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Abstract. In this paper we develop a general critical point theory to deal with existence
and locations of multiple critical points produced by minimax methods in relation to mul-
tiple invariant sets of the associated gradient flow. The motivation is to study non-trivial
nodal solutions with each component sign-changing for a class of nonlinear Schrödinger
systems which arise from Bose-Einstein condensates theory. Our general method allows
us to obtain infinitely many mixed states of nodal solutions for the repulsive case.

1. Introduction

The paper is to develop a general critical point theory aiming at applications in the
study of existence and multiplicity of mixed states of nodal solutions for nonlinear elliptic
systems. The abstract theory is modeled on the classical mountain-pass theorem and the
symmetric mountain-pass theorem due to Ambrosetti and Rabinowitz [1, 34]. To motivate
our study let us consider the following nonlinear Schrödinger systems of k equations −∆uj + λjuj =

k∑
i=1

βiju
2
iuj, x ∈ RN

uj(x) → 0, as |x| → ∞, j = 1, ..., k

(1.1)

where N = 2, 3, k ≥ 2, λj > 0, for j = 1, ..., k, βij are constants satisfying βjj > 0 for
j = 1, ..., k, βij = βji for 1 ≤ i < j ≤ k. This class of systems, also known as Gross-
Pitaevskii equations, have applications in many physical problems such as in nonlinear
optics and in multispecies Bose-Einstein condensates (e.g., [16, 39]). Physically, βjj and βij

(i ̸= j) are the intraspecies and interspecies scattering lengths respectively. The sign of the
scattering length determines whether the interactions of states are repulsive or attractive.
In the repulsive case (βij < 0) the components tend to segregate with each other leading
to phase separations. These phenomena have been documented in experiments as well as
in numeric simulations (e.g.,[30], [34], [12] and references therein). Mathematical work has
been done extensively in recent years and we refer [2, 9, 10, 15, 20, 21, 26, 27, 29, 31, 33,
35, 37, 38, 40, 41] for more references. In particular multiplicity of positive solutions have
been established in [4, 15, 32, 37, 38, 41].

There are new challenges in dealing with the existence of multiple solutions, in particular
multiple sign-changing solutions. First of all, there are many semi-trivial solutions due to
systems collapsing, i.e., solutions with one or more components being zeroes. For example,
if u1 = · · · = uk−1 = 0 and uk satisfies −∆uk +λkuk = βkku

3
k then (0, ..., 0, uk) is a solution
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of the full k-system. In fact there are infinitely many such semi-trivial solutions. Further-
more there are also infinitely many semi-trivial solutions with two or more components
being non-zeroes with the systems collapsing to even lower order ones. Secondly, making
the situations more complicated is the fact that there can exist infinitely many positive
solutions (solutions with each components being positive). This was established in [15, 41]
for the case of 2-systems when λ1 = λ2 = 1 and µ1 = µ2 = 1, and extended in [38] to the
case of k-equations when λj = 1 and βjj = 1 for j = 1, ..., k and βij = β for i ̸= j. Thus
to obtain sign-changing critical points for the variational formulation one needs to distin-
guish them from the known existing semi-trivial critical points and the existing positive
critical points. It is very difficult to develop a critical theory to accomplish this goal as
there are many family of these known existing critical points. Therefore for these nonlinear
Schrödinger systems nodal solutions, in particular multiplicity of nodal solutions have not
been studied so far due to these difficulties.

On the other hand, over the years there have been systematic studies on nodal solu-
tions for scalar equations by using a combination of minimax methods and the method
of invariant sets of gradient flows. Progress have been made along this direction and we
refer to [3, 5, 6, 7, 8, 14, 22, 23, 24, 28] and the survey [25] for more references. However
most of the methods in treating scalar equations are not applicable directly to systems of
equations.

For nonlinear systems using invariant sets of flows we know only two papers. In Liu-Wang
[26, 27] a construction of invariant sets has been developed to locate multiple non-trivial
solutions but without giving any information about nodal property of the components of
solutions. In [36] flow invariance is used to study sign-changing solutions of a nonlinear
eigenvalue problem in a bounded domain Ω with Dirichlet boundary condition −∆uj +

aju
3
j + β

∑k
i=1 u

2
iuj = λj,βuj, j = 1, ..., k where aj ≥ 0 and β > 0 and infinitely solutions

(u, λ⃗) with u sign-changing are given. This is a constrained variational problem for the
de-focusing case different from our focusing case.

In this paper we develop a general theory modeled on the classical mountain-pass the-
orem and the symmetric mountain-pass theorem ([1, 34]) in the presence of a family of
invariant sets of the associated pseudo gradient flow. In Section 2 we establish an abstract
framework which is new even in applications for scalar equations. The new abstract results
are given in Theorems 2.4, 2.5, 2.6. Our new approach allows us to tackle the difficulties in
applications to systems of equations as mentioned above. In Section 3 we consider applica-
tions of our abstract theory to nonlinear Schrödinger system (1.1). In particular we show
that for the repulsive case (i.e., βij ≤ 0 for i ̸= j) systems (1.1) has infinitely many mixed
states of sign-changing solutions. A mixed state of nodal solution u = (u1, ..., uk) is such
that some of the k components are sign-changing functions and the rest of the components
are one sign functions. Without loss of generality we may take 1 ≤ m ≤ k and we look for
solutions u = (u1, ..., uk) such that uj are sign-changing for j = 1, ...,m and uj are signed
functions for j = m+ 1, ..., k.
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Theorem 1.1. Assume N = 2, 3, k ≥ m ≥ 1, λj > 0, βjj > 0 for j = 1, ..., k, βij = βji ≤ 0
for 1 ≤ i < j ≤ k. Then the system (1.1) possesses infinitely many radially symmetric
solutions with the first m components sign-changing and the last k−m components positive.

The paper is organized as follows. In Section 2 we establish an abstract theory of
minimax methods constructing minimax critical points with their locations identified in
relation to a family of invariant of sets of the associated gradient flow, aiming toward
applications to the nonlinear Schrödinger systems like (1.1). In Section 3 we develop the
necessary analytic framework in order to apply the abstract theory from Section 2 and to
construct multiple mixed states of nodal solutions, proving Theorem 1.1. We also mention
possible extensions and further questions along the line of work.

2. Intersection property and multiple critical point theorems

We establish an abstract critical point theory for the existence and multiplicity of critical
points with the presence of multiple invariant sets of the associated gradient flow. The
theory is modeled on the classical mountain-pass theorem and the symmetric mountain-
pass theorem given by Ambrosetti and Rabinowitz ([1, 34]). In the setting of these theorems
if we introduce a family of invariant sets of the gradient flow we want to investigate the
locations of critical points relative to the invariant sets.

One of the most useful methods in treating sign-changing solutions for scalar equations
is by using minimax method in the presence of invariant sets of the gradient flows. Roughly
speaking, one shows that the positive and negative cones or their neighborhoods are invari-
ant under the negative gradient flow and builds this information into the construction of
minimax critical values so that critical points are obtained outside these invariant neigh-
borhoods. In applications to systems of elliptic equations the situation is that we may
construct a finite family of invariant sets and we seek to find critical points outside the
union of these invariant sets. The construction of these invariant sets need to have both
the semi-trivial critical points and the signed critical points included so critical points
found outside these invariant sets are non-trivial sign-changing critical points. The idea
here seems quite clear but in order to implement this we would need some new intersection
properties. In fact our approach is different from that used for scalar case (i.e., k = 1)
and is a new and simpler treatment even for scalar case. Though in our applications to
nonlinear Schrödinger systems we have smooth functionals, we state our results in quite
general settings, for continuous functionals defined on a metric space as the abstract treat-
ments are the same. We refer to [11, 18, 19] for the background of critical point theory of
continuous functionals.

