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ABSTRACT

Keyphrase extraction aims to find representative phrases for a document. Keyphrases are

expected to cover main themes of a document. Meanwhile, keyphrases do not necessar-
ily occur frequently in the document, which is known as the vocabulary gap between the

words in a document and its keyphrases. In this paper, we propose Topical Word Trigger

Model (TWTM) for keyphrase extraction. TWTM assumes the content and keyphrases of
a document are talking about the same themes but written in different languages. Under

the assumption, keyphrase extraction is modeled as a translation process from document
content to keyphrases. Moreover, in order to better cover document themes, TWTM sets trig-

ger probabilities to be topic-specific, and hence the trigger process can be influenced by the

document themes. On one hand, TWTM uses latent topics to model document themes and
takes the coverage of document themes into consideration; on the other hand, TWTM uses

topic-specific word trigger to bridge the vocabulary gap between the words in document

and keyphrases. Experiment results on real world dataset reveal that TWTM outperforms
existing state-of-the-art methods under various evaluation metrics.
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1 Introduction

For information retrieval and management, people usually annotate a collection of

keyphrases to a document as its brief summary. Keyphrases can be found in most digital
libraries and information retrieval systems (Turney, 2000; Nguyen and Kan, 2007). Web

information, most of which is in the form of text, is growing at a rapid rate. For the large

volume of documents, it will be inefficient for human editors to manually index keyphrases.
Therefore, automatically extracting keyphrases for documents is proposed as a challenging

task in natural language processing. The task is also referred to as keyphrase extraction.

When we enter Web 2.0 era, social tagging is invented to help users manage and share

information. The social tags can be regarded as a type of keyphrases. Various methods
have been proposed for automatic social tag suggestion, which can be regarded as a special

type of keyphrase extraction. In social tag suggestion, given a document, the system will

select keyphrases from a controlled tag list instead of document itself. It indicates that
keyphrases do not necessarily occur in the given document. It is obvious that it provides

a more flexible and convenient scheme compared to traditional keyphrase extraction, and
thus becomes the main application of keyphrase extraction. In this paper, we will focus

on the new setting of keyphrase extraction, which is named as keyphrase extraction from a

controlled vocabulary. In the following paper, unless specifically noted, we use keyphrase
extraction as referred to the new setting.

As a summary of document, keyphrases are expected to represent and cover the main

themes of the given document. Suppose there is an article talking about the “Apple” com-

pany and its smartphone “iPhone”. The extracted keyphrases are expected to cover the
both themes, i.e., “Apple” and “iPhone”. This indicates that a set of keyphrases that focuses

on only one theme will not be adequate. Meanwhile, representative keyphrases do not nec-

essarily occur frequently in the document. Take the article for example again, it may men-
tion “iPhone” (smartphone of Apple), “iPad” (tablet computer of Apple) and “Steve Jobs”

(founder of Apple) for many times, but refer to “Apple” not so frequently. Nevertheless, it is
intuitive that “Apple” should be a representative keyphrase of the document. We refer the

phenomenon as a vocabulary gap between words in document and keyphrases. In summary,

given a document, keyphrase extraction should: (1) find a set of representative keyphrases
that can better cover the main themes of the document. (2) The selection of keyphrases

should primarily rely on their semantic relatedness with the document rather than being

constrained by their occurrence frequencies in the document. This requires keyphrase ex-
traction can bridge the vocabulary gap between document content and keyphrases.

Many unsupervised methods have also been extensively explored for keyphrase extrac-

tion. The most simple unsupervised method is ranking the candidate keyphrases according

to TFIDF (Salton and Buckley, 1988) and then selecting top-ranked ones as keyphrases.
There are also graph-based methods (Mihalcea and Tarau, 2004; Wan and Xiao, 2008b,a;

Liu et al., 2010), clustering-based methods (Grineva et al., 2009; Liu et al., 2009) and la-
tent topic models (Heinrich, 2005; Blei and Lafferty, 2009) proposed for keyphrase extrac-

tion. Most of these methods take frequencies of candidate keyphrases as the crucial de-

cision criteria, and thus tend to select those high-frequency ones as keyphrases. Given
sufficient annotation data for training, we can adopt the classification-based approach for

keyphrase extraction. For example, some methods (Frank et al., 1999; Witten et al., 1999;

Turney, 2000) regard keyphrase extraction as a binary classification problem (is-keyphrase



or non-keyphrase). Keyphrase extraction can also be considered as a multi-label classifi-

cation problem (Tsoumakas and Katakis, 2007), in which each keyphrase is regarded as
a category label. Various methods such as Naive Bayes (Garg and Weber, 2008) and kNN

(Li et al., 2009) have been explored. Some researchers proposed using latent topics to build

semantic relations between words and tags. The representative methods include TagLDA
(Krestel et al., 2009; Si and Sun, 2009) and Content Relevance Model (CRM) (Iwata et al.,

2009). However, these methods usually suffer from the over-generalization problem.

