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Assessing the accuracy of the isotropic periodic sum method
through Madelung energy computation
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We tested the isotropic periodic sum (IPS) method for computing Madelung energies of ionic crys-
tals. The performance of the method, both in its nonpolar (IPSn) and polar (IPSp) forms, was com-
pared with that of the zero-charge and Wolf potentials [D. Wolf, P. Keblinski, S. R. Phillpot, and
J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999)]. The results show that the IPSn and IPSp meth-
ods converge the Madelung energy to its reference value with an average deviation of ∼10−4 and
∼10−7 energy units, respectively, for a cutoff range of 18–24a (a/2 being the nearest-neighbor ion
separation). However, minor oscillations were detected for the IPS methods when deviations of the
computed Madelung energies were plotted on a logarithmic scale as a function of the cutoff dis-
tance. To remove such oscillations, we introduced a modified IPSn potential in which both the local-
region and long-range electrostatic terms are damped, in analogy to the Wolf potential. With the
damped-IPSn potential, a smoother convergence was achieved. In addition, we observed a better
agreement between the damped-IPSn and IPSp methods, which suggests that damping the IPSn po-
tential is in effect similar to adding a screening potential in IPSp. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4871871]

I. INTRODUCTION

Computation of electrostatic energies has remained one
of the most challenging tasks in condensed-phase simula-
tions because of the long-range nature of the interactions
involved.1 A reference problem for condensed-phase systems
where electrostatics plays a crucial role is the computation
of the Madelung energy for ionic crystals.2–6 This problem
was first addressed by Madelung2 and later solved exactly
by Ewald.3 In the Madelung problem, the energy is evalu-
ated by adding the Coulombic, r−1, term over all ion pairs.
Lattice methods such as Ewald summation3 are the standard
approaches to compute Madelung energies and electrostatic
interactions in general. Although working well for many sys-
tems, they have been argued in some cases to cause artifacts
because of the imposed periodicity,7, 8 especially when non-
uniform or non-neutral systems are concerned9 (see Ref. 1 for
updates and alternative views). In addition to this, for large-
sized systems the best scaling behavior of modern Ewald
methods, such as the particle-mesh-Ewald (PME) method,10

is Nlog (N) (N being the number of particles). The simple cut-
off method is computationally more efficient as it scales lin-
early with N. However, when applied to the Madelung prob-
lem, it displays an unphysical oscillating behavior along the
cutoff size due to the varying charge state of the cutoff sphere6

and thus is generally not recommended.11–13

Recently, substantial efforts have been put forward to de-
velop reliable electrostatic treatments that take advantage of
the efficiency of the cutoff-based schemes with an aim to re-
move the charge-dependent artifacts.6, 14–17 This is achieved
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in some methods by using a counter-charge term, which in ef-
fect makes the cutoff sphere neutral. Examples of this kind in-
clude, the simple zero-charge (ZC) method6, 18 wherein a sin-
gle correction term is added to the normal cutoff summation
and the Wolf method6 wherein an additional damping factor
is further applied. Both methods have been demonstrated ef-
fective in computing Madelung energies. Nevertheless, long-
range electrostatic effects are not explicitly included in both
these methods.

Following a philosophy different from both lattice
summation and charge neutralization, Wu and Brooks19–21

introduced a linear-scaling method called the isotropic
periodic sum (IPS) method, which includes a long-range
correction term computed on the basis of homogeneity of a
system. Here, a region of radius Rc, called the local region,
is employed to construct the isotropic charge distributions
in distant regions of the system. The long-range electrostatic
contributions are then evaluated over these virtual “copies” of
the local region in a mean-field manner. Thus, the use of peri-
odic lattice images is avoided. Wu and Brooks proposed two
different versions of the IPS potentials: the nonpolar IPS po-
tential (IPSn)19 which deals with charge-charge interactions
and the polar IPS potential (IPSp)21 which is more suitable
for systems involving charge-dipole and dipole-dipole in-
teractions. Takahashi et al. further validated and refined the
IPS methods for classical simulations.22, 23 Recently, the IPS
method has been successfully extended by us to the combined
quantum mechanical and molecular mechanical (QM/MM)
framework, with which good performance comparable to that
of the QM/MM-Ewald method was observed.24 Despite these
documented successes, the benchmark of the IPS method on
the classic Madelung problem has not yet been established.
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In the present work, we assess the accuracy of the IPS
method, both in its IPSn and IPSp forms, by obtaining the
Madelung energy for the NaCl crystal and comparing the re-
sults with those of the ZC and Wolf potentials. In addition, a
damped IPSn potential is obtained, which removes the minor
energy oscillations detected in the original IPSn calculations.