Now we introduce some concepts and notations. Let X be a complete metric space
with the metric d and f be a continuous functional on X. For c ∈ R denote f c = {x ∈
X | f(x) ≤ c}, Kc = {x ∈ X | f(x) = c, f ′(x) = 0}. We say G : X → X is an isometric
involution if G satisfies G2 = Id and d(Gx,Gy) = d(x, y) for x, y ∈ X.
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Denote the k dimensional simplex ∆ in Rk and its faces ∂i∆, i = 0, 1, ..., k:

∆ = {t ∈ Rk | t = (t1, ..., tk), ti ≥ 0, i = 1, ..., k, t1 + · · · tk ≤ 1},
∂i∆ = ∆ ∩ {ti = 0}, i = 1, ..., k,

∂0∆ = ∆ ∩ {t1 + · · ·+ tk = 1}.
(2.1)

Lemma 2.1. Let X be a complete metric space with the metric d. Let Pi, i = 1, ..., k be
open subsets of X, and denote

M = ∩k
i=1Pi, Σ = ∩k

i=1∂Pi. (2.2)

Assume that a map φ : ∆ → X satisfies φ(∂i∆) ⊂ Pi, i = 1, ..., k, and φ(∂0∆) ∩M = ∅.
Then φ(∆) ∩ Σ ̸= ∅.

Proof. Define fi : ∆ → R, i = 1, ..., k by

fi(t) =

{
d(φ(t), ∂Pi), if φ(t) /∈ Pi

− d(φ(t), ∂Pi), if φ(t) ∈ Pi.
(2.3)

Denote F = (f1, ..., fk). Then φ(t) ∈ Σ, if and only if F (t) = 0. Define a homotopy
G : [0.1]×∆ → Rk by

G(λ, t) =

{
λF (t) + (1− λ)t− (λ0 − λ)e, 0 ≤ λ ≤ λ0, t ∈ ∆

λF (t) + (1− λ)t, λ0 ≤ λ ≤ 1, t ∈ ∆
(2.4)

where e = (1, ..., 1) ∈ Rk, λ0 is a constant to be chosen. Assume F (t) ̸= 0 for t /∈ ∂∆.
Otherwise we are done. Denote G(λ, t) = (g1(λ, t), ..., gn(λ, t)). For 0 < λ < 1 and t ∈ ∂i∆
i = 1, ..., k, ti = 0, φ(t) ∈ Pi, fi(t) = −d(φ(t), ∂Pi) < 0. Hence gi(λ, t) ≤ λfi(t)+(1−λ)ti <
0.

For t ∈ Int(∂0∆), ti > 0, i = 1, ..., k, and φ(t) /∈ M = ∩k
i=1Pi. There exists an index,

say i = 1, φ(t) /∈ P1 and f1(t) = d(φ(t), ∂Pi) ≥ 0. Hence for λ0 ≤ λ < 1, t ∈ Int(∂0∆),
g1(λ, t) = λf1(t) + (1− λ)t1 > 0. For 0 ≤ λ ≤ λ0, t ∈ Int(∂0∆)

k∑
i=1

gi(λ, t) = λ
k∑

i=1

fi(t) + (1− λ)
k∑

i=1

ti − (λ0 − λ)k ≥ 1− λ0(1 + k + a) ≥ 1

2

where a = maxt∈∆
∑k

i=1 |fi(t)| and we choose λ0 = 1
2(1+k+a)

. In any case G(λ, t) ̸=
0 for (λ, t) ∈ [0, 1] × ∂∆. By homotopy invariance of the Brouwer degree we have
deg(F, Int∆, 0) = deg(Id − λ0e, Int∆, 0) = 1. Hence there exists a point t ∈ Int∆ such
that F (t) = 0, that is, φ(t) ∈ Σ = ∩k

i=1∂Pi. �
In the following we establish estimates on genus of some symmetric sets for interaction

property. We refer to e.g., [34] for the definition and basic properties of the concept of
genus.

Lemma 2.2. Let X be a complete metric space with the metric d. Let G : X → X be an
isometric involution. Assume k ≥ 1 is an integer. For some k ≥ m ≥ 1 let Pi, i = 1, ...,m,
be open subsets of X and set Qi = GPi, Mi = Pi ∩ Qi. Let Mj, j = m + 1, ..., k, be
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open sets satisfying GMj = Mj. Denote Bnk ⊂ Rnk the closed unit ball in Rnk and
t = (t1, ..., tk) ∈ Bnk with t1, ..., tk ∈ Rn. Assume a continuous map φ : Bnk → X satisfies

(1) φ(−t) = Gφ(t), t ∈ Bnk;
(2) For i = 1, ..., k, φ(t) ∈ Mi, if ti = 0;
(3) φ(t) /∈ M := ∩k

i=1Mi, if t ∈ ∂Bnk.
Then γ(φ(Bnk \ Y ) ∩ Σ) ≥ j −m, where Σ = ∩m

i=1(∂Pi ∩ ∂Qi) ∩ ∩k
j=m+1∂Mj, and open

subset Y ⊂ Bnk satisfies Y = −Y , γ(Y ) ≤ n− j, m+ 1 ≤ j ≤ n.

Proof. Denote O = {t ∈ Bnk | φ(t) ∈ M}. Since φ(0) ∈ M and φ(t) /∈ M for t ∈ ∂Bnk, O
is a symmetric open neighborhood of 0 in Rnk, and

φ(∂O) ⊂ ∂M. (2.5)

By Borsuk’s theorem, γ(∂O) = nk. Decompose ∂M as a disjoint union

∂M = ∂(∩k
i=1Mi) = C1 ∪ C2 ∪ · · · ∪ Ck (2.6)

where

C1 = ∪k
i=1(∂Mi ∩ ∩j ̸=iMj), Ck = ∩k

i=1∂Mi = ∩m
i=1∂(Pi ∩Qi) ∩ ∩k

j=m+1∂Mi

and in general for 1 ≤ p ≤ k

Cp = ∪s∈Sp(∩i∈s∂Mi ∩ ∩j∈scMj) (2.7)

where the index set Sp = {s = (i1, ..., ip) | 1 ≤ i1 < i2 < ... < ip ≤ k}, and sc is an index
set of order k − p such that its components have no common with that of s. Let us define
for p = 1, ..., k − 1, Ap = {t ∈ ∂O | φ(t) ∈ Cp}. For the set Ck we have

Ck = ∩m
i=1∂(Pi ∩Qi) ∩ ∩k

j=m+1∂Mi

⊂ ∪m
i=1((∂Pi ∩Qi) ∪ (Pi ∩ ∂Qi)) ∪ Σ.

(2.8)

Denote

Bi = {t ∈ ∂O | φ(t) ∈ (∂Pi ∩Qi) ∪ (Pi ∩ ∂Qi)}, i = 1, 2, ...,m. (2.9)

Let Z1 = {x ∈ ∂O\Y |φ(x) ∈ Σ} and Z2 = ∪k−1
p=1Ap ∪∪m

i=1Bi. Then ∂O\Y ⊂ Z1 ∪Z2. We

have γ(φ(Bnk \ Y ) ∩ Σ) ≥ γ(Z1). If there exists an odd continuous map h : ∂O → Rl for
some integer l such that the restriction on Z2 satisfies h : Z2 → Rl \ {0} then we we may
easily argue that γ(Z1) ≥ γ(∂O\Y )− l. Next we show that we may construct such a map
with l = n(k − 1) +m. This will finish the proof by

γ(Z1)

≥γ(∂O \ Y )− (k − 1)n−m

≥nk − (n− j)− (k − 1)n−m = j −m.