Recently, a new approach based on word alignment models (WAM) in statistical machine

translation (SMT) has been proposed for keyphrase extraction (Ravi et al., 2010; Liu et al.,
2011b,a, 2012). WAM-based methods assume the content and keyphrases of a document

are describing the same themes but written in different languages. Under this assump-

tion, WAM-based methods regard keyphrase extraction as a translation process from doc-
ument content to keyphrases. This process is modeled as a trigger from important words

in document content to keyphrases according to trigger probabilities between words and
keyphrases. WAM-based methods will learn trigger probabilities from sufficient document-

keyphrase pairs. With the trigger probabilities, given a novel document, WAM-based meth-

ods are able to extract relevant keyphrases that do not necessarily occur so frequently in
the document.

Although achieving significant improvement in bridging the vocabulary gap between docu-
ment and keyphrases, WAM-based methods, however, cannot well guarantee the coverage

of document themes. The crucial reason is analyzed as follows. WAM-based methods, for-
malizing trigger probabilities at word level, consider each single word in document and

project from document content to keyphrases. However, the coverage of document themes

should be appreciated at topic level, which is beyond the power of WAM-based methods.

A promising approach for representing document themes is latent topic models (Blei et al.,
2003). In topic models, both words/keyphrases and documents are represented as proba-

bilistic distributions over latent topics. Topic models are widely adopted as a guaranteed

approach to represent document themes. Topic models themselves can also be used for
keyphrase extraction, referred to as topic-based methods, by simply ranking keyphrases

according to their semantic relevance with the document themes in terms of latent topics.

Topic-based methods can be regarded as a trigger process at topic level, contrast to the
trigger process at word level in WAM-based methods. Since common keyphrases receive

larger probabilities given a topic, topic-based methods tend to select those keyphrases that
are too general to tightly capture the main themes of the document. For example, it may

select “IT” as keyphrase for the above mentioned document, which is so general that cannot

reflect the document themes well.

Is there a way to leverage the power of both word-level projection and topic-level coverage

in keyphrase extraction? Can the two techniques, i.e., word alignment models and latent
topic models, be integrated together to complement each other for keyphrase extraction?

To address the problems, we propose Topical Word Trigger Model (TWTM) for keyphrase
extraction. TWTM inherits the advantage of WAM-based methods, and also incorporates

latent topic models so as to promise the coverage of document themes.

To compare and analyze the characteristics of different approaches for keyphrase extraction,

we also introduce the method based on word alignment models, i.e., Word Trigger Model

(WTM), and the method based on polylingual topic models, i.e., Topic Trigger Model (TTM).



As these names suggest, WTM identifies keyphrases by triggering at word level; while TTM

triggering at topic level. TWTM, integrating their advantages, performs both word-level
and topic-level triggers to extract keyphrases.

To demonstrate the effectiveness of our method, we carry out experiments on a real-world

dataset crawled from a website with keyphrases having been annotated collaboratively by
users. Experiment results show that TWTM can identify appropriate keyphrases with better

coverage of document themes compared to existing WAM-based methods.

2 Our Method

In this section we first introduce two simple trigger methods, WTM and TTM, in which

WTM performs triggering at word level while TTM at topic level. Afterwards, we introduce
our method TWTM.

(a) WTM (b) TTM (c) TWTM

Figure 1: Trigger Models for keyphrase extraction.

2.1 Notations and Definitions

Before introducing baselines and our method, we give some notations. We denote a docu-
ment as d ∈ D, where D is the document set. For each document d, we denote its content

as a sequence of words c = {ci}
N c

i=1
and its keyphrases as a set k = {ki}

N k

i=1
. The vocabulary

of words in documents is denoted as W , and the vocabulary of keyphrases as V . Each word

ci in documents is an instance of a word type w in W , i.e., ci = w ∈W ; each keyphrase ki

of documents is an instance of a keyphrase type v in V , i.e., ki = v ∈ V .

