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ABSTRACT 

Gavini, Sree Likhita. M.S.E.C.E., Purdue University, May 2012. Control of Non-
minimum Phase Power Converters. Major Professor: Afshin Izadian. 

     The inner structural characteristics of non-minimum phase DC-DC converters pose a 

severe limitation in direct regulation of voltage when addressed from a control 

perspective. This constraint is reflected by the presence of right half plane zeros or the 

unstable zero dynamics of the output voltage of these converters. The existing controllers 

make use of one-to-one correspondence between the voltage and current equilibriums of 

the non-minimum phase converters and exploit the property that when the average output 

of these converters is the inductor current, the system dynamics are stable and hence they 

indirectly regulate the voltage. As a result, the system performance is susceptible to 

circuit parameter and load variation and require additional controllers, which in turn 

increase the system complexity. 

 

     In this thesis, a novel approach to this problem is proposed for second order non-

minimum phase converters such as Boost and Buck-Boost Converter. Different solutions 

have been suggested to the problem based on whether the converter is modeled as a linear 

system or as a nonlinear system. For the converter modeled as a linear system, the non-

minimum phase part of the system is decoupled and its transfer function is converted to 

minimum phase using a parallel compensator. Then the control action is achieved by 

using a simple proportional gain controller. 

 



viii 

 

 

     This method accelerates the transient response of the converter, reduces the initial 

undershoot in the response, and considerably reduces the oscillations in the transient 

response. Simulation results demonstrate the effectiveness of the proposed approach. 

 

     When the converter is modeled as a bilinear system, it preserves the stabilizing 

nonlinearities of the system. Hence, a more effective control approach is adopted by 

using Passivity properties. In this approach, the non-minimum phase converter system is 

viewed from an energy-based perspective and the property of passivity is used to achieve 

stable zero dynamics of the output voltage. A system is passive if its rate of energy 

storage is less than the supply rate i.e. the system dissipates more energy than stores. As a 

result, the energy storage function of the system is less than the supply rate function. 

Non-minimum phase systems are not passive, and passivation of non-minimum phase 

power converters is an attractive solution to the posed problem. Stability of non-

minimum phase systems can also be investigated by defining the passivity indices. 

 

     This research approaches the problem by characterizing the degree of passivity i.e. the 

amount of damping in the system, from passivity indices. Thus, the problem is viewed 

from a system level rather than from a circuit level description. This method uses feed-

forward passivation to compensate for the shortage of passivity in the non-minimum 

phase converter and makes use of a parallel interconnection to the open-loop system to 

attain exponentially stable zero dynamics of the output voltage. Detailed analytical 

analysis regarding the control structure and passivation process is performed on a buck-

boost converter. Simulation and experimental results carried out on the test bed validate 

the effectiveness of the proposed method. 
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 INTRODUCTION 1.

1.1 Introduction 

     This thesis focuses on the control of second order non-minimum phase DC-DC power 

converters and the analysis is carried out on a buck-boost converter as an example. Buck-

Boost converters are nonlinear switching systems with non-minimum phase output 

voltage and can either step-up or step-down the output voltage. They are the result of 

cascading the buck and boost converter circuits [1]. The inner structural characteristics of 

these converters pose a severe limitation on the transient response of the converter [2]. 

This constraint is reflected by the presence of right half plane zeroes in the converter 

control-to-output transfer function. When addressed from a control perspective, the right 

half plane zeros in the transfer function or the non-minimum phase zeros of the buck-

boost converter complicate the control design scheme [3, 4, 5]. This research proposes a 

novel approach to resolve this problem. 

 

 
1.2 Previous Work 

     Using the classical control procedures, this problem is overcome by using either a low 

gain feedback with reduced performance [6], or by using cascaded voltage and indirect 

current control approach [7]. However, the response of the system is characterized by 

significant undershoots and overshoots. The presence of non-minimum phase zeroes in 

the system result in an initial undershoot in the output voltage response of the system [8]. 

Overshoots are also observed in the response of the converter [9]. A gain control 

approach results in limited bandwidth of the system. 
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     A number of effective non-linear controllers [10] such as sliding mode control, 

passivity based control, feedback linearization are also used. They indirectly control the 

output voltage by regulating the inductor current. Consequently, these controllers make 

use of one-to-one correspondence between the voltage and current equilibriums and 

exploit the property that when the average output of the buck-boost converter is the 

inductor current, the system dynamics are stable. This results in large sensitivity of the 

controller to circuit parameter and load variations. As a result, adaptive controllers [10] 

are incorporated to achieve a satisfactory performance, and result in complex control 

systems. 

 

 

1.3 Objectives 

     In this work, the drawbacks of the above approaches are addressed and different 

methods are proposed based on either linear or nonlinear models. The objective of this 

research is to achieve a high profile transient output voltage response i.e. considerable 

reduction in the overshoots and undershoots, by achieving direct regulation of non-

minimum phase voltage of the converter. The system sensitivity to load variations is 

reduced.  

 

 

1.4 About This Thesis 

     In this thesis, for the linear buck-boost converter model, the mathematical model of 

the buck-boost converter is derived using the state space averaging technique. Then, the 

non-minimum phase converter control-to-output transfer function is decoupled from the 

non-minimum phase converter line-to-output transfer function. A parallel compensator is 

connected in parallel to the converter control-to-output transfer function to obtain a new 

minimum phase replacement plant, and result in an almost strictly positive real system. In 

the last stage, output voltage of the compensated buck-boost converter system can be 

effectively controlled using a proportional gain controller. The main advantages of this 

technique are the reductions of initial undershoot and overshoot, expand the control 
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bandwidth, and enhance the effectiveness of the control. The simulation results 

demonstrate the performance of this method compared with a proportional integral 

controller and with the parallel compensator.  

 

     For the nonlinear converter model, the problem is approached by characterizing the 

degree of passivity in the system from passivity indices. A complementary system level 

approach is introduced in this research and a simple linear controller is used to enhance 

the output voltage profile and attain robustness against load variations. This method 

makes use of a parallel interconnection to the open-loop system to achieve exponentially 

stable zero dynamics of the output voltage. An excess passive system is used to 

compensate for the shortage of passivity in the buck-boost converter system to reduce the 

non-minimum phase behavior. Simulations as well as experimental results validate the 

effectiveness of this control approach.  

 

 

 

 

 

 

 

 



4 

 

 

 DYNAMICS OF DC-DC POWER CONVERTERS 2.

2.1 Modeling Procedures 

     Power converters are nonlinear switching circuits that are able to buck, boost or buck 

and boost the output voltage as needed. Boost and buck-boost converters can be made in 

different forms as Cuk, Sepic, and Zeta and they are fourth order systems. The focus of 

this thesis is on second-order non-minimum phase converters such as Boost or Buck-

Boost. Modeling of converters is challenging due to their continuously varying switching 

behavior. Averaging techniques [11] are usually employed to mathematically represent 

an approximate behavior of the converters. The averaging techniques can be broadly 

classified into frequency dependent [12-14] and frequency independent methods. The 

frequency dependent averaging takes into account the frequency of the switching 

waveform and gives an estimate of ripple in the averaged state variables, thus provides a 

more accurate representation of the converter than frequency independent averaging, 

however the models are complex in nature.  

 

     The most widely used model of these converters is the frequency independent State 

Space Averaging method. In state space averaging, the various circuit configurations of 

the converter are averaged to obtain a unified representation of the converter. The output 

voltage in this model is controlled by a variable duty cycle at the gate of switching 

transistor. The averaged model obtained is a non-linear large signal model and has to be 

perturbed and linearized around an operating point to derive the small-signal ac equations. 

The state space-averaging model does not provide any information regarding the amount 

of ripple in the averaged state variable. It is more suitable for low ripple converters, 

which have small variations around the operating points. 
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     The other types of frequency dependent modeling techniques applied to power 

converters are Generalized State Space Averaging [13, 14], and Multi-Frequency 

Averaging [12]. These modeling approaches are usually used with converters with high 

ripple content like resonant converters or large ripple PWM converters. Fourier series are 

used to approximate the behavior of circuit state variables. Depending on the degree of 

accuracy required, the required number of harmonics is determined. In case of small 

ripple approximation, the dc content of the signal dominates the Fourier series, and the 

frequency selective averaging technique essentially becomes equal to state space 

averaging. 

 

     Another modeling procedure is based on PWM switch modeling [18] which is a 

circuit based technique. Unlike state space averaging PWM switch modeling averages the 

time variant pulses and is modeled independent of the load. This technique is especially 

useful when analyzing circuits containing constant power loads (CPL). When state space 

averaging is used to model CPL, one of the state-variables is inverted in the state-space 

equations and results in nonlinearities. In this thesis, state-space averaging models are 

used as they provide a good approximation for Boost and Buck-Boost Converters. PWM 

switch model for the buck-boost converter is also derived to illustrate the PWM modeling 

procedure. However, state space averaging models are adopted in this thesis, owing to the 

simplicity of the models.  

 
 

2.1.1 State Space Averaging 

     In this section, the small-signal transfer functions for a continuous conduction mode 

(CCM) buck-boost converter are derived based on state space averaging method. Figure 

2.1 shows the circuit diagram of a buck-boost converter.  

 

     Buck-Boost converters step up or step down the output voltage depending on the ratio 

of applied duty cycle. It is an inverting circuit, whose output polarity is opposite of the 

input voltage. 
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Figure 2.1 Buck-Boost converter 

 

The circuit equations of the converter, when the switch is ON, are given as: 










=+

=+−

0

0

R
v

dt
dvC

dt
diLV

CC

L
in

                                                        (2.1) 

The circuit equations when the switch is OFF are given as: 










=++

=+−

0

0

R
v

dt
dvCi

v
dt
diL

CC
L

C
L

                                                   (2.2) 

where C , L and R are the values of the capacitance, inductance and resistance 

respectively of the buck-boost converter as shown in Figure 2.1.  