(2.10)

We construct the map as follows. For p = 1, ..., k − 1, define a map fp : B
nk → Rn by

fp(t) =
∑
s∈Sp

ti(s)d(φ(t), ∂(∩j∈scMj)) (2.11)
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where i(s) = i1 for s = (i1, ..., ip) ∈ Sp. Since Mj, j = 1, ..., k, are G-invariant, f is odd in
t. In fact,

fp(−t) =
∑
s∈Sp

(−t)i(s)d(φ(−t), ∂(∩j∈scMj))

= −
∑
s∈Sp

(t)i(s)d(Gφ(t), ∂(∩j∈scMj))

= −
∑
s∈Sp

(t)i(s)d(φ(t), G∂(∩j∈scMj))

= −
∑
s∈Sp

(t)i(s)d(φ(t), ∂(∩j∈scMj))

= −fp(t).

(2.12)

We show that fp(t) ̸= 0 for t ∈ Ap. Suppose φ(t) ∈ Cp. There exists s0 ∈ Sp such that
φ(t) ∈ ∩i∈s0∂Mi ∩ ∩j∈sc0Mj. Then ti(s0) ̸= 0 and d(φ(t), ∂(∩j∈sc0Mj)) > 0. If s ∈ Sp and
s ̸= s0, then sc ∩ s0 ̸= ∅,

φ(t) ∈ ∩i∈s0∂Mi ∩ ∩j∈sc0Mj ⊂ ∩i∈s0∩sc∂Mi ∩ ∩j∈sc0∩scMj ⊂ ∂(∩j∈scMj)

and d(φ(t), ∂(∩j∈scMj)) = 0, for all s ̸= s0. We have for t ∈ Ap

f(t) =
∑
s∈Sp

ti(s)d(φ(t), ∂(∩j∈scMj))

= ti(s0)d(φ(t), ∂(∩j∈sc0Mj)) ̸= 0.

(2.13)

Next for i =, 1...,m define gi : B
nk → R by

gi(t) = d(φ(t), ∂Pi)− d(φ(t), ∂Qi). (2.14)

Then we have
gi(−t) = d(φ(−t), ∂Pi)− d(φ(−t), ∂Qi)

= d(Gφ(t), ∂Pi)− d(Gφ(t), ∂Qi)

= d(φ(t), G∂Pi)− d(φ(t), G∂Qi)

= d(φ(t), ∂Qi)− d(φ(t), ∂Pi)

= −gi(t).

(2.15)

Moreover for φ(t) ∈ ∂Pi∩Qi, d(φ(t), ∂Pi) = 0, d(φ(t), ∂Qi) < 0 and gi(t) = −d(φ(t), ∂Qi) >
0. Similarly, for φ(t) ∈ Pi ∩ ∂Qi, gi(t) = d(φ(t), ∂Pi) < 0. Now we may set

h = (f1, ..., fk−1, g1, ..., gm) : B
nk → Rn(k−1)+m

with the desired property. �
Definition 2.3. Let X be a complete metric space with the metric d and f be a continuous
functional on X. Let Pi, i = 1, ..., k be a family of open sets in X. Set W = ∪k

i=1Pi.
a) We say {Pi}k1 are an admissible family of invariant sets with respect to f at level c if

the following deformation property holds: if Kc \ W̄ = ∅ there exists ϵ0 > 0 such that for
0 < ϵ < ϵ0 there exists a continuous map η : X → X satisfying
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(1) η(P̄i) ⊂ Pi, i = 1, ..., k.
(2) η|fc−2ϵ = Id.
(3) η(J c+ϵ \W ) ⊂ J c−ϵ.
b) Assume further G is an isometric involution of X and f is a G-invariant continuous

functional on X. We say {Pi}k1 are a G-admissible family of invariant sets with respect to
f at level c if the following deformation property holds: there exists a symmetric closed
neighborhood N of Kc \ W with γ(N) < ∞ and ϵ0 > 0 such that for 0 < ϵ < ϵ0 there
exists a continuous map η : X → X satisfying

(1) η(P̄i) ⊂ Pi, η(Q̄i) ⊂ Qi, i = 1, ..., k, here Qi = GPi, i = 1, ..., k.
(2) η ◦G = G ◦ η.
(3) η|fc−2ϵ = Id.
(4) η(J c+ϵ \ (N ∪W )) ⊂ J c−ϵ.

Theorem 2.4. Let X be a complete metric space, Pi, i = 1, ..., k be open subsets of X.
Denote M = ∩k

i=1Pi, Σ = ∩k
i=1∂Pi, and W = ∪k

i=1Pi. Let f be a continuous functional on
X. Assume that {Pi}k1 is an admissible family of invariant sets with respect to f at level c
for c ≥ c∗ := infu∈Σ f(u). Suppose that there exists a map φ0 : ∆ → X satisfying

(1) φ0(∂i∆) ⊂ Pi, i = 1, ..., k.
(2) φ0(∂0∆) ∩M = ∅.
(3) c0 = supu∈φ0(∂0∆) f(u) < c∗.
Define

c = inf
φ∈Γ

sup
u∈φ(∆)\W

I(u) (2.16)

where

Γ = {φ ∈ C(∆, X) | φ(∂i∆) ⊂ Pi, i = 1, ..., k, φ|∂0∆ = φ0}. (2.17)

Then c is a critical value of f and Kc \W ̸= ∅.

Proof. By Lemma 2.2, φ(∆) ∩ Σ ̸= ∅ for any φ ∈ Γ. Hence

c = inf
φ∈Γ

sup
u∈φ(∆)\W

f(u) ≥ inf
u∈Σ

f(u) = c∗ > c0 = sup
u∈φ0(∂0∆)

f(u). (2.18)

Assume Kc \W = ∅. Take 0 < ϵ ≤ ϵ0, c−2ϵ ≥ c∗−2ϵ > c0 so that φ0(∂0∆) ⊂ f c0 ⊂ f c−2ϵ.
There exists a continuous map η : X → X satisfying (1), (2), and (3) in definition 2.3 a).
Then η ◦ φ ∈ Γ for φ ∈ Γ. In fact, η ◦ φ(∂Pi) ⊂ η(Pi) ⊂ Pi, i = 1, ..., k, and η ◦ φ|∂0∆ =
η ◦φ0|∂0∆ = φ0|∂0∆. On the other hand, by the definition of c, there exists φ ∈ Γ such that
φ(∆)\W ⊂ f c+ϵ. Hence η ◦φ(∆)\W ⊂ (η(φ(∆)\W )∪ η(W ))\W ⊂ η(f c+ϵ \W ) ⊂ f c−ϵ,
which is a contradiction. �

Theorem 2.5. Let X be a complete metric space with an isometric involution G, Pi,
i = 1, ..., k be open subsets of X. Denote Qi = −GPi, i = 1, ..., k, M = ∩k

i=1(Pi ∩ Qi),
Σ = ∩k

i=1(∂Pi∩∂Qi), and W = ∪k
i=1(Pi∪Qi). Let f be a G−invariant continuous functional

on X. Assume that {Pi}k1 is a G-admissible family of invariant sets with respect to f at
level c for c ≥ c∗ := infu∈Σ f(u). Suppose that for any n ∈ N there exists a continuous map
φ(n) : Bnk → X satisfying
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(1) Denote t = (t1, ..., tk) ∈ Bnk, t1, ..., tk ∈ Rn. Then φ(n)(t) ∈ Mi := Pi ∩ Qi, if
ti = 0, i = 1, ..., k.

(2) φ(n)(∂Bnk) ∩M = ∅.
(3) c0 := max{supu∈FG

f(u), supu∈φ(n)(∂Bnk) f(u)} < c∗.