We define keyphrase extraction as follows. Given a document d with its content c,

keyphrase extraction aims to seek a set of keyphrases k that maximizes Pr(k|c). By simply as-

suming the keyphrases are independent conditional over d, we have Pr(k|c) =
∏

k∈k Pr(k|c).
The optimal set of keyphrases k∗ can be represented as follows:

k∗ = argmax
k

Pr(k|c) = argmax
k

∏

k∈k

Pr(k|c). (1)

Suppose the number of keyphrases is pre-defined as N k, we can simply find k∗ by ranking



each candidate keyphrase v ∈ V according to its score Pr(v|c) in descending order and

selecting top-N k keyphrases.

2.2 Word Trigger Model

Word Trigger Model (WTM) is inspired by IBM Model-1 (Brown et al., 1993), the most

widely used word alignment models in SMT. WTM assumes the content and the keyphrases
of a document are describing the same themes while written in two different languages:

document content in one language while keyphrases in the other. From this perspective,
keyphrase extraction can be regarded as a translation process from a given document con-

tent to keyphrases.

In more detail, the translation process is modeled as a trigger process as follows. First, WTM

finds several important words in the document content as trigger words. Then, activated
by these trigger words, WTM maps the document content into keyphrases. A trigger in the

translation process can be regarded as a mapping function from the words in document to
keyphrases.

WTM formalizes a trigger as a hidden variable a. By assuming each keyphrase of a docu-

ment is triggered by only one word in the content, a a maps each keyphrase at position j

(i.e., k j) as triggered by a word at position i in document content c (i.e., ci), denoted as
a j = i. Given a document, its content c and keyphrases k can be connected by a trigger

variable a. The probability of triggering k from c can be formalized as

Pr(k|c) =
∑

a

Pr(k,a|c) =
∑

a

Pr(k|a,c)Pr(a|c). (2)

Following the same assumptions of IBM Model-1 (Brown et al., 1993), for each document
d ∈ D, WTM assumes the content c of d already exists, and the keyphrases k are generated

from c as follows:

1. For each document d with content c and N k keyphrases:

(a) For j from 1 to N k:

i. Sample each word trigger link a j from 1, . . . , N c according to a uniform dis-
tribution.

ii. Sample each k j = v according to trigger probability Pr(k j = v|ca j
= w,ψ).

Here we denote the trigger probability from a word w ∈ W to a keyphrase v ∈ V as

ψvw = Pr(v|w), and the trigger probabilities from W to V form a matrix ψ. The corre-
sponding graphical representation is shown in Figure 1a. The boxes are “plates” represent-

ing replicates. In this graphical model, the variables k and c are shaded indicating that they
are observed; while the unshaded variables, including a andψ, are latent (i.e., unobserved).

Under the same assumptions of IBM Model-1, we write

Pr(k|c) ∝
1

(N c)(N
k)

N k
∏

j=1

N c
∑

i=1

Pr(k j = v|ci = w) =
1

(N c)(N
k)

N k
∏

j=1

N c
∑

i=1

ψvw. (3)

We see that, in WTM, trigger probabilities ψvw = Pr(k j = v|ci = w) are the key parameters

for learning. WTM has global optimum, and is efficient and easily scalable to large training



data. We use Expectation-Maximization (EM) (Dempster et al., 1977) to estimate trigger

probabilities ψ.

Using the estimated ψ, when given a novel document d with its content c, we can rank
each candidate keyphrase v as follows:

Pr(v|c) =
∑

w∈c

Pr(v|w,ψ)Pr(w|c) =
∑

w∈c

ψvw Pr(w|c), (4)

where Pr(w|c) indicates the weight of the word w in c, which can be calculated using the
TFIDF score of w in c. From the ranking list in descending order, we can select the top-

ranked ones as keyphrases of the given document.

2.3 Topic Trigger Model

WTM triggers keyphrases at the word level. We can also trigger at the topic level, and

thus propose Topic Trigger Model (TTM) for keyphrase extraction. TTM is inspired by

Polylingual Topic Models (Mimno et al., 2009), which is originally proposed to model par-
allel documents in multiple languages. TTM is an extension of latent Dirichlet allocation

(LDA) (Blei et al., 2003).

Suppose there are T latent topics in TTM, and the number of topics |T | can be pre-defined
by users. TTM assumes that the content c and keyphrases k of a document d share the

same distribution over |T | topics (i.e., θd), which is drawn from a symmetric Dirichlet prior

with concentration parameter α. TTM also assumes that each topic t ∈ T corresponds
to two different multinomial distributions over words, one for keyphrases (i.e., φk

t
) and

another for content (i.e., φc
t
), each of which is drawn from a specific symmetric Dirichlet

with concentration parameter, β k or β c . TTM can be viewed as a generative process of both
document content and keyphrases as follows:

1. Sample word distribution φc
t

from Dirichlet(β c) and sample keyphrase distribution

φk
t

from Dirichlet(β k) for each topic t ∈ T .