 

     Equations 2.1 and 2.2 are averaged so that the duty cycle u and u−1 are used as 

weights respectively. Then the state space averaged model of buck-boost converter is 

given as: 

( )

( )








−−−=

−+=

L
CC

Cin
L

iu
R
v

dt
dv

C

vuuV
dt
diL

1

1
                                         (2.3) 

 

     The above equation gives a large signal non-linear averaged model of the buck-boost 

converter. Equation 2.3 is perturbed and linearized, i.e. the state variable is expressed as a 

DC value with a superimposed small ac variation such that only linear terms are 

considered in the resulting equation, around the quiescent values of the circuit.  
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The following small-signal ac equations are obtained: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )








+−′−=

−+′+=

tdI
R
tvtiD

dt
tvdC

tdVVtvDtvD
dt

tidL inin

ˆˆˆˆ

ˆˆˆ
ˆ

                                    (2.4) 

where D is the steady state value of the duty cycle driving the converter to obtain a 

steady state voltage V and current I and ( )td


, ( )tv and ( )ti


 are small ac variations of 

duty cycle, voltage and current respectively around the steady state operating point.  

 

The IV ,  and D′are as follows: 















−=′
′

−=

′
−=

DD
RD
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V
D
DV

1

                                                        (2.5) 

 

Then deriving the transfer function from the small-signal ac equations we get: 

( ) ( ) ( )sd
LCs

R
LsD

sLIVV
sv

LCs
R
LsD

DDsv g
g

ˆˆˆ
2222 ++′

−−
−

++′

′−
=                      (2.6) 

 

Decoupling the converter control-to-output transfer function from the converter line-to-

output transfer function results in two transfer functions [17]. 

 

The converter line-to-output transfer function is given as: 

( ) ( )
( ) ( )

2
2

2
0ˆ 1

1
ˆ
ˆ

D
LCs

RD
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D
sv

svsG
sdin

vin

′
+

′
+









′
−==

=

                        (2.7) 
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The converter control-to-output transfer function is given as: 

( ) ( )
( ) ( ) 
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D
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D
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sd
svsG gg

sv
vd

in

                   (2.8) 

 

     Hence, the converter power stage small-signal model can be depicted graphically as 

shown in Figure 2.2. 

 

 
Figure 2.2 Small-signal equivalent model of power converters  

 

 

2.1.2 PWM Switch Modeling 

     In this section the PWM switch model of a CCM buck-boost converter is developed. 

In this method, a three-terminal device called the PWM switch is used to replace the 

active and passive switches of the PWM converter. The equivalent model for the PWM 

switch [18] is as shown in Figure 2.2. PWM switch modeling gives the DC and small-

signal model of the converter. In this modeling procedure, it is considered that the non-

linearity in the power converter is due to the switching device and by replacing the 

nonlinear switch with its equivalent DC and small-signal model, a small-signal model for 

the entire converter can be obtained.  
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Figure 2.3 Equivalent DC and small signal model of PWM switch 

 

By replacing this model in the buck-boost converter, the small signal transfer functions 

[19] can be obtained.  

 

The line to output transfer function of the buck-boost converter is given as: 

( ) ( )
( ) ( ) 12
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Where, 
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The control to output transfer function is given as: 
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where 


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
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                                       (2.12) 

 

     The parameters Cr and Lr are the equivalent series resistances of the capacitor and 

inductor respectively. As the transfer functions of the buck-boost converter derived from 

PWM switch modeling are cumbersome compared to the state space averaging transfer 

function, in this research state space averaging models are used for buck-boost converters 

in Chapter 3. 

 

 

2.1.3 Bilinear Model 

     In this section, the averaged converter modeled obtained from state space averaging is 

not perturbed and linearized. The original non-linear model is taken into consideration, as 

linearizing a system cancels the stabilizing nonlinearities in a system. The nonlinear 

model of the buck-boost converter is bilinear in nature. 

 

     A bilinear system is a close approximation of nonlinear behavior for a class of 

nonlinear systems [20, 21]. They demonstrate linear behavior of their states and their 

controls separately, but are nonlinear when analyzed together [22]. 
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     A general structure of bilinear systems is given by the following equation [22]:   

( ) ( ) ( )
( )xtCy

xutNutBxtAx
=

++=
                                          (2.13) 

where A, B, and C are time-varying system matrices, and N is the bilinear matrix that 

relates the states and the control command.  

 

     State space averaging model (Equation 2.3) of a buck-Boost converter, shown in 

Figure 1, is repeated here for convenience as, 

( )

( )
C
i

u
RC
outV

dt
dv

L
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uu
L
inV

dt
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−−−=

−+=

1

1
                                                 (2.14) 

 

Considering the inductor current as the state 1x and the output capacitor voltage as state

2x , the bilinear model of a buck-boost converter can be represented as, 
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
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                                         (2.15) 

where [ ]21 xxx = is the vector of state variables, and 2x is negative as the system is an 

inverting circuit. 

 

     Considering a general form of nonlinear system [23] as 

( ) ( )
( )xhy

uxgxfx
=

+=
                                                   (2.16) 
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The functions ( )xf , ( )xg , and ( )xh  of the bilinear buck-boost converter can be 

represented as 

( ) ( )

( ) 2

1

2

21

2

,

xxh
C
x

L
x

L
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x

C
x

L
x
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in
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


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




 −
=

















−−
=

                                 (2.17) 

 

 

2.2 Nonlinear System Structure 

     The bilinear model of the buck-boost converter can be converted into Isidori’s Normal 

form if there exist a relative degree r  for the system i.e. a non-singular co-ordinate 

transformation. 

 

     A single-input single-output nonlinear system, of the form as given in Equation 2.16, 

is said to have a relative degree r at a point x  [23], where x is the state of the system at 

time t such that ( ) 01 ≠− xhLL r
fg . 

i. ( ) 0=xhLL k
fg  for all x in a neighborhood of ox and all 1−< rk  

ii. ( ) 01 ≠− or
fg xhLL  

where  

( ) ( )∑
= ∂
∂

=
n

i
i

i
f xf

x
xL

1

λλ                                                (2.18) 

 

The function (Equation 2.18) is the derivative of a vector λ along the direction of another 

vector field f .  
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The function 
x∂

∂λ is called the Jacobian and is given as 
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




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1
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1

1

1

                                             (2.19) 

and 

( ) ( ) ( )xg
x

L
xLL f

fg ∂

∂
=

λ
λ                                              (2.20) 

is the derivative of the vector λ  along the vector field f and then along a vector field g . 

 

Finally, ( )xLk
f λ is the derivative of λ differentiated k times along f and is given as: 

( ) ( ) ( )xf
x

L
xL

k
fk

f ∂

∂
=

− λ
λ

1

                                              (2.21) 

 

     The relative degree of a non-linear system can be interpreted to be equivalent to the 

number of zeroes of the linearized system i.e. for a linear system the relative degree is 

considered to be the difference between the order of numerator and the denominator. 

Another interpretation of the relative degree r of the non-linear system is that it requires 

the output be differentiated r times to explicitly show the relationship between the input 

( )tu and the output ( )ty . 

 

Then the following Lemma 2.1 [23] holds. 

Lemma 2.1 [23]: For a non-linear system in the form of Equation 2.16 with relative 

degree r , the row vectors ( ) ( ) ( )or
f

o
f

o xhdLxhdLxdh 1,,, −  are linearly independent, where

d is the differential or gradient of a real-valued function.  
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It can be concluded that a system of order n is of relative degree r if the following 

proposition holds. 

 

Proposition 2.1 [23]: Suppose the system has relative degree r  at ox . Then nr ≤ and the 

co-ordinate transformation is given as  

( ) ( )
( ) ( )

( ) ( )xhLx

xhLx
xhx

r
fr

f

1

2

1

−=

=
=

φ

φ
φ


                                                      (2.22)  

If r is strictly less than n , it is always possible to find rn − functions ( ) ( )xx nr φφ ,1+ such 

that the mapping  

 ( )
( )

( )














=

x

x
x

nφ

φ
φ 

1

                                                         (2.23) 

has a jacobian matrix nonsingular at ox and qualifies as a local coordinate transformation 

in a neighborhood of ox . The value at ox of these additional functions can be fixed 

arbitrarily. Moreover, it is always possible to choose ( ) ( )xx nr φφ ,1+ such that ( ) 0=xL igφ  

for all nir ≤≤+1 and all x around ox .  

 

     Hence, the state-space description of the system (Equation 2.16) in the normal form 

[23] is given as follows: 

( ) ( )
( )

( )zqz
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uzazbz
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rr
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11

1
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                                            (2.24) 
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For a buck-boost converter system (Equation 2.17), the relative degree is 1=r as 

( ) ( ) ( ) 0]10[ 1

1

2

≠=














 −
=

∂
∂

=
C
x

C
x

L
x

L
V

xg
x
xhxhL

in

g                               (2.25) 

 

As the relative degree is one for a second order system, there exist a non-singular co-

ordinate transformation and therefore the normal form is 

( ) ( )

( )

( )




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==

−+==
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2

2
2

2
2

1
22

211

22
xxhy

V
L
x

L
x

C
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φ

                                       (2.26) 

 

     The output voltage of an inverting buck-boost converter is  02 <x  and as the buck-

boost converter is considered to be operating in CCM 01 >x .  Therefore,  02 >z  for all 

values and the inverse transformation exists and can be obtained as 






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
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




−+=

12

2
1

121 2
2

zx

L
z

L
VzzCx in

                                         (2.27) 

 

     The buck-boost converter system in the new coordinates ( )21 , zz , i.e. the normal form, 

is represented by 

( )
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     The advantage of the normal form of the system is the structure, which is taken  

advantage of in different controls like exact linearization, due to which many important 
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properties of the system can be obtained just by inspection. From Equation 2.28, it can be 

said that the relative degree of the buck-boost converter system is one, as the first 

equation explicitly contains the input term ( )tu . The zero dynamics of a non-linear system 

can also be easily obtained from the normal form. 

