblem Approach Solver
(PEAS) for GJBD.

It worth mentioning here that the robustness of PEAS heavily depends on the eigenvalue distri-
bution of PA(λ). When some of the eigenvalues are close, it would be hard to determine the basis of
S(X,Λ), which would make PEAS problematic.

4.2 Numerical Examples

Now we present several numerical examples to illustrate the performance of PEAS. All the numerical
examples were carried out using MATLAB 8.0, with machine epsilon ε = 2.2 × 10−16. The quality
of joint block diagonalization is measured by the off-diagonal index

residoffdiag =
1

p+ 1

p∑
i=0

‖OffBdiagτn(WHAiW )‖F
‖WHAiW‖F

,

where (τn,W ) solves nu-gjbd, OffBdiagτn is defined as

OffBdiagτn(A) =


0n1×n1 A12 · · · A1t

A21 0n2×n2 · · · A2t

...
...

. . .
...

At1 At2 · · · 0nt×nt

 .
Example 4.1. Let

Ai = V HDiV, i = 0, 1, 2, 3,
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where

D0 = diag

(
5,

[
−5 4i
−4i 8

]
,

[
9 1− 7i

1 + 7i −7

]
,−5

)
,

D1 = diag

(
6,

[
−5 9− 3i

9 + 3i −6

]
,

[
−5 2− i

2 + i −3

]
, 7

)
,

D2 = diag

(
2,

[
1 8− 4i

8 + 4i 5

]
,

[
5 −2 + i

−2− i −8

]
,−9

)
,

D3 = diag

(
1,

[
6 9− 7i

9 + 7i 1

]
,

[
−1 −10− 3i

−10 + 3i −7

]
, 6

)
,

and

V =



0.31 + 0.26i 0.45 + 0.15i 0.07− 0.32i 0.08 + 0.14i 0.54 + 0.35i 0.23 + 0.41i
0.52− 0.65i 0.08− 0.82i 0.44 + 0.77i 0.39− 0.13i 0.14 + 0.51i 0.12− 0.04i
0.16− 0.68i 0.22 + 0.53i 0.10 + 0.81i 0.25− 0.86i 0.85− 0.40i 0.18 + 0.90i
0.60 + 0.74i 0.91− 0.99i 0.96− 0.86i 0.80− 0.57i 0.62 + 0.07i 0.24− 0.94i
0.92 + 0.57i 0.23− 0.82i 0.04 + 0.64i 0.64 + 0.54i 0.74 + 0.68i 0.36 + 0.78i
0.95 + 0.05i 0.35− 0.01i 0.16− 0.73i 0.45 + 0.29i 0.18 + 0.18i 0.62 + 0.08i

 .

Applying PEAS on A = {Ai}3i=0, we get

τn = (2, 2, 1, 1),

and

W =



1.00 −0.10 + 0.45i 4.08− 0.54i −0.04− 0.06i −0.14− 0.61i 0.37 + 0.42i
0.76 + 1.59i 0.21 + 0.17i −0.90− 4.21i 0.01 + 0.18i −0.42− 0.10i 0.48− 0.26i
0.10− 1.13i 0.33 + 0.11i 1.02− 2.71i −0.03 + 0.11i −0.69− 0.50i 0.28− 0.25i
−4.66 + 4.08i 0.10− 0.41i −4.99− 0.18i 0.08 + 0.16i −0.77 + 1.00i −0.63− 1.19i
−2.39− 2.85i 0.05 + 0.14i 3.35− 0.81i −0.11 + 0.02i 0.45− 0.95i 1.02 + 0.57i
4.42− 0.39i −0.40− 0.17i 0.36 + 6.44i −0.04− 0.19i 0.89 + 0.75i −0.72 + 0.66i

 ,

where we report all numbers in three significant digits only, though all calculations were carried out
in full precision. The off-diagonal index is

residoffdiag = 8.3290e− 15,

which shows PEAS is feasible.

Example 4.2. In this example, we investigate how the separability of λ(PA) affects the performance
of PEAS.

Let

A0 = WHD0W, A1 = WHD1W, A2 = WHD2W,

where

D2 = diag(1, 1, 1), D1 = diag(−3,−2,−2), D0 = diag(2, 1− ε2, 2),

and

W =

 0.5417− 0.7983i 0.1186 + 0.1690i 0.5641 + 0.3498i
−0.8669− 0.6363i −0.5002 + 0.1359i 0.1803− 0.0979i
−0.0946− 0.0403i −0.5303 + 0.4836i −0.5898− 0.9762i

 .
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We know the spectrum of PA is

λ(PA) = {2, 1, 1− ε, 1 + ε, 1 + i, 1− i}.