2. For each document d ∈ D with N c words and N k keyphrases:

(a) Sample topic distribution θd from Dirichlet(α).
(b) For i from 1 to N c

i. Sample a topic zi = t from Mul tinomial(θd).

ii. Sample a word ci = w according to multinomial distribution Pr(ci = w|zi =

t,φc).

(c) For j from 1 to N k

i. Sample a topic z j = t from Mul tinomial(θd).

ii. Sample a keyphrase k j = v according to multinomial distribution Pr(k j =

v|z j = t,φk).

The corresponding graphical model is shown in Figure 1b, where the observed variables

(i.e., words c, keyphrases k and hyper-parameters β k and β c) are shaded.

Given the observed words in a collection of documents, the task of TTM learning is to com-

pute the posterior distribution of the latent topic assignments z, the topic mixtures θd of



each document d, and the distributions over words φc
t

and φk
t

of each topic t. By assum-

ing a Dirichlet prior β on φ, φ can be integrated according to the Dirichlet-multinomial
conjugacy. In this paper, we use Gibbs Sampling to estimate parameters, which has been

widely used as an inference method for many latent topic models. In Gibbs sampling, it is

usual to integrate out the mixtures θ and topics φ and just sample the latent variables z.
The process is thus called collapsed.

Gibbs Sampling iteratively performs latent topic assignments for each word in the document

set, and estimates the distributions over words of each topic (i.e., φc
wt
= Pr(ci = w|zi = t)

and φk
vt
= Pr(k j = v|z j = t)), and the distribution over topics of each document (i.e.,

θtd = Pr(zi = t|d)). Take a word token ci = w in d for example, given the current state of

all but the variable zi , the conditional probability of zi = t is

Pr(zi = t|ci = w,c¬i ,z¬i ,k) ∝
N c,¬i

wt
+β c

N c
t
− 1+ |W |β c

×
N¬i

td
+α

N c
d
+ N k

d
− 1+ |T |α

, (5)

where z is the current topic assignments for all tokens in the document set; N c
wt

is the

number of occurrences of word w that are assigned with topic t; N c
t

is the number of

occurrences of all words that are assigned with topic t; Ntd is the number of occurrences
of topic t assigned in the current document d; N c

d
and N k

d
are the numbers of all tokens in

the content and keyphrases of d, respectively; ¬i indicates taking no account of the current

position i.

According to the posterior probability Pr(zi = t|ci = w, c¬i , z¬i , k), we re-sample the topic

assignment zi of the ci in d. Whenever zi of ci is assigned with a new topic drawn from
Equation (5), N c

wt
and Ntd are updated. We perform topic assignments in the same way for

each word ki in k of d. After enough sampling iterations to burn in the Markov chain, φc ,

φk and θ are estimated as follows:

φc
wt
=

N c
wt
+β c

N c
t
+ |W |β c

, φk
v t
=

N k
v t
+ β k

N k
t
+ |V |β k

, θtd =
Ntd +α

N c
d
+ N k

d
+ |T |α

. (6)

When finishing the learning process, we obtain the distributions over words of each topic,

i.e., φk and φc . Suppose we are asked to extract keyphrases from a novel document with
only content c. First, we infer topic assignments for each word in c with Gibbs Sampling.

With the topic assignments, we summarize the distribution over topics of the content c as

Pr(t|c) =
N c

td
+α

N c
d
+ |T |α

. (7)

Triggered by the topics of c, we rank each candidate keyphrase v ∈ V as follows:

Pr(v|c) =
∑

t∈T

Pr(v|t,φk)Pr(t|c) =
∑

t∈T

φk
v t
θtd , (8)

and then select the top-ranked as keyphrases of the given document.

2.4 Topical Word Trigger Model

WTM and TTM perform trigger operations at either word or topic level. WTM addresses

the problem of vocabulary gap between documents and keyphrases, and can thus suggest



keyphrases that are uncommon or even not showing up in the given document. TTM, on the

other hand, takes the main themes of the given document in consideration when extracting
keyphrases. In order to aggregate the advantages of the both methods, extended from WTM

and TTM, we propose Topical Word Trigger Model (TWTM) for keyphrase extraction.

Similar to TTM, TWTM also assumes that topics are sampled at the word level. Each doc-

ument is represented as a multinomial distribution over T latent topics. On the document
content side, each topic t ∈ T corresponds to a multinomial distribution over words, which

is similar to TTM. On the keyphrase side, each topic t ∈ T corresponds to a topic-specific

translation tableψt . Given each document d ∈ D, the generative process of both document
content and keyphrases is as follows:

1. Sample word distribution φc
t

from Dirichlet(β c) for each topic t ∈ T .