(4) φ(n)(−t) = Gφ(n)(t), t ∈ Bnk,
where FG = {u|Gu = u} is the set of fixed points of G. Define

cj = inf
B∈Γj

sup
u∈B\W

I(u) (2.19)

where

Γj = {B | B = φ(Bnk \ Y ), φ ∈ Gn, n ≥ j, open subset − Y = Y ⊂ Bnk, γ(Y ) ≤ n− j},
(2.20)

and

Gn = {φ | φ ∈ C(Bnk, X), φ(−t) = Gφ(t), t ∈ Bnk;φ(t) ∈ Mi, if ti = 0;φ|∂Bnk = φ(n)}.
(2.21)

Then cj, j ≥ k + 1, are critical values of f with cj → ∞ and Kcj \W ̸= ∅.

Proof. We first claim Kcj \W ̸= ∅.
Let B ∈ Γj, j ≥ k + 1. Then B = φ(Bnk \ Y ), φ ∈ Gn, n ≥ j, open subset − Y = Y ⊂

Bnk, γ(Y ) ≤ n− j. By Lemma 2.2, γ(B ∩ Σ) ≥ j − k ≥ 1, for j ≥ k + 1. Hence

cj = inf
B∈Γj

sup
u∈B\W

f(u) ≥ inf
u∈Σ

f(u) = c∗ > c0 = max{ sup
u∈FG

f(u), sup
u∈φ(n)(∂Bnk)

f(u)} (2.22)

AssumeKcj\W = ∅. Take 0 < ϵ ≤ ϵ0, cj−2ϵ ≥ c∗−2ϵ > c0 so that φ
(n)(∂0δ) ⊂ f c0 ⊂ f cj−2ϵ.

Then there exists a continuous map η : X → X satisfying (1), (2), and (3) (4) in definition
2.3 b). Then A = η(B) ∈ Γj for B ∈ Γj. On the other hand, by the definition of cj, there
exists B ∈ Γj such that B \W ⊂ f cj+ϵ. Hence

A \W = η(B) \W ⊂ (η(B \W ) ∪ η(W )) \W ⊂ η(B \W ) ⊂ f cj−ϵ, (2.23)

which is a contradiction. The claim is proved.
Next we claim cj → ∞ as j → ∞.
Since cj is nondecreasing in j, cj → c as j → ∞. If c < ∞, then c is a critical value

of f and c ≥ c∗ > supu∈FG
f(u). By deformation property there exists a symmetric open

neighborhood N of Kc \ W with γ(N) = m < ∞. By deformation property there exists
a constant ϵ0 > 0 such that for 0 < ϵ < ϵ0 there exists a continuous map η : X → X
with the properties in Definition 2.3 b). Assume c − 2ϵ ≥ c∗ − 2ϵ > c0. Choose j
large enough such that cm+j ≥ cj > c − ϵ/2. There exists a set B ∈ Γj+m such that
B \ W ⊂ f cj+m+ϵ ⊂ f c+ϵ. Then B = φ(Bnk \ Y ), φ ∈ Gn, n ≥ m + j, open subset
−Y = Y ⊂ Bnk, γ(Y ) ≤ n − m+ j. We have η ◦ φ ∈ Gn. Let Y1 = Y ∪ φ−1(N). Then
γ(Y 1) ≤ γ(N) + γ(Y ) ≤ m + n − (j + m) = n − j. Let A = η ◦ φ(Bnk \ Y ). It follows
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A ∈ Γj and

A \W = η ◦ φ(Bnk \ Y1) \W ⊂ η(φ(Bnk \ Y ) \N) \W
⊂ (η(f c+ϵ \ (N ∪W )) ∪ η(W )) \W ⊂ η(f c+ϵ \ (N ∪W )) ⊂ f c−ϵ ⊂ f cj− ϵ

2

(2.24)

which is a contradiction. �
Theorem 2.6. Let X be a complete metric space with an isometric involution G, Pi,
i = 1, ...,m be open subsets of X. Denote Qi = −GPi and Mi = Pi ∩ Qi, i = 1, ...,m.
Let Mj for j = m + 1, ..., k be open sets of X satisfying Mj = GMj. Set M = ∩k

i=1Mj,
Σ = ∩m

i=1(∂Pi ∩ ∂Qi) ∩ ∩k
j=m+1∂Mj, and W = ∪m

i=1(Pi ∪ Qi) ∪ ∪k
j=m+1Mj. Let f be a

G−invariant continuous functional on X. Assume that {{Pi}m1 , {Mj}ki=m+1} are a G-
admissible family of invariant sets with respect to f at level c for c ≥ c∗ := infu∈Σ f(u).
Suppose that for any n ∈ N there exists a continuous map φ(n) : Bnk → X satisfying

(1) Denote t = (t1, ..., tk) ∈ Bnk, t1, ..., tk ∈ Rn. Then φ(n)(t) ∈ Mi, if ti = 0, i = 1, ..., k.
(2) φ(n)(∂Bnk) ∩M = ∅.
(3) c0 := supu∈φ(n)(∂Bnk) f(u) < c∗.

(4) φ(n)(−t) = Gφ(n)(t), t ∈ Bnk.
Define

cj = inf
B∈Γj

sup
u∈B\W

I(u) (2.25)

where

Γj = {B | B = φ(Bnk \ Y ), φ ∈ Gn, n ≥ j, open subset − Y = Y ⊂ Bnk, γ(Y ) ≤ n− j},
(2.26)

and

Gn = {φ | φ ∈ C(Bnk, X), φ(−t) = Gφ(t), t ∈ Bnk;φ(t) ∈ Mi, if ti = 0;φ|∂Bnk = φ(n)}.
(2.27)

Assume (Kcj \ W ) ∩ FG = ∅ for j ≥ m + 1, where FG = {u|Gu = u} is the set of fixed
points of G. Then cj, j ≥ m+ 1, are critical values of f with cj → ∞ and Kcj \W ̸= ∅.

The proof of this theorem is similar to the proof Theorem 2.5 with some obvious modi-
fications. We omit it here.

Remark 2.7. The theorems are extensions of the symmetric mountain pass theorem due
to Ambrosetti and Rabinowitz ([1, 34]). We give the locations of the minimax critical
points constructed relevant to a family of invariant sets of the variational flow. These are
also considered generalizations of the framework done in [8, 3, 5, 6, 7, 22, 23] where k = 1
was treated.

Remark 2.8. In our applications to nonlinear Schrödinger systems the deformation prop-
erty in the requirements of admissible family are readily satisfied. There are other general
sufficient conditions which assure the admissibility of the invariant sets family.

a) Assume X is a Hilbert space, f is a C1-functional, and the gradient of f is of the form
∇f(u) = u − A(u) where A is a nonlinear operator satisfying A(∂Pi) ⊂ Pi, A(∂Qi) ⊂ Qi,
i = 1, ..., k. We refer to [6] for more details on this.
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b) Assume X is a Banach space, f is a C1-functional, and there exists a nonlinear
compact map A : X → X satisfying A(∂Pi) ⊂ Pi, A(∂Qi) ⊂ Qi, i = 1, ..., k. Furthermore
assume that there exist 1 < p < ∞ and positive constants a1, a2 such that

⟨f ′(u), u− A(u)⟩ ≥ a1||u− A(u)||p, ||f ′(u)|| ≤ a2||u− A(u)||p−1.

Here the constants a1, a2 may depend on the value of f(u). More precisely, given b ∈ R,
there exist a1 = a1(b), a2(b) such that the above inequalities hold for u ∈ f b. We refer to
[5, 7, 17] for more details on this. Also in C1

0 topology some related work in [3, 8, 22, 23].
c) More generally, we may assume

⟨f ′(u), u− A(u)⟩ ≥ ||u− A(u)||g1(||u− A(u)||), ||f ′(u)|| ≤ g2(||u− A(u)||),
where g1, g2 are strictly increasing continuous functions on [0,∞) satisfying g1(0) = g2(0) =
0. Again the functions g1, g2 may be dependent of f(u). An example of this type is given
in next section when we treat the nonlinear Schrödinger system (1.1).