 

 

2.3 Zero Dynamics 

     The zero dynamics of a non-linear system are analogous to the zeros of the transfer 

function in a linear system. A system with relative degree r that is strictly less than the 

order of the system n is said to have zero dynamics of the order rn − . If nr = the system 

does not have any unseen internal dynamics and it also implies that the transfer function 

of the linear system has no zeros. Zero dynamics of a system are the hidden internal 

dynamics when the initial conditions of the system and the input are constrained to make 

the output of the system zero [23]. 

 

     The zero dynamics of a nonlinear system can be easily obtained from the Isidori’s 

Normal form, by zeroing the output. If a nonlinear system (Equation 2.16) has a relative 

degree r then the state vector z  can be grouped into the following two vectors as given 

below: 


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11

, ηξ                                                (2.29) 

 

Then the normal form can be written as: 

( ) ( )
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When the output of the system is identical to zero its state is constrained to evolve such 

that ( )tξ  is identically zero [23]. Then the zero dynamics are given by the following 

equation as: 

( ) ( )( )tqt ηη ,0=                                                         (2.31) 
 

then the unique input to the system is given as: 

( ) ( )( )
( )( )ta
tbtu

η
η
,0
,0

−=                                                        (2.32) 

 

     For the buck-boost converter system the zero dynamics are obtained by zeroing the 

output in Equation 2.26, then the following equation is obtained,  

22 2Cz
LC
Vz in=                                                        (2.33) 

 

     Phase plane [25] is a tool used to analyze the stability of zero dynamics. This method 

is used to graphically analyze how the system trajectories change with the state variable 

from which the stability of the system can be commented. The phase plane plot of the 

zero dynamics is shown in Figure 2.4. 

 

     As the phase plane trajectories diverge in Figure 2.4, the zero dynamics of the 

capacitor voltage in a buck-boost converter are not stable; this behavior is due to the non-

minimum phase nature of these converters with respect to capacitor voltage. Hence, the 

zero dynamics of the non-minimum phase voltage of the buck-boost converter are 

unstable. 
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Figure 2.4 Phase plane plot of zero dynamics of capacitor voltage 

 

 

2.4 Passivity 

     A system is said to be passive if its rate of energy storage is less than the rate of 

supply energy i.e. the system dissipates more energy than it stores. As a result, the energy 

storage function of the system is less than the supply rate energy function. Passivity can 

be formalized by the following definitions. Consider a nonlinear system, H, defined as 

( )
( )




=
=

=
uxhy
uxfx

H
,
,

                                                       (2.34) 

 

Definition 2.1 Supply Rate [25]: The supply rate ( ) ( ) ( )( )tytuwtw ,=  is a real valued 

function defined on YU × , such that for any ( ) Utu ∈ and Xxo ∈ and 

( ) ( )( )uxtthty ,,, 00φ= , ( )tw satisfies 

( ) ∞<∫ dttw
t

t

1

0

                                                      (2.35) 

for all 001 ≥≥ tt . 
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Definition 2.2 Dissipative Systems [25]: System H with supply rate ( )tw is said to be 

dissipative if there exists a nonnegative real function ( )xS : +ℜ→X , called the storage 

function, such that, for all 01 ≥≥ tt , Xx ∈0 and Uu∈ , 

( ) ( ) ( )∫≤−
1

0

01

t

t

dttwxSxS                                            (2.36) 

or  

( )( ) ( )tw
dt

txdS
≤                                                   (2.37) 

Where ( )uxttx ,,, 0011 φ= and +ℜ , is a set of nonnegative real numbers. A Lyapunov 

candidate of the system can be used as Storage Function ( )xS . 

 

Definition 2.3 Passive Systems [25]: A system is said to be passive if it is dissipative 

with respect to the following supply rate   

( ) ( )( ) ( ) ( )tytutytuw T=,                                                   (2.38) 

and the storage function ( )xS  satisfies ( ) 00 =S . 

 

     Passivity is an input-output property, and it depends on how the output of the system 

is defined. Consider the buck-boost converter system in its original representation 

(Equation 2.16) with a positive definite storage function ( ) 2
2

2
1 2

1
2
1 CxLxxS += . In order to 

investigate this input-output property, consider, for now, the output as the current and 

define a bilinear supply rate ( ) 1xVuyutw in
T ⋅⋅== , where inVu ⋅ is the input to the circuit 

with current 1x as output. Then the following can be shown: 

( ) ( )tw
R
xxuVxS in ≤−=

2
2

1
                                               (2.39) 

 

Hence, the buck-boost converter is passive when the output defined is the inductor 

current. 
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The following theorem encapsulates the passivity properties for nonlinear systems as 

Theorem 2.1 [25]: A system H with a constant rank ( ){ }xhLg in a neighborhood of 0=x , 

with a 2C storage function ( )xS which is positive definite, is passive, then: 

1. ( )0hLg is nonsingular and H has relative degree { }1,,1  . 

2. The zero dynamics of H exists locally at ,0=x and H is weakly minimum phase. 

 

     As the phase plane plot (Fig. 2.4) reveals, the output voltage zero dynamics are 

unstable, i.e. non minimum phase. Therefore from theorem 2.1 it can be inferred that the 

buck-boost converter is not passive respect to the output voltage.  

 

     Passivity is an input-output property, and does not provide information about the state 

of the system. But, the Kalman-Yacubovich-Popov property relates passivity of the 

system with the state of the system. It relates the storage function of the system with the 

Lyapunov candidate of the system and is given as follows: 

 

Definition 2.4 Kalman-Yacubovich-Popov Property [25]: Consider a control affine 

system without throughput (2.16) where nXx ℜ∈∈ , mUu ℜ⊂∈ and mYy ℜ⊂∈ . It is 

said to have the Kalman-Yacubovich-Popov (KYP) property if there exists a 1C  

nonnegative function ( ) +ℜ→XxS : , with ( ) 00 =S such that 

( ) ( ) ( ) 0≤
∂

∂
= xf

x
xSxSLf                                                (2.40) 

( ) ( ) ( ) ( )xhxg
x
xSxSL T

g =
∂

∂
=                                            (2.41) 

for each Xx∈ . 

 

     A system H of the form (Equation 2.16) which has the KYP property is passive, with a 

storage function ( )xS  and conversely, a passive system having a 1C storage function has 

the KYP property [25]. This proposition is used in Chapter 4 to derive the gain 

constraints for a parallel interconnection in a feed-forward passivation procedure. .   
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 PARALLEL COMPENSATION APPROACH 3.

3.1 Motivation 

     In this chapter, the parallel compensation approach is introduced to overcome the 

drawbacks of the existing linear control methods [6, 7] discussed in Chapter 1. It will be 

shown at the end of this chapter that this method accelerates the transient response of the 

converter, considerably removes undershoot in the response, reduces the oscillations in 

the transient response, and directly regulates the voltage instead of using multi-loop 

current mode control [7]. The effectiveness of this method can be verified from the 

simulation results carried out on the buck-boost converter. 

  

     State space averaging method is used to represent the buck-boost converter 

mathematically. The small-signal control-to-output transfer function and the line-to-

output transfer function of the buck-boost converter (Equations 2.6-2.8), derived in 

Chapter 2, are used in the process of designing a compensator. The non-minimum phase 

control-to-output transfer function is decoupled from the minimum phase line-to-output 

transfer function and a parallel compensator is connected in parallel to the non-minimum 

phase transfer function. The new replacement plant is compensated in such a way that the 

system exhibits minimum phase characteristics. 

 

     An effective way to design a compensator for the non-minimum phase systems is to 

use strictly positive real form of the system [27, 28]. Parallel feed-forward compensators 

can be used to convert any plant to an almost strictly positive real system [29]. Then the 

control can be achieved by using output feedback techniques. 
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     Parallel compensation techniques have been successfully implemented [30, 31] and 

have proven to be efficient and stable control approaches for non-minimum phase 

systems than pole-zero cancellation technique [32]. Pole-zero cancellation generates 

hidden modes that may cause instabilities, thus, cannot be universally used in non-

minimum phase systems.  

 

     There are different methods in deriving the transfer function of an augmented plant 

and the parallel compensator. The principle of transforming the configuration of a non-

minimum phase plant to minimum phase is introduced in [33]. This technique uses a feed 

through compensation to obtain a minimum-phase augmented plant and uses a high gain 

feedback control to stabilize the system [33]. The transfer function of the compensator in 

[33] is derived by using the transmission-zero-assignment technique [34]. Gessing [35, 

36] have also proposed ways of changing non-minimum phase plants into minimum 

phase. They have classified the control problems of regulation, tracking or disturbance 

rejection and specially designed replacement plants for each problem at hand. General 

approach to compensator design depends on the application purposes [34-36]. The 

control problem of the converter, considered in this thesis, falls under the category of 

voltage regulation [35] and the method outlined in [35] is adopted here. 

 

 

3.2 Undershoot and Non-minimum Phase Zeros 

     It has been studied and observed [9, 38] that in a non-minimum phase system with odd 

number of positive zeros, the system response gives rise to an initial undershoot. In such 

a case, the coefficients of the numerator polynomial of a system are not all positive [38], 

thus non-Hurwitz. This can be verified in the case of buck-boost converter system from 

its control-to-output transfer function (Equation 2.8) given by: 
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     It can be observed that all of the coefficients of the numerator polynomial in Equation 

3.1 are not positive. The undershoot in a system is undesirable as the output initially 

tends in the opposite direction of the final value, as a result delay is introduced into the 

system. 

 

     The physical significance behind the undershoot due to the right half-plane zeroes in 

converters can be explained as follows. The average diode current of the converter in 

Figure 2.1 is related to the average inductor current [17] as follows: 

ss TLTD idi ′=                                                           (3.2) 

where sT is the switching interval.  