2. Sample keyphrase distribution ψt
w

from Dirichlet(β k) for each topic t ∈ T and each
word w ∈W .

3. For each document d ∈ D with N c words and N k keyphrases:

(a) Sample topic distribution θd from Dirichlet(α).
(b) For i from 1 to N c

i. Sample a topic zi = t from Mul tinomial(θd).
ii. Sample a word ci = w according to multinomial distribution Pr(ci = w|zi =

t,φc).

(c) For j from 1 to N k

i. Sample a topic z j = t from Mul tinomial(θd).
ii. Sample each word trigger link a j from all words in d that are generated

from t according to a uniform distribution.

iii. Sample each k j = v according to trigger probability Pr(k j = v|ca j
= w,ψt).

The graphical model is shown in Figure 1c. Topic-dependent translation probabilities ψt

are the key parameters. Each ψt maintains the translation probability from each word

ci = w in contents to each keyphrase k j = v under topic t, i.e., ψt
vw
= Pr(k j = v|ci = w, t).

Given the observed words and keyphrases in a collection of documents, the task of TWTM
learning is to compute the posterior distribution of the latent topic assignments z, the topic

mixtures θd of each document d, the distribution over words φt of each topic t, and the

trigger probabilities ψt of each topic t. We can also use Gibbs Sampling to estimate pa-
rameters in TWTM. On the document content side, we can perform topic assignments z
for each word as in TTM using Equation (5). On the keyphrase side, the problem is more
complicated. Suppose we will assign each keyphrase k j with a topic z j and a trigger a j .

Take a keyphrase k j = v for example, given the current state of all but the variable z j and

a j , the conditional probability of z j = t, a j = i is calculated as follows,

Pr(z j = t, a j = i|k j = v,k¬ j ,z¬ j ,a¬ j , ci = w,c)∝
N t,¬ j

vw
+β k

N t
w
− 1+ |V |β k

×
N
¬ j

td
+α

Nd − 1+ |T |α
, (9)

where z is the current topic assignments for all translation pairs in the document set; N t
vw

is the number of occurrences that w is translated to v given topic t; N t
w

is the number of

occurrences of word w in all translation pairs given topic t; Ntd is the number of occurrences

of topic t assigned in the current document d; Nd is the number of all translation pairs in



the current document d; ¬ j also indicates taking no account of the current position j. Given

the conditional probability of z j = t, a j = i, we formalize the marginal probability of z j = t

as follows,

Pr(z j = t|k j = v, k¬ j , z¬ j , a¬ j , c) ∝

N c
∑

i=1

N t,¬ j
vci
+β k

N t
ci
− 1+ |V |β

×
N
¬ j

td
+α

Nd − 1+ |T |α
. (10)

After re-assigning the topic z j = t for the current keyphrase according to Equation (10), we
can further compute the trigger probability as follows:

Pr(a j = i|z j = t, k j = v, k¬ j , z¬ j , a¬ j , c) =
N t,¬ j

vci
+ β

N t
ci
− 1+ |V |β k

. (11)

According to Equation (11), we re-assign trigger word ci for the current keyphrase k j . After

enough sampling iterations to burn in the Markov chain, φc , ψt and θ are estimated as
follows:

φc
wt
=

N c
wt
+ β c

N c
t
+ |W |β c

, ψt
vw
=

N t
vw
+ β

N t
w
+ |V |β

, θtd =
Ntd +α

N k
d
+ N c

d
+ |T |α

. (12)

The potential size of topical trigger probabilitiesψ is |V |×|W |×|T |. The size is comparative

larger than ψ in WTM, and thus faces more serious problem of data sparsity. To remedy
the problem, we use interpolation smoothing technique for ψ of TWTM. In this paper, we

employ smoothing using ψ of WTM as follows:

Pr SMOOTH (v|w, t) = λPr TW T M (v|w, t) + (1− λ)Pr W T M (v|w, t), (13)

where Pr SMOOT H(v|w, t) is the smoothed topical trigger probabilities, Pr TW T M (v|w, t) is the

original topical trigger probabilities of TWTM, Pr W T M (v|w, t) is the trigger probabilities of

WTM.λ is the smoothing factor ranging from 0.0 to 1.0. Whenλ = 0.0, Pr t
SMOOT H

(v|w)will
be reduced to non-topic trigger probabilities; and when λ= 1.0, there will be no smoothing

in Pr SMOOT H (v|w, t).