3. Applications to nonlinear Schrödinger systems

We consider the nonlinear Schrödinger system −∆uj + λjuj =
k∑

i=1

βiju
2
iuj, x ∈ RN

uj(x) → 0, as |x| → ∞, j = 1, ..., k

(3.1)

where N = 2, 3, k ≥ 2, λj > 0, for j = 1, ..., k, βij are constants satisfying βjj > 0 for
j = 1, ..., k, βij = βji ≤ 0 for 1 ≤ i < j ≤ k.

To make the paper more readable we first prove Theorem 1.1 for a special case m = k
whose proof is more straightforward in term of using our abstract results. I.e., we look for
solutions u = (u1, ..., uk) with each component uj sign-changing for j = 1, ..., k. Later we
will point necessary changes for the complications caused in the general case 1 ≤ m ≤ k−1.
We will also consider the case m = 0, i.e., solutions with each component signed. We first
prove the following theorem.

Theorem 3.1. Assume N = 2, 3, k ≥ 2, λj > 0, βjj > 0 for j = 1, ..., k, βij = βji ≤ 0
for 1 ≤ i < j ≤ k. Then the system (3.1) possesses infinitely many radially symmetric
solutions with each component sign-changing.

Remark 3.2. We point out that our method does not depend on the radially symmetry
of the problems. We work in radially symmetric functions for the compactness of the
problems, i.e., the compact embedding from H1(RN) into L4(RN). Thus our result is still
valid for other cases as long as the compactness holds. For example, we may consider
the systems in an arbitrary bounded domain with Dirichlet boundary condition and we
obtain infinitely many nodal solutions by the same methods. In case of RN when there are
potentials involved, for example, when λj = λj(x) for j = 1, ..., k satisfying a compactness
condition like

(C) there exists r > 0 such that for all M > 0, the Lebesgue measure of {x ∈
Br(y) | λj(x) ≤ M} tends to zero as |y| → ∞.
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Then we obtain a unbounded sequence of nodal solutions. We leave the precise state-
ments to the readers and the proofs requires little changes.

Let E = H1
r (RN) be the space of radially symmetric functions in H1(RN) in which we

shall use the equivalent inner products

(u, v)j =

∫
RN

(∇u∇v + λjuv)dx, j = 1, ..., k,

and the induced norm || · ||j. The product space Ek =
︷ ︸︸ ︷
E × · · · × E is a subspace of

(H1(RN))k endowed with the inner product

(u, v) =
k∑

j=1

(u, v)j, u = (u1, ..., uk), v = (v1, ..., vk),

which gives rise to a norm on Ek: || · ||. In the following we use | · |p to denote the Lp norm
and constant C may be used from line to line for different constants but independent of
the arguments.

Radially symmetric solutions correspond to critical points of the functional

J(u) =
1

2
||u||2 − 1

4

∫
RN

k∑
i,j=1

βiju
2
iu

2
jdx. (3.2)

It is easy to check that J ∈ C2(Ek) and J satisfies the (PS) condition.
If the matrix B = (βij) is positive definite our abstract theory can be applied in a more

straight forward way. In the following we consider two cases, one with this assumption and
one without this assumption. In the latter case we need to further modify the variational
problem and a limiting procedure is used to obtain the desired results.

(B) The matrix (βij) is positive definite.

3.1 The proof of Theorem 3.1 under the additional condition (B)

We introduce some notations first. Let P be the positive cone in H1
r (RN), P = {u ∈

H1
r (RN) | u ≥ 0, a.e.}. For δ > 0 we define open cones in Ek for i = 1, ..., k, by

Pi = Pi(δ) = {u ∈ Ek | u = (u1, ..., uk), d(ui,−P ) < δ},

Qi = Qi(δ) = −Pi = {u ∈ Ek | u = (u1, ..., uk), d(ui, P ) < δ}.
For a function u, let u+ = max(u, 0) and u− = min(u, 0) so u = u++u−. Next we define an
operator A : Ek → Ek as follows. Given u = (u1, ..., uk) ∈ Ek, define w = Au = (w1, ..., wk)
by  −∆wj + λjwj −

∑
i̸=j

βiju
2
iwj = βjju

3
j , x ∈ RN

wj(x) → 0, as |x| → ∞, j = 1, ..., k.

(3.3)
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Alternatively in the weak form we have∫
RN

(∇wj∇φ+ λjwjφ)dx−
∫
RN

(
∑
i̸=j

βiju
2
i )wjφdx =

∫
RN

βjju
3
jφdx,∀φ ∈ H1

r (RN). (3.4)

Then we can show that A is locally Lipschitz continuous. Using the operator A we may
construct a negative pseudo gradient flow associated with J as follows. Let φt(u) with the
maximal interval of existence [0, σ(u)) be the solution of the initial value problem

d

dt
φt = −(φt − Aφt), t ∈ [0, σ(u)

φ0 = u.
(3.5)

Lemma 3.3. For sufficiently small δ > 0, A(∂Pj) ⊂ Pj, A(∂Qj) ⊂ Qj, j = 1, ..., k. Hence
Pj, Qj, j = 1, ..., k are strictly invariant for the flow φt in the sense that φt(u) ∈ intPj

(resp. intQj) for u ∈ Pj (resp. Qj) and t ∈ (0, σ(u)), j = 1, ..., k.

Proof. Take φ = w−
j in (3.4), we obtain∫

RN

(|∇w−
j |2 + λj(w

−
j )

2)dx−
∫
RN

(
∑
i̸=j

βiju
2
i )(w

−
j )

2dx =

∫
RN

βjju
3
jw

−
j dx. (3.6)

Then we have

d2(wj, P ) ≤ C

∫
RN

(|∇w−
j |2 + λj(w

−
j )

2)dx

≤ C

∫
RN

βjj(u
−
j )

3w−
j dx

≤ C(

∫
RN

(u−
j )

4dx)
3
4 (

∫
RN

(w−
j )

4dx)
1
4

≤ Cd3L4(uj, P )dL4(wj, P )

≤ Cd3(uj, P )d(wj, P ).

(3.7)

Choose Cδ20 = 1
2
and δ < δ0. We have

d(wj, P ) ≤ 1

2
d(uj, P ).

Hence A(∂Pj) ⊂ Pj. Similarly A(∂Qj) ⊂ Qj, j = 1, ..., k. �
Lemma 3.4. It holds

(∇J(u), u− Au) = ||u− Au||2 −
∫
RN

∑
i̸=j

βiju
2
i (uj − wj)

2dx. (3.8)

Consequently it holds
(∇J(u), u− Au) ≥ ||u− Au||2, (3.9)

Moreover, if we assume that the matrix (βij) is positive definite, then there exists a constant
C > 0 such that

||∇J(u)|| ≤ C||u− Au||(1 + |J(u)|
1
2 + ||u− Au||2). (3.10)
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Proof. By (3.4) for φ = (φ1, ..., φk) ∈ Ek∫
RN

∇(uj − wj)∇φjdx+ λj(uj − wj)φjdx

=

∫
RN

∇uj∇φjdx+ λjujφjdx−
∫
RN

βjju
3
jφjdx−

∫
RN

(
∑
i̸=j

βiju
2
i )wjφjdx

=(∇jJ(u), φj) +

∫
RN

(
∑
i̸=j

βiju
2
i )(uj − wj)φjdx.