 

The average diode current Di  is equal to the load current. When a step increase in duty 

cycle is applied, Di  decreases and the capacitor begin to discharge and the voltage 

across the capacitor drops. However, the increased duty cycle causes a slow increase in 

the inductor current as a result Di  increases again and the voltage across the capacitor 

starts increasing. This delay in the rise of the inductor current is not a desirable 

phenomenon as it causes undershoot in the system and is a destabilizing effect. In this 

research, this problem is addressed and the parallel compensation approach is provided as 

a solution to the problem. The following behavior is observed in the simulations of the 

buck-boost converter without any compensation as shown in Figure 3.1. 

 

 

3.3 Positive Real Transfer Function 

     Positive real systems have many important properties with regard to stability analysis 

and in the generation of Lyapunov functions. A passive linear system (Equation 2.38) is 

strictly positive real, and vice versa. The following definition can be given with regard to 

a positive real transfer function. 
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Definition 3.1 Positive Real Transfer Function [26]: A transfer function ( )sG is 

positive real if 

i. ( )sG is analytic in ( ) 0Re >s  

ii. ( ) ( ) 0* ≥+ ωω jGjG for any frequency ω that ωj is not a pole of ( )sG . If there 

are poles qppp ,,, 21  of ( )sG on the imaginary axis, they are non-repeated and 

the residue matrix at the poles ( ) ( ) ( )qisGps ips i

,,1lim =−
→

is Hermitian and 

positive semi-definite. 

Transfer function ( )sG is said to be strictly positive real (SPR) if 

i. ( )sG  is analytic in ( ) 0Re ≥s  

ii. ( ) ( ) ( )+∞∞−∈∀>+ ,0* ωωω jGjG  

 

 
Figure 3.1 Initial undershoot in non-minimum phase buck-boost converter 

 

     The above definition implies that the transfer function ( )sG is strictly stable, has 

relative degree 0 or 1, and is strictly minimum-phase. In addition, the Nyquist plot of 
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( )ωjG  lies entirely in the right half complex plane or the phase shift of the system is 

always within the range of ( ) 90,90− .   

 

     In order to achieve the objectives as specified in Chapter 1, it is desired that the non-

minimum phase control-to-output transfer function of buck-boost converter be converted 

to SPR/PR, such that the system be converted to a minimum phase system. The transfer 

function approach is considered here, as a linear small-signal model of buck-boost 

converter is adopted in parallel compensation approach. The process of designing a 

compensator is detailed in the following sections.  
 

 

3.4 Control Structure 

     The control scheme given to achieve the stated objectives is shown in Figure 3.2. As 

can be observed in Figure 3.2, the compensation is applied only to the decoupled non-

minimum phase control-to-output transfer function. Then voltage regulation can be 

achieved by the use of a simple proportional controller. The control structure for the 

buck-boost converter plant is as shown in Figure 3.3. The next section gives the design 

procedure for the parallel compensator. 

 

 

3.5 Design of Parallel Compensator for Voltage Regulation Application 

     In this section the parallel compensator for the control-to-output transfer function is 

derived. The technique outlined in [35] is adopted for deriving the replacement plant for a 

buck-boost converter. There are other techniques to accomplish this task such as the 

transmission zero assignment technique [34]. This technique uses Eigen value assignment 

technique to place the transmission zeros in the desired positions. Moreover, the 

complexity of the procedure increases as buck-boost converter is also non-linear in nature. 

So the following method [35] of deriving the replacement plant for the buck-boost 

converter control-to-output transfer function has been adopted.  

 



26 

 

 

     A first order shunt system is taken as the transfer function for the replacement plant. 

Therefore, the replacement plant is selected in such a way that it is SPR, then the non-

minimum phase control-to-output transfer function is compensated to become a minimum 

phase system. The only criterion to be satisfied for the application of using this kind of 

replacement plant is that the original open-loop converter control-to-output transfer 

function should be stable. 

 

     The control-to-output transfer function of buck-boost converter (Equation 2.8) is 

stable as the denominator polynomial is Hurwitz.  Hence, all the poles of the buck-boost 

converter are in the left-half plane and the open-loop transfer function is stable.  

 

 

 
Figure 3.2 Proposed control scheme for a small-signal buck-boost converter model  

 

Figure 3.4 shows the interconnection structure of the parallel compensator ( )sGc  [35] to 

the non-minimum phase plant ( )sG  such that the replacement plant, shown by the dashed 

box is SPR 
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Figure 3.3 Control structure for buck-boost converter plant 

 
 

 

 

 

 

 
Figure 3.4 Replacement plant structure as shown in dashed box [35] 
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     The non-minimum phase transfer function for which a replacement transfer function is 

to be derived is given as below: 

)(
)(

)(
)()(

sM
sL

sU
sYsG ==                                                    (3.3) 

 

Then the transfer function of the parallel compensator which is to be connected in parallel 

to the above non-minimum phase plant is given as: 

( ) ( )
( ) ( ) ( )sGsG
sU
sYsG c

c −== 1                                            (3.4) 

 

The transfer function of the replacement plant, which is minimum phase, is given by 

)()()()(

)()(
)(
)()(

11

1

sGsGsGsG

sGsG
sU
sYsG cr

=−+=

+==
                  (3.5) 

 

The transfer function of the stable replacement plant )(1 sG  is chosen as, 

( )
11 +

=
Ts

ksG o                                                        (3.6) 

where the constant ok is given [35] as: 

( )0Gko =                                                         (3.7) 

 

     From Equation 3.6 it can be said that ( )sG1 is SPR as the relative degree is one, 

minimum-phase and stable. The condition to be satisfied by the original plant and the 

replacement plant is that steady state value of the original plant should be equal to the 

steady state value of the replacement plant as: 

( ) ( )001 GG =                                                   (3.8) 

Now for the buck-boost control-to-output non-minimum phase transfer function given as 



29 

 

 

( )








′
+

′
+












−
−









′
−

−=

2
2

2

2

1

1

D
LCs

RD
Ls

VV
LIs

D
VV

ksG gg
vd                                   (3.9) 

 

The replacement plant transfer function is as given below and is derived based on the 

procedure outlined above: 

( ) ( ) k
D

VVgl
sT

lsGvd 21 '
,

1
−

−=
+

=                               (3.10) 

 

     Thus, the parallel compensator using Equation 3.4 for the buck-boost converter 

control-to-output transfer function is given as: 
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where the gain k  is a proportional constant which is known and the time constant T  is a 

positive number. It has been observed in simulations that the smaller the time constant T, 

the faster the response of the system. 

 

     Therefore, the equivalent compensation structure is as shown in Figure 3.6 and the 

design procedure for the compensator can be illustrated as shown in Figure 3.5. 

  

 
Figure 3.5 Parallel compensation design process 

 

 

 

 



30 

 

 

 
Figure 3.6 Equivalent compensation structure [35] 

 

 

3.6 Stability 

     To understand the effect of the parallel compensator on the closed loop stability of a 

buck-boost converter, the bode diagram of the converter control-to-output transfer 

functions with and without compensation is provided in Figure 3.7. It can be observed 

that the phase of the compensated system is in the range of ( ) 90,90−  satisfying the 

requirement of SPR system. 

 

 

3.7 Simulation Results 

     The simulations are carried out on the buck-boost converter with the following 

parameters: VVmFCHLR g 30,1,100,10 ===Ω= µ . The derived math model of 

the buck-boost converter using state-space averaging (Equations 2.7-2.8) is represented 

mathematically in Matlab. 
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Figure 3.7 Bode plot of the compensated and uncompensated System 

 

     Figures 3.8 - 3.10 show the converter math models in Matlab. The compensator 

designed for a buck-boost converter is incorporated into these math models as shown in 

Figure 3.8. The effect of the compensation can be observed in Figure 3.11. This figure 

also illustrates the comparison of the effect of parallel compensation on the voltage 

regulation profile of the converter. It was assumed that the input voltage was 30 V with 1 

V variation at frequency 1000 rad/sec.  

 

     Figure 3.11 demonstrates the output voltage profile of the converter controlled by a 

parallel compensator approach. The non-minimum phase zero generated significant 

transients when the reference changed from buck to boost. However, when the 

compensator added, it neutralized the effect of the transients and as the Figure 3.11 

illustrates, the oscillations resulted from the input source variation were removed. 
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     Figure 3.12 shows the performance comparison between the buck-boost converter 

controlled by the parallel compensation approach and by the proportional integral 

controller on a buck-boost SimPowersystem simulation model with the following 

parameters: mFCmHLR 1,1,100 ==Ω=  and 12=gV V.  

 

     It is clearly observed that the undershoots and overshoots in the system have been 

compensated and the delay in the transient response is reduced considerably. The 

controller has resulted in a longer settling time, which is limited using parallel 

compensators. The best design will have a tradeoff between overshoot and settling time 

[37, 38]. 

 

 
Figure 3.8 Math model of buck-boost converter in Simulink 
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Figure 3.9 Math model of the converter line-to-output transfer function 

 

 

 
Figure 3.10 Math model of the converter control-to-output transfer function  
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Figure 3.11 Comparisons of voltage profiles of compensated and uncompensated system 
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Figure 3.12 Comparison of voltage profile with a compensator and a PI controller 
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 FEEDFORWARD EXCESS PASSIVITY BASED CONTROL (FFEP) 4.

4.1 Motivation 

     In Chapter 3, the parallel compensation approach was introduced and the effectiveness 

of the approach was validated through the simulation results. The compensator in 

Equation 3.11 derived for the buck-boost converter resulted in a good performance. 

However, the design procedure for the compensator was based on a linearized small-

signal model and cumbersome. A linear system model does not accurately depict the 

behavior of the original system, leaving nonlinearities un-controlled or over simplified. 

As a solution to this problem, feed-forward excess passivity based control is proposed in 

this chapter. This control approach is also carried out on buck-boost converter as an 

example. 