In TWTM, we perform keyphrase extraction as follows. Suppose we need perform

keyphrase extraction for a document d with its content c. We perform Gibbs Sampling
to iteratively estimate the topic distribution of d (i.e., θd) according to document content

c. Afterwards, we select N k keyphrases using the ranking score of each keyphrase v:

Pr(v|c) =
∑

w∈c

∑

t∈T

Pr(v|w, t)Pr(w|c)Pr(t|c) =
∑

w∈c

∑

t∈T

ψt
vw
θtd Pr(w|c), (14)

where Pr(w|c) is the weight of the word w in document content c, which can be estimated

by the TFIDF score of w in c; Pr(t|θd) is the probability of the topic t given the document
d.

3 Experiments and Analysis

3.1 Dataset and Experiment Setting

To evaluate the performance of TWTM for keyphrase extraction, we carry out experiments
on a real world dataset, crawled from douban.
om, the largest product review website in

China. Each product contains a description which is considered as a document content, and

also contains a set of keyphrases annotated by users collaboratively which are considered

douban.com


as standard keyphrases. The dataset consists of annotations for three types of products, i.e.,

book, movie and music. The statistics of the dataset is shown in Table 1, where |D|, |W |,
|V |, N̂ c and N̂ k are the number of documents, the vocabulary of contents, the vocabulary of

keyphrases, the average number of words and keyphrases in each document, respectively.

In Table 1, we use DOUBAN to represent the whole dataset and use BOOK, MOVIE and
MUSIC to show the statistics for instances for different product types.

Data |D| |W | |V | N̂ c N̂ k

DOUBAN 71,525 160,276 99,457 86.30 10.53

BOOK 26,807 81,846 41,199 83.13 8.95

MOVIE 18,933 86,339 37,034 86.04 16.03

MUSIC 25,785 106,523 31,228 89.77 8.13

Table 1: Statistical information of dataset.

To evaluate the performance of our method and compare with other methods, we randomly
select 1, 000 instances from each of three types of products to form the test set with 3, 000

instances, and use the rest of the dataset as training set.

In our experiments we select three evaluation metrics. The first metric is precision, recall
and F-measure represented as p = ccorrect/cex t ract , r = ccorrect/cstandard and F = 2pr/(p+r),

where ccorrect is the total number of keyphrases that are correctly suggested by a method,

cex t ract is the total number of automatic extracted keyphrases, and cstandard is the total
number of human-labeled standard keyphrases.

In fact, ranking order of extracted keyphrases also indicates the performance of different

methods. A method is regarded better than another one if it ranks correct keyphrases higher.

However, precision/recall/F-measure does not take the order of extracted keyphrases into
account. To address the problem, we select the following two additional metrics. One met-

ric is binary preference measure (Bpref) (Buckley and Voorhees, 2004). Bpref can consider
the order of extracted keyphrases for evaluation. For a document, if there are R correct

keyphrases within M extracted keyphrases by a method, in which r is a correct keyphrase

and n is an incorrect keyphrase. It is defined as Bpref= 1

R

∑

r∈R

�

1−
|n ranked higher than r|

M

�

.

The other metric is mean reciprocal rank (MRR) (Voorhees, 2000) which is usually used to

evaluate how the first correct keyphrase for each document is ranked. For a document d,

rankd is denoted as the rank of the first correct keyphrase with all extracted keyphrases, It
is defined as MRR= 1

|D|

∑

d∈D
1

rankd

, where D is the document set for keyphrase extraction.

3.2 Case Studies

Before quantitative evaluation, we perform case studies by looking into the topics learned

by TWTM. By setting T = 100 of TWTM, We select two topics, i.e., Topic-59 and Topic-92
for study. In first several rows of Table 2, we list the top-10 words and top-10 keyphrases

given the two topics separately (i.e., ranked by Pr(w|t) and Pr(v|t)). From the top words

and keyphrases, we can conclude that Topic-59 is about “art design” and Topic-92 is about
“computer programming”.

What will the topics influence the trigger probabilities? We pick a word “graphics” for ex-

ample. In the context of the topic “art design”, the word “graphics” always correlates with

“design”, “color” and “art”; while in the context of the topic “computer programming”, the



word “graphics” generally refers to “computer graphics” and thus correlates to “program-

ming”, “software” and “programming language”. At the bottom of Table 2, we show the
top-6 keyphrases triggered by the word “graphics” with respect to the two topics. The value

in the bracket after each keyphrase v is the probability ψt
vw
= Pr(v|w, t), which is the top-

ical specific trigger probability from w (here is the word “graphics”) to v under the topic
t. From the top triggered keyphrases by “graphics” under two topics, we can see they are

discriminative with each other, and have intense topic characteristics.