(3.11)

Thus

(∇J(u), φ) = (u− Au, φ)−
∫
RN

∑
i̸=j

βiju
2
i (uj − wj)φjdx. (3.12)

Taking φ = u− Au, we obtain

(∇J(u), u− Au) = ||u− Au||2 −
∫
RN

∑
i̸=j

βiju
2
i (uj − wj)

2dx. (3.13)

It follows from (3.12) and (3.13)

|
∫
RN

∑
i̸=j

βiju
2
i (uj − wj)φjdx|

≤C
∑
i̸=j

(

∫
RN

(−βiju
2
i (uj − wj)

2dx)
1
2 (

∫
RN

u4
i dx)

1
4 (

∫
RN

φ4
jdx)

1
4

≤C(∇J(u), u− Au)
1
2 |u|4|φ|4.

(3.14)

By (3.12) and (3.14)

||∇J(u)|| ≤ ||u− Au||+ C(∇J(u), u− Au)
1
2 |u|4. (3.15)

Choose 2 < s < 4. Then

J(u)− 1

s
(u, u− Au)

=(
1

2
− 1

s
)||u||2 + (

1

s
− 1

4
)

∫
RN

k∑
i,j=1

βiju
2
iu

2
jdx− 1

s

∫
RN

∑
i ̸=j

βiju
2
i (uj − wj)ujdx.

(3.16)

Now assume that the matrix (βij) is positive definite. By (3.14) and (3.16)

||u||2 + |u|44 ≤C(|J(u)|+ |(u, u− Au)|+ |
∫
RN

∑
i̸=j

βiju
2
i (uj − wj)ujdx|)

≤C(|J(u)|+ ||u||||u− Au||+ (∇J(u), u− Au)
1
2 |u|24).

(3.17)

Hence

||u||2 + |u|44 ≤ C(|J(u)|+ ||u− Au||2 + (∇J(u), u− Au)), (3.18)
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and
|u|4 ≤ C(|J(u)|

1
4 + ||u− Au||

1
2 + (∇J(u), u− Au)

1
4 ). (3.19)

Substituting (3.19) into (3.15) we obtain

||∇J(u)|| ≤ ||u−Au||+C(∇J(u), u−Au)
1
2 (|J(u)|

1
4+||u−Au||

1
2+(∇J(u), u−Au)

1
4 ). (3.20)

Finally we have

||∇J(u)|| ≤ C||u− Au||(1 + |J(u)|
1
2 + ||u− Au||2). (3.21)

�
Next we show that the family {Pj} are an admissible family of invariant sets for functional

J at level c for any c.

Lemma 3.5. Let N be a symmetric closed neighborhood of Kc. Then there exists a positive
constant ϵ0 > 0 such that for 0 < ϵ < ϵ′ < ϵ0 there exists a continuous map σ : [0, 1]×Ek →
Ek satisfying

(1) σ(0, u) = u, for all u ∈ Ek.
(2) σ(t, u) = u, for t ∈ [0, 1], J(u) /∈ [c− ϵ′, c+ ϵ′].
(3) σ(t,−u) = −σ(t, u) for all (t, u) ∈ [0, 1]× Ek.
(4) σ(1, J c+ϵ \N) ⊂ J c−ϵ.
(5) σ(t, P̄i) ⊂ Pi, σ(t, Q̄i) ⊂ Qi, i = 1, ..., k, t ∈ [0, 1].

Proof. For δ > 0 sufficiently small N(δ) = {u ∈ Ek | d(u,Kc) < δ} ⊂ N . Since J satisfies
the (PS) condition, there exist constants ϵ0, b0 > 0 such that

||∇J(u)|| ≥ b0, for u ∈ J−1([c− ϵ0, c+ ϵ0]) \N(
1

2
δ). (3.22)

By Lemma 3.4, there exists a constant b > 0 such that ||u − Au|| ≥ b for u ∈ J−1([c −
ϵ0, c+ ϵ0]) \N(1

2
δ). Decreasing ϵ0 in necessary we we assume ϵ0 ≤ 1

4
bδ.

Define two even continuous functions g, p : Ek → [0, 1] such that

g(u) =


0,u ∈ N(

1

4
δ)

1,u /∈ N(
1

2
δ),

(3.23)

p(u) =

{
0,J(u) /∈ [c− ϵ′, c+ ϵ′]

1,J(u) ∈ [c− ϵ, c+ ϵ].
(3.24)

Let

V (u) =
u− Au

||u− Au||
, u /∈ K = {u | J ′(u) = 0}.

Consider the initial value problem
dτ

dt
= −g(τ)p(τ)V (τ)

τ(0, u) = u.
(3.25)



MIXED STATES OF NODAL SOLUTIONS 15

Set σ(t, u) = τ(2ϵ
b
t, u). Then we can verify (1) - (3) as usual. For (4), let u ∈ J c+ϵ \N . If

J(τ(t, u)) ≥ c − ϵ for 0 ≤ t ≤ 2ϵ
b
, then g(τ(t, u)) = 1. We also have p(τ(t, u)) = 1 since

if for some 0 ≤ t ≤ 2ϵ
b
, τ(t, u) ∈ N(1

2
δ) we have 1

2
δ ≤ ||τ(t, u) − u|| ≤

∫ t

0
||τ ′(s, u)||ds ≤ t

a contradiction. Thus we have J(τ(2ϵ
b
t, u)) ≤ J(u) − 2ϵ

b

∫ 1

0
||τ(s, u) − Aτ(s, u)||ds ≤ c +

ϵ − b2ϵ
b
= c − ϵ. To verify (5), we need only to notice that A(∂Pi) ⊂ Pi, A(∂Qi) ⊂ Qi,

i = 1, ..., k. �

Corollary 3.6. Let N be a closed symmetric neighborhood of K̃c = Kc \W . Then there
exist a constant ϵ0 > 0, for 0 < ϵ < ϵ0 there exists a continuous map η : Ek → Ek such
that

(1) η(−u) = −η(u) for u ∈ Ek.
(2) η|Jc−2ϵ = Id.
(3) η(J c+ϵ \ (N ∪W )) ⊂ J c−ϵ.
(4) η(P̄i) ⊂ Pi, η(Q̄i) ⊂ Qi, i = 1, ..., k.

Proof. Note that N ∪ ∪k
i=1(P̄i ∪Qi) is a closed neighborhood of Kc. According to Lemma

3.5, we can choose η = σ(1, ·). �

Lemma 3.7. For δ > 0 sufficiently small, it holds J(u) ≥ δ2/2, for u ∈ Σ = ∩k
i=1(∂Pi ∩

∂Qi).

Proof. For u ∈ ∂Pj, we have ||u−
j || ≥ d(uj, Pj) = δ,∫

RN

(u−
j )

4dx = d4L4(uj, Pj) ≤ Cd4(uj, Pj) = Cδ4.

Similar estimates hold for u+
j . We then have

Jµ(u) =
1

2
||u||2 − 1

4

∫
RN

k∑
i,j=1

βiju
2
iu

2
jdx ≥ k

2
δ2 − C(δ4) ≥ δ2/2.

�

Let Bnk be the unit closed ball of Rnk. Denote t ∈ Rnk by t = (t1, ..., tk) with ti ∈ Rn

for i = 1, ..., k. Define a continuous map φ(n) : Bnk → Ek by

φ(n)(t) = Rn(t1 · v1, ..., tk · vk) (3.26)

where Rn is a large number, vj = (v1j, ..., vnj) ∈ En. For v = (v1, ..., vn) ∈ En, s =
(s1, ..., sn) ∈ Rn, we denote s·v = s1v1+· · ·+snvn ∈ E. We require vij, 1 ≤ i ≤ n, 1 ≤ j ≤ k,
have disjoint supports. Then

φ(n)(−t) = −φ(n)(t), t ∈ Bnk

φ(n)(t) ∈ Mj = Pj ∩Qj, if tj = 0

sup
t∈∂Bnk

J(φ(t)) ≤ 0 < inf
u∈Σ

J(u) = c∗.