 

     Feed-forward excess passivity based (FFEP) control is an energy shaping approach 

[39], which exploits the damping of the system. A large-signal non-linear model for the 

buck-boost converter, instead of a small-signal linearized model, is considered as the 

system model. For a non-linear buck-boost converter, as seen in Chapter 2, the output 

capacitor voltage exhibits non-minimum phase behavior. As a result, the zero dynamics 

of the output capacitor voltage are unstable and the simple problem of regulating the 

output voltage becomes challenging.  

 

     Existing controllers [10] indirectly regulate the voltage through the inductor current, 

as the zero dynamics of the inductor current are stable. However, in the indirect approach, 

the system performance is subject to circuit parameter and load variations and additional 

adaptive controllers are required to achieve a satisfactory performance. 

. 
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This, in turn, tends to increase the complexity of the system. In this research, FFEP 

control is proposed as a solution and aims to achieve direct regulation of non-minimum 

output voltage. It has also been verified through simulation and experimental results that 

the system performance is not significantly affected by the load variations and does not 

call for additional advanced controllers.  

 

     FFEP control uses the principle of passivity as a design tool. It has been investigated 

in Chapter 2 that the buck-boost converter system is not passive when the output is the 

capacitor voltage. It is due to the non-minimum phase behavior of the capacitor voltage. 

In FFEP control, direct regulation of voltage is achieved by making the open-loop buck-

boost converter passive when the output is the capacitor voltage. In order to attain 

passivity in the converters, the damping of the converter system i.e. the degree of 

passivity need to be modified. 

  

     In FFEP control, it is shown that a parallel interconnection to the open-loop system 

can achieve exponential stability of the zero dynamics of the output voltage. An excess 

passive system is used to compensate for the shortage of passivity in the buck-boost 

converter to reduce the non-minimum phase behavior. To achieve passive system, the 

degree of passivity in the system is characterized from passivity indices rather than from 

the system’s energy function.  

 

     The noteworthy feature of FFEP control lies in its simplicity and its effectiveness. 

Though, different solutions [40, 41] to the problem of direct regulation of non-minimum 

phase voltage have been previously proposed, they rely on circuit level energy 

descriptions whereas FFEP control which is based on a system level description. Chapter 

5 compares the two methods of approach and shows the merit of FFEP over [40, 41]. The 

following sections of Chapter 4 provide detailed information regarding the FFEP control 

 

     It has to be pointed out that the motivation for FFEP control for non-minimum phase 

power converters is inspired from process control [44] and networked control systems 
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[43]. The concept of compensating for the shortage of passivity through system 

interconnection has been thoroughly explored in applications relating to pH process 

control, heat distillation columns, robotic manipulators [42], and in large interconnected 

systems. The novelty of this research lies in the identification and application of this 

concept to non-minimum phase power converters, in order to achieve simple effective 

solution for the problem of direct regulation of non-minimum phase voltage.  

  

 

4.2 Passivity Indices 

     In FFEP control, the degree of passivity in a system [24, 26, 45], as an index to 

measure the passivity, is quantified by passivity indices. The passivity indices indicate 

either excess or shortage of passivity. The following two definitions [26] can be given 

with regard to excess and shortage of passivity. 

 

Definition 4.1: Output Feedback Passive (OFP) [26] : System H is said to be OFP, if it 

is dissipative with respect to supply rate ( ) yyyuyuw TT ρ−=, , for some ℜ∈ρ . Where 

ρ is the largest gain that can be placed in positive feedback with a system, such that the 

interconnected system is passive, as shown in Figure 4.1. 

 

 
Figure 4.1 Output feedback passivity [26] 
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Definition 4.2: Input Feedforward Passive (IFP) [26] : System H is said to be IFP, if it 

is dissipative with respect to supply rate ( ) uuyuyuw TT υ−=, , for some ℜ∈υ . Where υ

is the largest gain that can be put in negative parallel interconnection with a system, such 

that the interconnected system is passive, as shown in Figure 4.2. 

 

 
Figure 4.2 Input feedforward passivity [26] 

 

     The indices ρ and υ indicate the level of passivity in the system. A passive system has 

both the indices ρ and υ  positive or zero. A system which is not passive has one of the 

indices positive and the other negative. Positive indices indicate that the system has an 

excess of passivity and negative indices indicate shortage of passivity. 

 

     A system which is not passive can be made passive by either feedback passivation or 

by feedforward passivation [26]. An unstable system has shortage of OFP and is 

characterized by OFP ( )ρ− . This system can be made passive by negative feedback, only 

if the system is minimum phase and has relative degree one or zero. 

 

     A non-minimum phase system has a shortage of IFP and is characterized by IFP ( )υ− . 

This system can be made passive by positive feedforward only if the system is stable. A 

system which is unstable and non-minimum phase cannot be made passive with any 

combination of feedback and feedforward gains [26]. 
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     The technique of feedback passivation [46] is quite popular and makes use of 

feedback to render a system passive. However, the relative degree and zero-dynamics of 

a system are invariant under feedback,  and any system irrespective of its relative degree 

whose zero dynamics with respect to the output are not minimum phase, cannot be made 

passive via feedback. Buck-boost converters fall under the category of a system whose 

relative degrees is one and has unstable output voltage zero dynamics.  Therefore, direct 

voltage regulation of non-minimum buck-boost converter can be made possible only by 

feedforward passivation [26]. 

 

     It should be noted that more general definitions for the supply rate functions can be 

used other than given in Definition 1 and Definition 2, to simultaneously obtain the IFP 

and OFP indices. Some such supply rates [26] can be given as: 

( ) ( ) ( )yuuuyyuw TTT ρυ −−=,                                          (4.1) 

or 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )tRututSytutQytytytuw TTT ++= 2,                             (4.2) 

where mmSRQ ×ℜ∈,, are constant weighting matrices, with matrices Q and R being 

symmetrical. 

 

Note 4.1: The following general statement should be recalled with regard to classical 

control. Feedback structure in a system affects the poles of the system i.e. the system 

stability, and Feedforward structure in a system effects the zeros of the system i.e. zero 

dynamics.. Therefore, feedback passivation applied on a system does not influence the 

zero dynamics and relative degree of the system. Similarly feedforward passivation 

cannot influence the free dynamics of the system i.e. the stability of the system. 

 

 

4.3 Passivity in Relation to Stability and Positive Realness 

     The concept of stability, passivity and positive realness are interrelated and this 

section explores their relationship. A passive system is stable when it is unforced i.e. 

when the input 0=u . This relation between passivity and stability can be formally given 
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prior to which certain definitions like zero-state observability (ZSO) and zero-state 

detectability (ZSD) are to be stated.  

 

Definition 4.3 ZSO and ZSD [26]: A system 
( )
( )




=
=

uxhy
uxfx

H
,
,

:


 is ZSO if for any Xx∈ , 

( ) ( )( ) 0,00,,, 00 ≥≥∀== ttxtthty φ  0=ximplies                            (4.3) 

and the system is locally ZSO if there exists a neighborhood nX of 0, such that for all 

nXx∈ , Equation 4.3 holds. The system is ZSD if for any Xx∈ , 

( ) ( )( ) ( ) 00,,,lim0,00,,, 000 =≥≥∀==
∞→

xttimpliesttxtthty
t

φφ                (4.4) 

and the system is locally ZSD if there exists a neighborhood nX of 0, such that for all 

nXx∈  Equation 4.4 holds. 

 

The following theorem relates passivity and stability. 

Theorem 4.1 Passivity and Stability [24]: The passive system H with a 1C storage 

function S and ( )uxh , be 1C in u for all x . Then the following properties hold: 

i. If S is positive definite, then the equilibrium 0=x of H with 0=u is stable 

ii. If H is ZDS, then the equilibrium 0=x of H with 0=u is stable 

iii. When there is no throughput, ( )xhy = , then the feedback yu −= achieves 

asymptotic stability of 0=x if and only if H is ZSD.  

where 1C of a function indicates that the derivate of the function exists and is continuous.  

 

     A system is said to be positive real if the following relation holds [26]: 

( ) ( ) 0,0 01

1

0

≥≥∀≥∫ ttdttuty
t

t

T                                                     (4.5) 

From Equation 2.36 it can be inferred that a positive real system is passive and vice versa.  
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4.4 Exponential Stability and Passivity Indices of Buck-Boost Converter 

     The stability of a nonlinear system can be given by various definitions, depending on 

the degree of stability in the system. A nonlinear system can have different equilibriums 

unlike a linear system [26]. So the stability in a non-linear system is with respect to the 

individual equilibrium point. It is very likely that some equilibrium points in a non-linear 

system are stable and some of them from the same system are unstable. The following 

definition is the stability of the system in the sense of Lyapunov.  

 

Definition 4.4 Stability in the sense of Lyapunov [25]: The equilibrium state 0=X is 

said to be stable if for any 0>R , there exists 0>r , such that if ( ) rx <0 , then 

( ) Rtx < for all 0≥t . Otherwise, the equilibrium point is unstable. 

 

Definition 4.4 implies that for a stable system the state trajectories, originating from a set 

of initial states, are confined to a bounded region of a certain radius. Definition 4.4 can be 

said to be an unconstrained definition of stability and does not give indicate how fast the 

system trajectories converge to the bounded region.  

 

The following definition can be given with regard to asymptotic stability. 

 

Definition 4.5 Asymptotic Stability [25]: An equilibrium point 0 is asymptotically 

stable if it is stable, and if in addition there exists some 0>r such that ( ) rX <0 implies 

that ( ) 0→tX as .∞→t  

 

     Asymptotic stability gives an estimate about the convergence of the system state 

trajectories, and is a strong definition of stability than the definition of stability in the 

sense of Lyapunov. Exponential stability of the system has faster rate of convergence of 

system states than asymptotic stability and is given by Definition 4.6. 
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Definition 4.6 Exponential Stability [25]: A system is exponentially stable [25] if there 

exist two strictly positive numbers α and λ such that, 

( ) ( ) textxt λα −≤>∀ 0,0                                               (4.6) 

In some ball rB around the origin. 