In order to determine the basis of S(X,Λ) in step 2 of PEAS, one need to determine the null space of
certain matrix, we denote its singular values by σ1, σ2, . . ., in ascending order. We will see in the
following table that as ε deceases, σ3 increases from a near zero number. So numerically, we have
two choices for the dimension of S(X,Λ). In the following table, for different ε, we present σ1, σ2, σ3

and residoffdiag for different choices of dimS(X,Λ).

singular values residoffdiag

ε σ1 σ2 σ3 dimS(X,Λ) = 2 dimS(X,Λ) = 3

10−1 4.10e− 17 8.72e− 16 5.61e− 14 1.33e− 15 1.37e− 14
10−2 3.57e− 17 7.58e− 16 6.41e− 12 1.55e− 15 9.34e− 13
10−3 9.48e− 17 4.93e− 16 3.72e− 10 2.09e− 14 3.12e− 10
10−4 5.25e− 17 1.34e− 15 2.52e− 08 1.34e− 15 1.98e− 08
10−5 5.68e− 17 1.20e− 15 4.58e− 06 1.96e− 15 1.06e− 06

10−6 7.23e− 17 1.04e− 15 6.43e− 04 1.80e− 16 9.89e− 05
10−7 6.48e− 17 1.50e− 15 0.0239 2.59e− 15 0.0084
10−8 6.90e− 17 4.91e− 16 0.1288 9.28e− 16 0.2066

Table 4.1: Three smallest singular values and residoffdiag for different dimS(X,Λ)

Table 4.1 shows that the first and second smallest singular values σ1 and σ2 are essentially un-
changed as ε decreases. But the third smallest singular value σ3 increases greatly as ε decreases.
Moreover, comparing the third column with the fifth column, fourth with last, respectively, we can see
that residoffdiag is in the same order of the corresponding singular value.

In specific, A0, A1 and A2 can be joint diagonalized by W−1, that is,

W−HPA(λ)W−1 = λ2D2 + λD1 +D0 = PD(λ) = diag
(
PD11(λ), PD22(λ), PD33(λ)

)
,

where PD11(λ) = λ2 − 3λ+ 2, PD22(λ) = λ2 − 2λ+ 1− ε2, PD33(λ) = λ2 − 2λ+ 2. Apparently,

λ(PD11) = {2, 1}, λ(PD22) = {1 + ε, 1− ε}, λ(PD33) = {1 + i, 1− i}.

Then dist
(
λ(PD33), λ(PD11) ∪ λ(PD22)

)
= 1 and dist

(
λ(PD11), λ(PD22)

)
= |ε|, where dist(A,B) =

min{|a − b| | a ∈ A, b ∈ B}. That is why residoffdiag for dim(S(X,Λ)) = 2 maintains a high accuracy
as |ε| decrease to zero, but residoffdiag for dim(S(X,Λ)) = 3 increases greatly.

Example 4.3. In this example, we use PEAS to separate artificial mixtures of three natural images,
which is a BSS problem. The images were downloaded from “ICA group of Laboratory of Computer
and Information Science of Helsinki University of Technology”[26]. The original 256 × 512 pixel
images were vectorised by stacking the columns next to each other. The mixing matrix B is

B =

0.3 0.4 0.2
0.3 0.3 0.6
0.4 0.3 0.2

 .
The original images are given in Figure 4.1 and mixed images in Figure 4.2.

We use the algorithm introduced in [23] to obtain a set of derivative matrices, then apply PEAS
to it, solving a JD problem. Finally, the separated images are given in Figure 4.3. Since the inde-
terminacy of BSS[22], the order of separated images are different from that of original images, and
the second figure in Figure 4.3 is black and white reversed. After reversing, we get Figure 4.4.
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Figure 4.1: Original images

Figure 4.2: Mixed images

Figure 4.3: Separated images

Figure 4.4: The second image after reversing

The off-diagonal index of the derivative matrix set corresponding to the original images and
separated images are 0.0754, 0.0067, respectively. This means a smaller off-diagonal index does
NOT necessarily leads to a better quality of separated images.

Example 4.4. We apply PEAS to the convolutive blind separation of audio signals to illustrate the
effectiveness of PEAS in the CBSS context. The original audio signals (three music) are given in
Figure 4.5, which are T = 218 = 262144 time samples. The convolutive system, which is defined by
a set of unknown filters with responses, is the same as that in section 4.3 of [25]. The 6 observed
music signals are given in Figure 4.7. We divide the observations into Nb = 26 = 64 epochs of
Tb = 212 = 4096 samples and use a rectangular window of width Tb to estimate the correlation
matrices Ri, where i = 1, 2, 3. By applying PEAS to {Ri}3i=1, we get the unmixing matrix. The
separated signals are given in Figure 4.6.

We can see from the above figures that the resulting signals are permuted and their amplitudes
are changed, but well separated. In practice, such indeterminacy is acceptable.

In this example, the off-diagonal index is residoffdiag = 0.0039.
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Figure 4.5: Original music signals
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Figure 4.6: Separated music signals
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Figure 4.7: Observed music signals

Remark 4.1. Example 4.3 and 4.4, PEAS are applied to solve approximate JD and GJBD problems,
respectively. The results are satisfying for practical applications.

5 Conclusion

In this paper, we show that GJBD of A = {Ai}pi=0 is strongly connected with the eigeninformation
of the associated matrix polynomial PA(λ) =

∑p
i=0 λ

iAi. Under the assumption that PA(λ) has
only simple eigenvalues, a solvability theory for GJBD is established and the solutions of GJBD are
characterized by the eigeninformation. Furthermore, we prove that the solution to nu-gjbd is unique
up to block permutation and block scaling. Based on the established theory, we briefly present PEAS,
which solves nu-gjbd. Our limited numerical tests show that PEAS is not only able to handle exact
nu-gjbd well when the eigenvalues of PA(λ) are well separated, and also feasible and effective for
approximate nu-gjbd problems arising in practical applications, e.g. BSS and CBSS.

Finally, we should point out that there are obviously unfinished tasks in this study, e.g., extension
of the theory presented here to the case when PA(λ) has semi-simple eigenvalues, or even deficient
eigenvalues; improvement of PEAS, since it is just a rough framework; and stable analysis for PEAS,
etc.
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