(3.27)
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Define

cj = inf
B∈Γj

sup
u∈B\W

J(u), (3.28)

where

Γj = {B | B = φ(Bnk \ Y ), φ ∈ Gn, n ≥ j, open subset Y = −Y ⊂ Bnk, γ(Y ) ≤ n− j},
(3.29)

and

Gn = {φ ∈ C(Bnk, Ek) | φ(−t) = −φ(t);φ(t) ∈ Mj, tj = 0;φ|∂Bnk = φ(n)}. (3.30)

By Theorem 2.5 cj ≥ c∗ > 0, for j ≥ k + 1, are critical values of J , Kcj \ W ̸= ∅, and
cj → ∞ as j → ∞.

3.2 The proof of Theorem 3.1: the general case

For the general case some of the estimates used in last subsection do not hold anymore, in
particular, (3.10) in Lemma 3.4. The idea here is to modify the equation (and therefore the
functional) by perturbations so the methods used in last subsection can be accomplished
for the modified problems. Then a convergence argument allows us to pass limit to obtain
solutions of the original problem with desired properties.

Choose 4 < p < 2N
N−2

. For µ ∈ (0, 1] consider the functional

Jµ(u) = J(u)− µ

p

∫
RN

k∑
j=1

|uj|pdx, u ∈ Ek. (3.31)

Then it is straightforward to show that Jµ ∈ C2(Ek) and Jµ satisfies the (PS) condition.
We define the cones Pj, Qj, j = 1, ..., k as before and define the operator Aµ, w = Aµu,
w = (w1, ..., wj) by −∆wj + λjwj −

∑
i ̸=j

βiju
2
iwj = βjju

3
j + µ|uj|p−2uj, x ∈ RN

wj(x) → 0, as |x| → ∞, j = 1, ..., k.

(3.32)

In the weak form we have wj ∈ H1
r (RN) satisfies ∀φ ∈ H1

r (RN)∫
RN

(∇wj∇φ+ λjwjφ)dx−
∫
RN

(
∑
i ̸=j

βiju
2
i )wjφdx =

∫
RN

βjju
3
jφdx+ µ

∫
RN

|uj|p−2ujφdx.

(3.33)
Then Aµ is locally Lipschitz continuous. Parallel to Lemmas 3.3, 3.5, 3.7, we have the
following results.

Lemma 3.8. For sufficiently small δ > 0, independent of µ, Aµ(∂Pj) ⊂ Pj, Aµ(∂Qj) ⊂ Qj,
j = 1, ..., k.
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Proof. Take φ = w−
j in (3.33), we obtain∫

RN

(|∇w−
j |2+λj(w

−
j )

2)dx−
∫
RN

(
∑
i̸=j

βiju
2
i )(w

−
j )

2dx ≤
∫
RN

βjju
3
jw

−
j dx+µ

∫
RN

(u−
j )

p−1w−
j dx.

(3.34)
Then as in the proof of (3.7)

d2(wj, Pj) ≤ C(d3(uj, Pj) + dp−1(uj, Pj))d(wj, Pj). (3.35)

Choose C(δ20 + δp−2
0 ) = 1

2
and δ < δ0. We have

d(wj, Pj) ≤
1

2
d(uj, Pj).

Hence Aµ(∂Pj) ⊂ Pj. Similarly Aµ(∂Qj) ⊂ Qj, j = 1, ..., k. Notice that δ0 is independent
of µ. �
Lemma 3.9. It holds

(∇Jµ(u), u− Aµu) = ||u− Aµu||2 −
∫
RN

∑
i̸=j

βiju
2
i (uj − wj)

2dx. (3.36)

Moreover, there exists C = C(µ) > 0 such that

||∇Jµ(u)|| ≤ C(µ)||u− Aµu||(1 + |Jµ(u)|
1
2 + ||u− Aµu||2). (3.37)

Proof. First (3.36) can be proved as (3.8). By (3.33) and (3.36) we have

||∇Jµ(u)|| ≤ ||u− Aµu||+ C(∇Jµ(u), u− Aµu)
1
2 |u|4. (3.38)

Next

Jµ(u)−
1

4
(u, u− Aµu)

=
1

4
||u||2 + (

1

4
− 1

p
)µ

∫
RN

k∑
j=1

|uj|pdx− 1

4

∫
RN

∑
i ̸=j

βiju
2
i (uj − wj)ujdx.

(3.39)

Then by Hölder inequality we have for some C > 0

||u||2 + µ|u|44

≤C(µ)(||u||2 + µ

∫
RN

k∑
j=1

|uj|pdx)

≤C(|J(u)|+ |(u, u− Aµu)|+ |
∫
RN

∑
i ̸=j

βiju
2
i (uj − wj)ujdx|)

≤C(|J(u)|+ ||u||||u− Aµu||+ (∇Jµ(u), u− Aµu)
1
2 |u|24).

(3.40)

From here we have C = C(µ) > 0 such that

|u|4 ≤ C(µ)(|J(u)|
1
4 + ||u− Aµu||

1
2 + (∇Jµ(u), u− Aµu)

1
4 ), (3.41)
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and

||∇Jµ(u)|| ≤ C(µ)||u− Aµu||(1 + |Jµ(u)|
1
2 + ||u− Aµu||2). (3.42)

�

Lemma 3.10. For δ > 0 sufficiently small, independent of µ, it holds Jµ(u) ≥ δ2/2, for
u ∈ Σ = ∩k

i=1(∂Pi ∩ ∂Qi).

This is similar to Lemma 3.7.

Lemma 3.11. Let µn → 0 and un satisfy ∇Jµn(un) = 0 and Jµn(un) ≤ C for some C > 0.
Then up to a subsequence, un converges to u in Ek, ∇J(u) = 0 and J(u) = limn→∞ Jµn(un).

Proof. Using

Jµn(un)−
1

4
(∇Jµn(un), un) =

1

2
||un||2 + (

1

4
− 1

p
)µn

∫
RN

k∑
j=1

|un,j|pdx

we obtain that {un} is bounded in Ek. By the compact imbedding from H1
r (RN) into

Lq
r(RN), 2 < q < 2N

N−2
, a subsequence of {un} converges to u in Lq

r(RN). By a standard

argument, {un} converges to u in Ek and ∇J(u) = 0 and J(u) = limn→∞ Jµn(un). Since
un /∈ W we have u /∈ W . �

With these preparations we are ready to finish the proof of Theorem 3.1 for the general
case.

Again we define a continuous map φ(n) : Bnk → Ek as in (3.25) and (3.48) by choosing
Rn large such that

φ(n)(t) = Rn(t1v1, · · · , tkvk)
φ(n)(t) ∈ Mj = Pj ∩Qj, if tj = 0

sup
t∈∂Bnk

Jµ(φ
(n)(t)) ≤ sup

t∈∂Bnk

J(φ(n)(t)) < inf
u∈Σ

J1(u) = c∗.

(3.43)

Define

cj(µ) = inf
B∈Γj

sup
u∈B\W

Jµ(u), µ ∈ (0, 1] (3.44)

where

Γj = {B | B = φ(Bnk \ Y ), φ ∈ Gn, n ≥ j, open subset Y = −Y ⊂ Bnk, γ(Y ) ≤ n− j},
(3.45)

and

Gn = {φ ∈ C(Bnk, Ek) | φ(−t) = −φ(t);φ(t) ∈ Mj, tj = 0;φ|∂Bnk = φ(n)}. (3.46)

By Theorem 2.5 cj ≥ c∗ > 0, for j ≥ k + 1, are critical values of J , K̃cj ̸= ∅, and cj → ∞
as j → ∞. We understand J0(u) = J(u) and cj(0) = cj, With the help of Lemmas 3.8, 3.9
and 3.10, the deformation property holds for the functionals Jµ, µ ∈ (0, 1]. By Proposition
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2.5, cj(µ), j ≥ k+1 are critical values of Jµ, Kcj(µ) \W ̸= ∅, and cj(µ) → ∞ as j → ∞. We
note that cj(µ) is nondecreasing as j → ∞ and µ → 0, and we have the following estimate

c∗ ≤ cj(µ) ≤ cj. (3.47)

Let c∗j = limµ→0 cj(µ) (in fact c∗j = cj). By the following Lemma 3.11, c∗j , j ≥ k + 1 are
critical values of the functional J . Moreover c∗j ≥ cj(µ) → ∞ as j → ∞.