Topic-59 Topic-92

Top Words Keyphrases Words Keyphrases

1 design design program computer

2 creativity creativity develop program

3 designer designing application software engineer

4 magazine handcraft object C++

5 fashion graphic design technology programming

6 game fashion design program design

7 work game system program develop

8 color product design function Linux

9 vision industrial design software computer science

10 advertise magazine method Alan

graphics design (0.482) game programming (0.201)

color science (0.089) programming language (0.107)

font design (0.084) Web 2.0 (0.094)

product design (0.077) C (0.078)

landscape design (0.050) Linux (0.077)

art design (0.039) Computer Graphics (0.049)

Table 2: Examples of topics learned with TWTM.

After investigating the topics, we look into keyphrase extraction results given a product

description. Here we select a Japanese classical literature The Tale of Genji for example,
which was written by Murasaki Shikibu in the early years of the 11th century 1. The book

recounts the life and love stories of a son of the Japanese emperor. In Table 3, we show the

top-10 keyphrases extracted by WTM, TTM and TWTM, in which we use (−) to highlight
the inappropriate keyphrases.

Method Extracted Keyphrases

WTM The Tale of Genji, classic, Japan, foreign literature, Murasaki Shikibu, politics (-), love,

political science (-), eason (-), political philosophy (-)

TTM novel, Japan, foreign literature, history, love, sociology (-), culture, literature, Russia

(-), female (-)

TWTM novel, foreign literature, The Tale of Genji, history, Japan, classic, literature, love,

Murasaki Shikibu, politics (-)

Table 3: Examples of extracted keyphrases for the book The Tale of Genji.

From Table 3 we observe that: (1) WTM can suggest keyphrases that are closely related to

the book, such as “The Tale of Genji” and “Murasaki Shikibu”. However, due to not consider-
ing document themes, WTM will extract irrelevant keyphrases such as “politics”, “political

1http://en.wikipedia.org/wiki/The_Tale_of_Genji.

http://en.wikipedia.org/wiki/The_Tale_of_Genji


science”, “eason” and “political philosophy”. (2) TTM triggers keyphrases with the favor of

latent topics, which are usually too general to commendably represent the document main
themes. We can see TTM fail to extract specific keyphrases such as “The Tale of Genji” and

“Murasaki Shikibu”. What is worse, TTM over-generalizes the document themes and ex-

tract inappropriate keyphrases “sociology”, “’Russia” and “female”. (3) Taking advantages
of both WTM and TTM, TWTM can extract specific and representative keyphrases and at the

same time guarantee the coverage of document themes. We can see that TWTM achieves

a smart balance between word-level projections and topic-level coverage.

3.3 Parameter Influences

There are two crucial parameters in TWTM, the number of topics T and the smoothing

factor λ. In Table 4 and Table 5, we demonstrate the performance of TWTM for keyphrase
extraction when parameters change.

T Precision Recall F-measure Bpref MRR

10 0.313 0.304 0.309 0.313 0.825

30 0.337 0.325 0.331 0.337 0.837

50 0.339 0.329 0.334 0.339 0.827

70 0.351 0.339 0.345 0.351 0.840

100 0.354 0.343 0.349 0.354 0.838

Table 4: The influence of topic number T of TWTM for keyphrase extraction when N k = 10
and smoothing factor λ= 0.4.

λ Precision Recall F-measure Bpref MRR

0.0 0.310 0.254 0.279 0.310 0.676

0.2 0.318 0.314 0.316 0.318 0.823

0.4 0.354 0.343 0.349 0.354 0.838

0.6 0.364 0.349 0.357 0.364 0.812

0.8 0.350 0.334 0.342 0.351 0.764

1.0 0.323 0.306 0.314 0.324 0.731

Table 5: The influence of smooth factor λ of TWTM for keyphrase extraction when N k = 10

and the number of topics T = 100.

From Table 4, we can see that, as the number of topics T increases from T = 10 to T = 100,

the performance roughly improves. This indicates that the granularity of topics will influ-

ence the keyphrase extraction performance. When T = 70 and T = 100, the performance
achieves a relatively stable good status. Hence, when comparing TWTM with other meth-

ods, we set T = 100 for TWTM.

As shown in Table 5, when the smoothing factor is set with λ = 0.4 or λ = 0.6, TWTM

achieves the relatively best performance. When either λ= 0.0 (i.e., WTM), or λ = 1.0 (i.e.,

non-smoothed TWTM), the performance is much poorer compared to smoothed TWTM.
This reveals that it is necessary to address the sparsity problem of TWTM by smoothing

with WTM. Therefore, when comparing TWTM with other methods, we set λ = 0.4 for

TWTM.



