Corrigendum to

"A database of plagioclase crystal preferred orientations (CPO) and microstructures - implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks" published in Solid Earth, 4, 511-542, 2013

T. Satsukawa ${ }^{1,2, *}$, B. Ildefonse ${ }^{2}$, D. Mainprice ${ }^{2}$, L. F. G. Morales ${ }^{3}$, K. Michibayashi ${ }^{1,4}$, and F. Barou ${ }^{2}$
${ }^{1}$ Graduate School of Science and Technology, Shizuoka University, Ohya 836, Shizuoka 422-8529, Japan
${ }^{2}$ Géosciences Montpellier, Université Montpellier 2 and CNRS, CC 060, 34095 Montpellier cedex 5, France
${ }^{3}$ Helmholtz Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
${ }^{4}$ Institute of Geosciences, Shizuoka University, Ohya 836, Shizuoka 422-8529, Japan
*present address: ARC Center of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC National Key Centre, Department of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia

Correspondence to: T. Satsukawa (takako.satsukawa@mq.edu.au)

In the paper "A database of plagioclase crystal preferred orientations (CPO) and microstructures - implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks" by T. Satsukawa et al. (Solid Earth, 4, 511542, doi:10.5194/se-4-511-2013, 2013) an error occured in the second paragraph of Sect. 5.7. The correct paragraph should be as follows:

In the present study, there is a clear variation of the (010) and [100] pole figures from point maxima to girdle distributions, with associated changes in the (001) pole figures. We introduce the BA-index (similar to the LS index used Ulrich and Mainprice (2005) to described variations between the symmetry of (010) and [001] pole figures in omphacite) to characterize the symmetry variation of the (010) and [100] pole figures, which is defined as $1 / 2\left[2-P_{(010)} /\left(G_{(010)}+P_{(010)}\right)-G_{[100]} /\left(G_{[100]}+P_{[100]}\right)\right]$. P and G are defined in Sect. 3.2 above.