3.3 The proof of Theorem 1.1, the general case: 1 ≤ m < k

We shall use Theorem 2.6 here. We consider the case when (B) holds first. The general
case can be treated similarly with what we discuss here and the approximation scheme in
section 3.2.

Using the notations in section 3.1 we set X = ∩k
j=m+1P̄j which is a complete metric

space. Since Pj are invariant sets the negative gradient flow is still well defined on X. In
the setting of Theorem 2.6 we have P1, .., Pm and take Mi = Pi ∩Qi for i = 1, ...,m. Take
Mj = Qj ∩X for j = m+ 1, ..., k. Define G : X → X by

G(u1, ..., um, um+1, ..., uk) = (−u1, ...,−um, um+1, ..., uk).

Then G is an isometric involution on X and the functional J is G-invariant. Set

M = ∩k
i=1Mj, Σ = ∩m

i=1(∂Pi ∩ ∂Qi) ∩ ∩k
j=m+1∂Mj,

and

W = ∪m
i=1(Pi ∪Qi) ∪ ∪k

j=m+1Mj.

Lemmas 3.3 and 3.4 are still valid. For Lemma 3.5 replacing Ek by X we may obtain the
result. To construct the proper maps φ(n) we need to modify the proof as follows.

Let Bnk be the unit closed ball of Rnk. Denote t ∈ Rnk by t = (t1, ..., tk) with ti ∈ Rn

for i = 1, ..., k. Define a continuous map φ(n) : Bnk → X by

φ(n)(t) = Rn(t1 · v1, ..., tm · vm, t̄m+1vm+1, ..., t̄k · vk) (3.48)

where vj = (v1j, ..., vnj) ∈ En, and Rn is a large number such that φ(n)(∂Bnk) ∩ M = ∅.
For v = (v1, ..., vn) ∈ En, s = (s1, ..., sn) ∈ Rn, we denote s · v = s1v1 + · · ·+ snvn ∈ E and
s̄ · v = |s1|v1 + ... + |sn|vn. We require vij, 1 ≤ i ≤ n, 1 ≤ j ≤ k, have disjoint supports.
Then 

φ(n)(−t) = Gφ(n)(t), t ∈ Bnk

φ(n)(t) ∈ Mj, if tj = 0, j = 1, ..., k.

sup
t∈∂Bnk

J(φ(t)) ≤ 0 < inf
u∈Σ

J(u) = c∗.

(3.49)

Define

cj = inf
B∈Γj

sup
u∈B\W

J(u), (3.50)

where

Γj = {B | B = φ(Bnk \ Y ), φ ∈ Gn, n ≥ j, open subset Y = −Y ⊂ Bnk, γ(Y ) ≤ n− j},
(3.51)



20 JIAQUAN LIU, XIANGQING LIU, AND ZHI-QIANG WANG

and

Gn = {φ ∈ C(Bnk, Ek) | φ(−t) = −φ(t);φ(t) ∈ Mj, tj = 0;φ|∂Bnk = φ(n)}. (3.52)

Note that if u ∈ FG we have u = (0, ..., 0, um+1, ..., uk) ∈ ∩k
i=1(Pi ∩ Qi) ⊂ W . Thus

(Kcj \W ) ∩ FG = ∅. By Proposition 2.6, cj ≥ c∗ > 0, for j ≥ m+ 1, are critical values of
J , Kcj \W ̸= ∅, and cj → ∞ as j → ∞. Any critical point u in Kcj \W is a mixed state
with the first m components sign-changing and the last k −m components positive.

3.4 Further extensions and remarks

First we remark that we may use the invariant sets constructed to obtain positive solu-
tions.

Theorem 3.12. Under the conditions of Theorem 3.1, system (3.1) possesses a positive
solution.

We use Theorem 2.4 to the problem. Set X = ∩k
i=1P̄i, Ri = Qi ∩X for i = 1, ..., k. Set

M = ∩k
i=1Ri, Σ = ∩k

i=1∂Ri, W = ∪k
i=1Ri. Define for t ∈ Rk,

φ0(t) = R(t1v1, t2v2, ..., tkvk)

where vi ∈ Ri such that they have mutually disjoint supports, R is large such that φ0(∂∆)∩
M = ∅. Define

c = inf
φ∈Γ

sup
u∈φ(∆)\W

J(u)

where

Γ = {φ ∈ C(∆, X) | φ(∂i∆) ⊂ Pi, i = 1, ..., k, φ|∂0∆ = φ0}.
By Theorem 2.4, there is a critical point u ∈ Kc \W which has every component positive.
Theorem 3.12 is proved.

Next we remark that we do not need the full even symmetry of the functional to obtain
infinitely many mixed states of nodal solutions, only on the first m components for which
we expect to have sign-changing components. To obtain the existence of at least one sign-
changing solution we do not need to assume the evenness of the functional at all. Instead
stating more general results we are content by giving an example here. We replace u3

i by
fi(ui) in the systems −∆uj + λjuj = fj(uj) +

∑
i ̸=j

βiju
2
iuj, x ∈ RN

uj(x) → 0, as |x| → ∞, j = 1, ..., k.

(3.53)

Assume that fj ∈ C1(R) satisfies f ′
j(0) = 0, that

there exists Cj > 0, |fj(t)| ≤ Cj(|t|+ |t|αj−1) for t ∈ R, 2 < αj <
2N
N−2

, and
there exists µj > 2 such that 0 < µjFj(t) ≤ tfj(t) for t ̸= 0.

Theorem 3.13. Assume N = 2, 3, k ≥ 2, λj > 0, βij = βji ≤ 0 for 1 ≤ i < j ≤ k. Then
under the above conditions on fj j = 1, ..., k the system (3.53) possesses a solution with
each component sign-changing.
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To prove this result we use Theorem 2.4 again. Set X = Ek. We may prove by similar
arguments that Pi is an invariant set for each i = 1, ..., k. Similarly this is also forQi = −Pi.
We choose Pi and Qi as 2k invariant sets in the setting of Theorem 2.4. Set M = ∩k

i=1(Pi∩
Qi), Σ = ∩k

i=1(∂Pi ∩ ∂Qi), W = ∪k
i=1(Pi ∪Qi). Define for t ∈ R2k,

φ0(t) = R(t1v1, t2v2, ..., t2kv2k)

where vi ∈ Pi for i = 1, ..., k and vk+i ∈ Qi for i = 1, ..., k such that they have mutually
disjoint supports, R is large such that φ0(∂∆) ∩M = ∅. Define

c = inf
φ∈Γ

sup
u∈φ(∆)\W

J(u)

where

Γ = {φ ∈ C(∆, X) | φ(∂i∆) ⊂ Pi, φ(∂k+i∆) ⊂ Qi, i = 1, ..., k, φ|∂0∆ = φ0}.
By Theorem 2.4, there is a critical point u ∈ Kc \ W which has every component sign-
changing. Theorem 3.12 is proved.

Finally from the proof we see our method applies to situations of variable coeeficients
functions. Assume λj = λj(|x|) and βij = βij(|x|) are continuous radial functions such that
λj ≥ λ0 > 0 for some constant λ0 > 0, j = 1, ..., k, βij ∈ L∞(RN) and βjj ≥ β0 > 0 for
some β0 > 0, and βij ≤ 0 for i ̸= j.
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