 

Hence the following order of precedence can be given with regard to how fast the system 

trajectories converge. 

StabilitylExponentiaStabilityAymptoticLyapunovofsensetheinStability ⇒⇒  

 

     The above distinction between the degrees of stability in a system is vital, especially 

when the system comprises of several interconnections between different sub-systems. 

The interactions between the sub-systems influence the stability of the overall system, so 

it is critical to mark the degree of stability of each sub-system. 

 

     In this research on FFEP control, a more constrained definition of stability is imposed 

on buck-boost converter, which is justified in Section 4.10. The following arguments can 

be given with regard to exponential stability of the buck-boost converter. 

 

     To demonstrate the exponential stability of the output voltage of the buck-boost 

converter, characteristic equation of the buck-boost converter is used. When the switch Q 

in Figure 2.1 is on or off mode, the output voltage x2 is in charging or discharging mode 

of operation respectively. In either case, a general form of this state variable can be 

expressed as 
tAex λ−=2                                                        (4.7) 

where A is a negative coefficient, as the buck-boost converter is an inverting circuit, and 

λ is the time constant of the circuit defined as: 

RC
1

=λ                                                          (4.8) 
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In an RLC circuit, analyzed separately in two modes of buck-boost operation, x2 can be 

expressed as 
tt eAeAx 21

212
λλ −− +=                                                (4.9) 

where 1λ and 2λ are the circuit time constants and  
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In a physically realizable circuit, the time constants 1λ , 2λ  are strictly positive values. 

Hence, the state 2x  of the buck-boost system, which is the output voltage, converges to 

the origin exponentially. Thus, buck-boost converter is exponentially stable. 

 

Note 4.2: The argument (Equations 4.7-4.10) with regard to exponential stability of the 

buck-boost converter when the output is the capacitor voltage may be misleading, with 

the statement that the zero dynamics of the output capacitor voltage (Equation 2.33) are 

unstable. In order to clarify, another definition of zero dynamics need to be highlighted 

from Brynes and Isidori’s pioneering work [49] on zero dynamics of a nonlinear system. 

For a nonlinear system of the form (Equation 2.16), which is decomposed into observable 

and unobservable components, the zero dynamics of a system can be considered as the 

internal dynamics of the unobservable component. Hence, stability of the system i.e. 

observable part of the system does not imply stability of the unobservable component i.e. 

the zero dynamics, which is the cause of all complications. 

 

     IFP and OFP passivity indices of the buck-boost converter system can be obtained by 

considering the buck-boost converter system in its original bilinear representation 

(Equation 2.15) with a positive definite storage function, 

( ) 2
2

2
1 2

1
2
1 CxLxxS +=                                                        (4.11) 

and by considering a more general definition for the  supply rate (Equation 4.1) 
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( ) ( )22
22 inin

TTT uVxxuVuuyyyutw υρυρ −−=−−=                         (4.12) 

and the following relation is given 

( ) ( ) ( )2
2
2

2
2
2

1 xuVxuV
R
xxuVxS ininin −−≤−= ρυ                             (4.13) 

 

It can be observed that 
R
1

=ρ is positive and 1x>υ  is negative, depicting a shortage of 

IFP ( )υ− and an excess of OFP ( )ρ in the output voltage of buck-boost converter. From 

the Definitions 4.1 and 4.2, since the buck-boost converter with output defined as 

capacitor voltage is IFP ( )υ− and exponentially stable from Equations 4.7 - 4.10, the 

buck-boost converter with the output capacitor voltage can be made passive by 

feedforward passivation. Dynamic feedforward compensation is used to passivate the 

buck-boost converter instead of static gain compensation. 

 

 

4.5 FFEP Control Structure 

     The following background is provided with regard to the design of the dynamic 

feedforward compensation. Polynomial systems are large classes of nonlinear dynamic 

systems which can be categorized into subclasses of bilinear and quadratic systems. 

These subclass systems can approximate an analytic system with linear inputs (ALS) [47]. 

An interesting property exists for ALS systems and is based on Theorem 4.2 [48] and is 

repeated here for convenience of the readers.  

 

Theorem 4.2 [48]: The Jacobi linearized zero dynamics of an ALS at an operating point 

ox can be changed at least in the neighborhood of ox  by a linear compensator. If the 

differential degree cd of the linear compensator with the transfer function ( )sFc is 

sufficiently large, a possibly unstable zero dynamics of a given ALS can be changed by 

the free designable parameters of the compensator in such a way that the substitute 

system s∑ has a stable zero dynamics. 
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     Bilinear systems can approximate ALS, therefore, unstable zero dynamics of a buck-

boost converter can be stabilized by linear compensators connected in parallel to the 

converter. Therefore, the control structure for the ALS systems is as given in Figure 4.3 

[48]. 

 

 
Figure 4.3 ALS system compensation structure [48] 

 

This justifies that a linear compensator can be used to achieve dynamic feedforward 

passivation of the open-loop voltage control of buck-boost converters. Figure 4.4 shows 

the structure of the proposed FFEP control. 
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Figure 4.4 Proposed FFEP control structure 

 

 

4.6 On the Choice of Linear Compensator 

     The objective of FFEP control is to achieve direct regulation of non-minimum phase 

voltage of the buck-boost converters. As stated in previous chapters, buck-boost 

converters have shortage of passivity i.e. ( )υ−IFP  and can be made passive by dynamic 

feedforward passivation. Prior to carrying out dynamic feedforward passivation, it was 

verified that the buck-boost converter open-loop system was stable. A tighter bound on 

the stability of buck-boost converter was provided by imposing exponential stability. 

Then, it has been shown that a linear compensator could be used to achieve dynamic 

feedforward compensation. This section further explains the reasons involved in the 

choice of linear compensator for the dynamic feedforward passivation. 

 

     It is a known fact that a non-minimum phase system has inherent delay in the system 

i.e. phase lag. Usually proportional derivative (PD) controllers are used to improve the 

phase of the system and decrease the settling time of the system. However, it is a widely 

known fact that PD controllers degrade the stability of the system [50], as a result are 

seldom used in control purposes. In [51] a solution to this problem has been intuitively 

provided, which is taken into account in the design of dynamic feedforward compensator 

for the buck-boost converter system.  
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[51] states that an effect of a  derivative controller of the form, 

( ) 







+=

0

1
s
sKsH                                                               (4.14) 

can still be achieved without affecting the stability of the system, by using the inverse of 

derivative controller  

( )


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=−

0

1

1
s
s

DsH                                                              (4.15) 

where 
K

D 1
= is a feedforward configuration of the system. 

 

Hence, the linear compensator in the design of dynamic feedforward compensation is 

considered to be of the form given by 

( )
1fs

k
sG f

−
=                                                                 (4.16) 

where 1f  is a negative constant, whose state-space description is given as: 

ff

fff

zy
ukzfz

=

+= 1
                                                             (4.17) 

 

     It is note worth pointing out that the linear compensator is strictly positive real, as the 

relative degree is equal to one and the poles and zeros of ( )sG  are in the left-half plane. 

As ( )sG is strictly positive real, it can be recalled from section 4.3 that ( )sG is passive. 

PID controllers are also passive [26], hence  ( )sG 1−  i.e. the derivative controller is 

passive. 

 

     The following sections further detail as to how to constrain the gains of the linear 

compensator such that the augmented buck-boost converter system becomes and remains 

passive. 
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4.7 Lipschitz Continuity  

     A brief discussion on Lipschitz Continuity is carried out to  the constrain the gains of 

the linear parallel compensator. A nonlinear system is described by a set of differential 

equations. Consider a system given by the following equation: 

( ) ( ) 00,, xtxxtfx ==                                                    (4.18) 

 

The solution to Equation 4.18 with the given initial condition exists and is unique if and 

only if the function satisfies the following inequality, called the Lipschitz condition [26]  

( ) ( ) yxLytfxtf −≤− ,,                                               (4.19) 

where L  is called Lipschitz constant. Equation (4.19) can also be written as, 

( ) ( ) L
yx

yfxf
≤

−
−

                                                   (4.20) 

 

From the Equation (4.20), it can be said that the derivative of the function f is bounded 

by the Lipschitz constant. However, Lipschitz continuity does not imply that the function 

f is differentiable.  

 

     Lipschitz constant depends on the function. It basically defines how the function f

varies with changes in the input.  If f undergoes a large variation for a small change in 

input then the function f  has a large Lipschitz constant. Therefore, Lipschitz continuity 

quantifies the continuity of a function f  and Lipschitz constant provides an upper bound 

on the amount of variation. The Lipschitz constant of function also depends on the 

interval that the function is defined at. If the interval on which the function is defined is 

changed, then the Lipschitz constant for the same function is different.  

 

If a function f is defined as RRRf m →×:  then the following definition can be given: 
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Definition 4.7: A function f is locally Lipschitz continuous with respect to its first 

argument if it is continuous and if for each ( ) RRtx m ×∈, there exists a 0>L such that  

( ) ( ) yzLszfsyf −≤− ,,                                            (4.21) 

The above definition is used to obtain the Lipschitz constants of the buck-boost converter 

system (Equation 4.22) 

 

 

4.8 Exponential Minimum-phaseness 

     A system whose zero dynamics are stable is called a minimum phase system. It is 

shown in Chapter 2 that the zero dynamics of the buck-boost converter are unstable when 

the output of the buck-boost converter system is the voltage across the capacitor. In FFEP 

control, the linear compensator (Equation 4.17) in parallel to the buck-boost converter 

makes the augmented system passive i.e. dynamic feedforward passivation. From 

Theorem 2.1 in Chapter 2, a passive system has relative degree not greater than one and 

the zero dynamics are minimum phase. Hence, the gains of the linear compensator are 

constrained to make the augmented zero dynamics stable.  