3.4 Performance Comparison

Besides WTM and TTM, we also select three representative methods as baselines for compar-
ison: the classification-based method Naive Bayes (NB) (Garg and Weber, 2008), the topic-

based method CRM (Iwata et al., 2009) and the word-projection method TAM (Si et al.,

2010). We set T = 1, 024 for CRM which achieves its best performance.

In Figure 2 we show the precision-recall curves of NB, CRM, TAM, WTM, TTM and TWTM

on the dataset. Each point of a precision-recall curve represents extracting different number
of keyphrases ranging from N k = 1 (bottom right, with higher precision and lower recall)

to N k = 10 (upper left, with higher recall but lower precision), respectively. The closer the

curve to the upper right, the better the overall performance of the method.
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Figure 2: Precision-recall curves for keyphrase extraction.

Figure 2 clearly shows that TWTM outperforms other methods significantly. The interesting

phenomena is that, when N k is getting larger, the advantages of TWTM are more obvious
compared to baselines. We know that when a system is asked to extract more keyphrases

(i.e., N k is larger), it is becoming important for extracted keyphrase to have a good cover-

age of document themes. Otherwise, the performance will drop sharply. This is the issue
suffered by WTM. We can see that, although WTM is relatively excellent when suggesting

top several keyphrases, it performs poor when suggesting more keyphrases due to the poor

ability on ensuring coverage.

In Table 6 we list the comparison results of various methods when extracting N k = 10

keyphrases. We can observe that TWTM outperforms the best baseline TAM by 7% of F-
measure. Moreover, as mentioned above, the dataset consists of three types of products. In

Table 6 we also demonstrate the results of TWTM on the test instances divided by product

types, denoted as “BOOK”, “MOVIE” and “MUSIC”. The performance is consistently decent
on the three types of instances. We also observe that F-measure scores on the three types

of instances are proportional to the size of their training instances as shown in Table 1.

Apparently, more training instances will enhance sufficiently learning of TWTM, which may



Method Precision Recall F-measure Bpref MRR

NB 0.283 0.232 0.255 0.283 0.702

CRM 0.267 0.216 0.239 0.267 0.648

TAM 0.310 0.254 0.279 0.310 0.676

WTM 0.242 0.242 0.242 0.242 0.785

TTM 0.226 0.203 0.214 0.226 0.638

TWTM 0.354 0.343 0.349 0.354 0.838

BOOK 0.365 0.428 0.394 0.365 0.861

MOVIE 0.356 0.274 0.310 0.356 0.820

MUSIC 0.341 0.326 0.334 0.341 0.831

Table 6: Comparison results when extracting N k = 10 keyphrases.

also eventually improve the performance of keyphrase extraction.

Conclusion and Future Work

This paper focuses on keyphrase extraction from a controlled vocabulary. The proposed

TWTM has two features: (1) TWTM uses latent topics to represent document themes, and
thus takes the coverage of document themes into consideration; (2) TWTM models topic-

specific word triggers, which are more discriminative. Hence TWTM is able to bridge the
vocabulary gap between document content and keyphrases more precisely. Experiment

results on real world dataset demonstrate that TWTM outperforms existing state-of-the-art

methods under various evaluation metrics. We also demonstrate that TWTM achieves a
balance between word-level projection and topic-level coverage.

Moreover, TWTM is not restricted to supervised learning. TWTM can also be adopted in

unsupervised fashion. So long as we can build appropriate translation pairs to represent
semantic relations between documents and keyphrases, TWTM will be able to exert its

capacity. For example, for news articles, we can use news titles and contents to build trans-

lation pairs, by regarding titles as an approximate language to keyphrases; for scientific
papers, we can use abstracts and contents to build translation pairs.

We design the following research plans: (1) The number of topics in TWTM requires be-

ing pre-defined by users. We plan to incorporate Bayes Nonparametric (Blei et al., 2010)
for TWTM to automatically learn the number of topics. (2) The trigger probabilities in

TWTM do not take rich linguistic knowledge into consideration. We plan to incorporate

more complicated alignment models from SMT into our model. (3) This paper focuses on
supervised learning of TWTM. We plan to investigate unsupervised learning of TWTM for

documents such as news articles and scientific papers. (4) The influence of product types

for keyphrase extraction has not been thoroughly investigated in this paper. We plan to
study the impact of product types and explore domain adaptation (Blitzer et al., 2006) for

cross-domain keyphrase extraction using TWTM.
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