 

Now the normal form of the buck-boost converter is given as: 
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Where,  
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Then, the augmented system i.e. the parallel compensator (Equation 4.17) in shunt with 

buck-boost converter is represented as 
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By using the following non-singular co-ordinate transformation, 
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The normal form of the augmented system is given by 

( ) ( )( )
( ) ( ) ( )

( )













=














 −−
=








=

+++==

1

1

2

1

11

,1,1

,

a

f
f

f
f

a

a
a

ffaa

zy
zq

ztzb
k

zftzb
k

za

uktzbzfzazz










η
η

η

ξ

                          (4.28) 

 

     From Equation 4.28 it can be seen that the relative degree of the augmented system is 

one. The zero dynamics of the augmented system are obtained by zeroing out the output

011 =+== fa zzzy .  
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Then the zero dynamics aη of the augmented system are given as, 
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The zero dynamics aη can be expressed as, 
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which can be further written as 01 =az  
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where 

( ) ( ) ( )]Taaaaaz qaf 2121 ,,[ ηηηηη =                                          (4.32) 

and 1
*
1 za =η  as  another operating point. 

 

     A system (Equation 2.16) is exponentially minimum phase i.e., has exponentially 

stable zero dynamics [52] if the Lyapunov energy function of the zero dynamics ( )zVo of 

the system satisfy the following relations [25]: 
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The zero dynamics of the augmented system (Equation 4.31) are exponentially stable if 

there exists a positive definite function ( )aoV η such that the time derivative of ( )aoV η

satisfies (Equation 4.33). 

 

Note 4.3: Here, exponential stability of the zero dynamics is considered instead of 

asymptotic stability due to an important stability result given in [49]. For asymptotic 

stability of zero dynamics of a system to achieve closed-loop stability full state feedback 

of the system is needed. However if the zero dynamics of the system are exponentially 

stable, then the closed-loop stability of the system can be achieved using output feedback.  

Therefore, closed-loop stability of the buck-boost converter requires that the zero 

dynamics be exponentially stable rather than asymptotically stable. 

 

 Time derivative of ( )aoV η  results in 

( ) ( ) a
T

aao VV ηηη  ⋅∇=                                                          (4.34) 

The derivative of Lyapunov candidate of the zero dynamics of the augmented system is,
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     The non-linear differential equations (Equation 4.22) representing the buck-boost 

converter system ensures the existence and uniqueness of a solution if and only if the 

system functions satisfy the Lipschitz condition [26]. The Lipschitz condition for the 

system functions with respect to the first argument are evaluated as, 
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Since the system function ( )21 , aab ηη is Lipschitz continuous, the function ( )21 , aab ηη  is 

bounded, and an upper limit to the bound of the function is evaluated as follows. ( )tzb , is 

expressed as, 

( ) ( )11, 11 −= zz
C
L

RC
tzb                                                      (4.37) 

 

So the upper bound for the function can be found as, 
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C
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Moreover as the function ( )21 , aab ηη  is differentiable and Lipschitz continuous the 

derivative of ( )21 , aab ηη  is bounded by the Lipschitz constant and is given by, 

( )
L

V
C

b in
aa 2
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      A feedforward passivation technique makes the buck-boost converter system passive. 

It can be inferred that the Lyapunov candidate of the open-loop system contains an 

energy level less than the maximum energy stored in the augmented system.  

 



55 

 

 

     Therefore, by evaluating the Lipschitz continuity equations and solving Equation 4.35 

and using the relations in Equation 4.33 the following relation for the gain constraints of 

the parallel compensator are obtained such that the open-loop augmented system is 

passive: 
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4.9 Closed-Loop Stability 

     In section 4.8, the detailed procedure to make the augmented buck-boost converter 

system passive was outlined. As the control of a passive system can be relatively easy, 

the control action is achieved by using a simple proportional gain controller as shown in 

Figure 4.4. From Theorem 4.3 and from Note 4.3 the closed-loop stability of buck-boost 

converter can be guaranteed. 

 

Theorem 4.3 [24]: If two systems H1 and H2 are passive, then their parallel and 

feedback interconnections are also passive. 

We can infer that the closed-loop system is passive, where H2 is the positive gain, which 

guarantees the closed-loop stability of the system. 

 

 

4.10 Bias Effect 

     Application of a parallel interconnection to the buck-boost converter, in dynamic 

feedforward passivation, results in a steady state error or bias effect. In order to overcome 

the offset in the steady state response, a pre-filter [53] of the following form, is used in 

cascade with the plant.  

( )
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+

=
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bsa
sG ff

f                                                          (4.41) 

where δ,, ff ba are positive constants which satisfy 
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Then the structure of the buck-boost converter plant with the pre-filter and a linear 

compensator is as given in Figure 4.5.  

 

     Now the dynamic feedforward passivation is carried out on the cascade 

interconnection of pre-filter and the buck-boost converter. For this to be possible, the 

modified buck-boost converter system should be stable i.e. cascade connection of the pre-

filter to buck-boost converter should be stable. This is required because feedforward 

passivation cannot influence the stability of the system, recall from Note 4.1. Then the 

modified FFEP control structure is given in Figure 4.6.  

 

 
Figure 4.5 Structure of the plant with pre-filter and linear parallel compensator 

 

 
Figure 4.6 Modified FFEP control structure 
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     It is to be recalled that the reason for the imposition of a stronger definition of stability 

for buck-boost converter in Section 4.4 has been postponed until Section 4.10. The 

stability of the cascade interconnection of the non-linear buck-boost converter system 

with the linear stable pre-filter can be achieved only when the buck-boost converter 

system is exponentially stable. This condition is imposed on buck-boost converter system 

to avoid a phenomenon called the peaking effect [24].  

 

     Peaking phenomenon usually occurs in non-minimum phase systems [24], in which 

the response of the system has high transients and might lead to instability when high 

gains are applied. Therefore, in order to decrease the peaking phenomenon to a certain 

degree, exponential stability of the buck-boost converter is considered. In an 

exponentially stable system the rate of convergence of system trajectories (Equation 4.6) 

is rapid, hence peaking and system instability can be avoided to a large extent when a 

tighter exponential stability is imposed upon the buck boost converter system. 

 

Note 4.4: It is shown in Chapter 4 of [24] that minimum-phase systems are not peaking 

systems. Hence, when the augmented buck-boost converter system is made passive by 

dynamic feedforward compensation, it can be inferred that the transient response is not 

characterized by any peaks. This result can be verified from the buck-boost converter 

simulation in Figure 4.7. 

 

     The following analysis is given with regard to modified buck-boost converter system. 

The resulting system with buck-boost and pre-filter is given as: 
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where [ ]Tzzz 21= . Then using the following transformation, 

( ) watzbzw fe ,1 −=                                                               (4.44) 
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the cascaded system is obtained as: 
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     Then, the augmented system i.e. the parallel compensator (Equation 4.17) in shunt 

with buck-boost converter and the pre-filter in cascade is represented as, 
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where, 
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By using the following non-singular co-ordinate transformation, 

[ ] ( )fez
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aa zzzz ,φηξ ==′                                                    (4.49) 

where 
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given as: 
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The normal form of the modified buck-boost converter augmented system is given by: 
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Now by following the same procedure, outlined in Section 4.8 to obtain the zero 

dynamics and constrain the gains of the linear compensator, a new gain constraint 

relation will be obtained. The next section summarizes the design process of FFEP 

control.  

 

 

4.11 FFEP Control Procedure 

     The following flow chart shows the step-by-step design process of FFEP control 

approach as shown in Figure 4.7.  
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Figure 4.7 FFEP control procedure
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 DISCUSSIONS 5.

5.1 Simulations and Experimental Results 

     This section discusses the simulations and experimental results obtained using FFEP 

control approach on buck-boost converter.  The FFEP control for direct regulation of 

voltage is carried out on a buck-boost converter, simulated using SimPowerSystems 

Toolbox in Matlab environment. The following parameters are adopted for buck-boost 

converter, resistance Ω= 100R , capacitance FC µ50= , inductance HL µ10= , switching 

frequency KHzf s 20= and input voltage .5VVin =  

 

     Figure 5.1 shows the voltage regulation profile of the buck-boost converter. It can be 

observed that the delay due to over-shoot and under-shoot has been compensated. Figure 

5.2 shows the controller effort and Figure 5.3 shows the contribution of the linear 

compensator and it can be observed that the bias effect due to the compensator is 

negligible. Simulations demonstrate the effectiveness of FFEP control and direct 

regulation of non-minimum phase voltage is achieved.  

 

     Experiments were also carried out on the buck-boost converter test bed and tested by 

implementing the FFEP control using dSPACE rapid-prototyping device. Figure 5.4 

shows the voltage regulation profile of the buck-boost converter. The buck-boost 

converter test bed is operated at 1 KHz switching frequency and the design parameters of 

the test bed are given in the Appendix. 



62 

 

 

 
Figure 5.1 Voltage regulation profile of converter after FFEP compensation 

 

 

 
Figure 5.2 Control effort 
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Figure 5.3 Compensator contribution 

 

 

 

 
Figure 5.4 Experimental verification of FFEP control  
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5.2 Performance of FFEP Control in the Presence of Load Variations 

     In the objectives of the thesis it was stated that using FFEP control the sensitivity of 

the converter to load variation was reduced significantly. This can be shown by the 

following argument. It has been shown in Section 4.4 that the buck-boost converter is IFP 

( )υ−   by using a general definition for the supply rate. By considering the actual 

definition of supply rate given by 

( ) ( )2
2, inin

TT uVxuVuuyuyuw υυ −=−=                                             (5.1) 
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( ) 2
2

2
1 2

1
2
1 CxLxxS +=                                                           (5.2) 

The following inequalities are obtained,  
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Then it can be seen by inspection that it is always possible to find a ℜ∈υ , as buck-

boost converter is IFP ( )υ−  , such that 

( ) υ2
1 inin uVxuV <                                                             (5.4) 
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1

2
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     The above analysis implies that at high loads (small R), Equation 5.3 holds i.e. the 

buck-boost converter has shortage of passivity at high loads or there is insufficient 

damping in the system. However, from Chapter 4 in FFEP control dynamic feedforward 

passivation is used to make the buck-boost converter system passive. This implies that 

irrespective of the load applied to the buck-boost converter system the system is made 

passive through dynamic feedforward passivation. Therefore if the load is perturbed, the 

system response returns  to its nominal behavior as the FFEP control maintains the buck-

boost converter passive through dynamic feedforward passivation.  
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This behavior of the converter in the presence of load variations has been verified using 

Simulations. Figure 5.5 and 5.6 shows how the converter returns to its nominal behavior 

quickly when the load is decreased by 30% and 50% respectively. Figure 5.7 also shows 

the converter’s response when the load is increased by 50%.  

 

 
Figure 5.5 Response of the converter in the presence of 30% decrease in load 

 

 

 
Figure 5.6 Response of the converter in the presence of 50% decrease in load 
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Figure 5.7 Response of the converter in the presence of 50% increase in load 

 

Hence, it can be said that FFEP control approach results in a satisfactory performance 

when the load varies significantly. 

 

 

5.3 Comparison of FFEP Control with Other Techniques 

     In this section FFEP control is compared with different control approaches. In Figure 

5.8 a comparison between FFEP and a modified PI control is shown. It can be observed 

that even when the gains are fine-tuned, overshoot is observed when a negative step 

reference is applied. This attribute cannot be fully eliminated with a PI, as it is due to the 

peaking phenomenon [24] inherent in a non-minimum phase system. Therefore, in FFEP 

control as the non-minimum phase behavior is compensated to minimum phase by 

feedforward passivation, the system behaves close to a minimum phase system. As a 

result peaking is very much reduced as can be seen from Figure 5.8. 

 

     The FFEP is also compared with other existing passivity based approaches [40, 41]. In 

these techniques the energy of the system has been modeled by Hamiltonian [40] and 

Brayton - Moser (BM) [41] equations. They constitute the total energy in the system from 
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the internal and external interconnections, and from the damping associated with the 

system. In Hamiltonian technique, a closed-loop energy function, the aggregate of the 

system, and controller energies is considered. By proper choice of nonlinear control 

action and damping injected into the inductor current, [40] achieves the voltage 

regulation by driving the closed-loop energy function to a minimum. This technique uses 

a state-modulated feedback and a non-quadratic Lyapunov energy function to resolve the 

non-minimum phase voltage control. In BM a closed-loop error dynamic function is 

considered instead of a closed-loop energy function, and the control task is accomplished 

by injecting damping into the capacitor voltage. 

 

 
Figure 5.8 Comparison of FFEP control with modified PI controller 
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system. As a result, the system description is complex and the control tends to be rather 

involved because of the use of non-linear controllers. 

 

     FFEP control approaches the problem by characterizing the degree of passivity in the 

system from passivity indices rather than from the system’s energy function to avoid 

circuit level energy analyses. Hence, FFEP control is a complementary system level 

approach to [40] and [41] and uses a simple linear controller to enhance the output 

voltage profile and attains robustness against load variations. 

 

     Passivity based control using the principles of [40, 41] is implemented on the buck-

boost converter using Simulations and the damping is injected into the inductor current. 

The performance of the controller is as shown in Figure 5.9. From Figure 5.9, it can be 

observed there is a steady state error in the system performance. These controllers usually 

require additional controller like PI controllers to overcome steady state error [57].  

 

 
Figure 5.9 Passivity based control 
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Figure 5.10 FFEP control performance 

 

     Passivity based controllers stabilize the converter but require additional controllers 

like PI and sliding mode to achieve satisfactory performance. Moreover, the control 

procedure is quite complex as it involves the use of circuit level descriptions like 

Hamiltonian and Brayton Moser equations for modeling. Figure 5.10 shows the 

performance of FFEP control for the same step change in reference. It can be observed 

that the system performance is satisfactory without steady state errors and that FFEP 

control is a much simpler and effective control approach.  
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 CONCLUSIONS AND RECOMMENDATIONS 6.

6.1 Conclusions 

     This thesis provided a solution to the problem of direct regulation of non-minimum 

phase voltage for second-order DC-DC power converters. Two different methodologies 

were introduced depending on the modeling of the converter. For linear converter models, 

‘Parallel Compensation Approach [56]’ had been suggested and for bilinear models, 

‘Feedforward Excess Passivity (FFEP) based Control’ had been proposed. The main idea 

behind these two control approaches is to compensate the non-minimum phase behavior 

of the converter such that delay in the system is compensated and a satisfactory 

performance of the converter is assured even in the presence of load variations. 

 

     In parallel compensation approach, the concept of strictly positive real form of the 

system was exploited to achieve a good performance. It has been observed from the 

simulation results that the parallel compensation approach accelerates the transient 

response of the converter, removes the undershoot and overshoot, considerably reduces 

the transient response oscillations and directly controls the voltage. It provided an 

alternative solution to the industry standard indirect current mode control. The efficiency 

of the control approach has been compared with the conventional proportional integral 

controller. 

 

     In FFEP based control, a novel system level approach to characterize the damping in 

the system has been adopted. The concept of Passivity was used to stabilize the unstable 

zero dynamics of the non-minimum phase voltage in the converter. The simulation and 

experimental results validate the claim. FFEP based control was also compared with the 

existing Passivity based control techniques. 
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Several applications to these control approaches are suggested in the next section, 

especially FFEP based control. 

 

 

6.2 Future Recommendations 

     This section identifies different problems where FFEP based control can be used as an 

effective solution. They are given as: 

• Stabilization of constant power loads (CPL) in DC-DC converter systems 

• Framework to analyze DC based grid systems 

• Model reference adaptive control for non-minimum phase systems 

• Solution to overcome peaking effect in non-minimum phase systems 

 

 

6.2.1 Constant Power Loads 

     Loads are basically classified into two types: positive incremental loads and negative 

incremental loads i.e. constant power loads (CPL). The conventional loads are positive 

incremental loads and are usually modeled as resistors, constant current sources, or series 

combination of voltage sources, resistors and inductors. Power electronic converters in 

multi-converter systems and motor drives exhibit CPL behavior at their input terminals 

when they are tightly regulated, as a result the power quality and system stability is 

affected. In DC systems, a point of load converters in a multi-converter system behaves 

as CPLs and affects the stability of the system. 

 

     The voltage and current characteristics of a CPL is as shown in Figure 6.1.and the DC 

and small-signal model are given as in Figure 6.2 [54]. The following analysis of buck-

boost converter in the presence of CPL is carried out to show how a stable buck-boost 

converter (Equations 2.6 - 2.8) becomes unstable in the presence of a CPL. 
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Figure 6.1 Behavior of constant power loads [CPL] 

 

 
Figure 6.2 DC and small-signal model of CPL 

 

This scenario usually arises when tightly regulated DC-DC converters acts as loads in 

multi-converter system.  

 

The small signal model of the buck-boost converter with CPL is given as: 
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The converter line-to-output transfer function is given as 
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The converter control-to-output transfer function is given as 
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As coefficients of the denominator polynomial of (6.2) and (6.3) are not positive, i.e. 

non-Hurwitz, the system is unstable in the presence of CPL. 

 

     In the above analysis the converter is modeled as a linear system to show the effect of 

CPL on the transfer functions. The above stabilization problem can be addressed by using 

FFEP control when the converter is modeled as a non-linear system The gains of the 

linear compensator will be constrained differently i.e. damping structure can be modified. 

This approach can be further pursued to address the stability of DC-DC converter system 

in the presence of CPLs. 

 

 

6.2.2 Analysis of Distributed Power Systems 

     With the advent of Distributed Power Systems, different power systems with new 

architectures are coming into existence. A lot of research is being done with regard to 

standardization of architectures and development of system level tools for black box 

stability analysis and to analyze dynamic interactions between subsystems. Current 

research [55] uses Hammerstein models for power converters to study the two-port 

network behavioral modeling of a DC grid system such as shown in Figure 6.3.  
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Figure 6.3 DC distributed power system [55] 

 

     In this context, it can pointed out that the system level approach to characterize the 

amount of dissipation i.e. passivity in a system used in FFEP control can be applied to 

this scenario. The inspiration for FFEP control is originally drawn from networked 

control systems [43] and from operability analysis of different processes [44], and can be 

extended to analyze large interconnected systems in DC distributed Power Systems. 

Further research can be done in this direction to identify efficient procedures to model the 

subsystems in DC distributed Power systems using Passivity rather than using converter 

level Hammerstein models which tend to complicate the analysis.  

 

 

6.2.3 In Model Reference Adaptive Control  

     Simple Adaptive Control (SAC) [51] uses direct model reference control. In SAC 

there are no restrictions on the order of the reference models, such that the reference 

model can be of a much small order than the plant. The only criteria for the stability of 

SAC is that the plant must be strictly positive real (SPR) or almost strictly positive real 

(ASPR). Therefore SAC for non-minimum power converters is not applicable. 

 

     By the use of parallel compensation approach [56] in Chapter 3 or the FFEP control in 

Chapter 4, the plant is changed into an SPR and passive system respectively. Hence, 

depending on how the converter is modeled either approach can be carried out to 

facilitate the applicability of SAC to non-minimum phase power converters. 



75 

 

 

6.2.4 In Peaking Phenomenon  

     From [24] it is said that non-minimum phase systems are peaking systems i.e. they 

cannot be stabilized without peaking phenomenon. Such systems when connected in 

cascade, in multi-converter system would result in high transients and the system 

performance degrades. This can be avoided by the use of FFEP control, as in FFEP 

control the system is compensated to make it passive by dynamic feedforward passivation. 

Therefore, the system behavior approaches a minimum phase system and the peaking can 

be decreased to a considerable effect  
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APPENDIX 

The following figure shows the test bed equipment for buck-boost converter. Figure A.1 

shows the dSPACE rapid prototyping device, buck-boost converter and a programmable 

load.  

 

 
Figure A Buck-Boost Converter Experimental Setup 
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