II. THEORY

In what follows we will use the set SRc [i] = {qj : j

∈ N|0 ≤ rij ≤ Rc} which contains the charges qj located at
a distance ≤ Rc from a central charge qi (including qi). In
analogy to this, we define the set SRc [i] − {i} which excludes
the charged particle i.

The simple charge neutralization scheme leads to the ZC
potential computed according to Ref. 6:

EZC
i =

∑
j∈SRc [i]−{i}

qiqj

rij

− qi

Rc

∑
j∈SRc [i]

qj . (1)

It was observed previously, that although this potential gives
approximate values for the Madelung energy of crystals, it
shows noticeable oscillations that decrease slowly as the cut-
off radius increases. These oscillations can be damped by
multiplying the Coulombic term by an erfc(αr) factor, with
α being a control parameter. The resulting potential is called
the Wolf potential (see Eq. (5.13) in Ref. 6), which can be
written as

EWolf
i = qi

∑
j∈SRc [i]−{i}

[
qj

rij

erfc(αrij ) − qj

Rc
erfc(αRc)

]

−
[

1

Rc
erfc(αRc) + 2α

π1/2

]
q2

i . (2)

In the IPS method, the long-range-included pairwise
electrostatic energy can be written as19

εIPS
ij (rij ) =

{
εij (rij ) + φij (rij ) if rij ≤ Rc

0 otherwise
, (3)

where εij is the Coulombic term and φij is the long-range IPS
correction whose operational expression is given by

φij (rij ) = qiqj

Rc

[
6∑

k=1

b2k

(
rij

Rc

)2k
]

. (4)

Note that in Eq. (4) the explicit dependence of εIPS
ij , εij, and

φij on Rc has been omitted for brevity.
Two different versions of IPS potentials called IPS non-

polar (IPSn) and IPS polar (IPSp) have been previously
introduced.19, 21 The former deals with ionic systems and the
latter is intended for systems where charge-dipole and dipole-
dipole interactions are important. Treatment of such interac-
tions in the IPSp method is made possible through a screen-
ing potential φscreen which attenuates the field strength of the
IPSn potential at large distances. In practice, the difference
between IPSn and IPSp is reflected in the numerical values of
the expansion coefficients which are given in Table I for both.

As pointed out by Wu and Brooks, the total IPS energy
across the boundary of the local region would not be a con-

TABLE I. Coefficients for the IPSn (Ref. 19) and IPSp (Ref. 21) potentials.

Coefficient IPSn IPSp

b2 0.3018373 2.1875
b4 0.0648044 − 1.3125
b6 0.0157855 0.3125
b8 0.0037972 . . .
b10 0.0012149 . . .
b12 − 0.0000110 . . .

tinuous function if left untreated.19 Therefore, they suggested
the use of the following pairwise interaction term, referred to
as the configurational interaction (labeled with a superscript
“C”), instead of Eq. (3):

εC
ij (rij ) =

{−εIPS
ii (Rc) 1-1 term

εIPS
ij (rij ) − εIPS

ij (Rc) otherwise
, (5)

where the 1-1 term arises from the self interaction associ-
ated with the boundary treatment. Note that the present sys-
tem does not contain 1-2, 1-3, and 1-4 pairs, therefore these
bonded interactions are not discussed. In this way, the total
energy of the system is obtained as

EIPS = 1

2

N∑
i

N∑
j

εC
ij + EB, (6)

where EB is the so-called boundary energy.19 For periodic
systems, the boundary energy is expressed as19, 21

EB = V0

V
εIPS(Rc)

(
N∑
i

qi

)2

, (7)

where V0 and V denote the volume of the local region and that
of the periodic boundary box, respectively; εIPS is the charge-
independent kernel of Eq. (3). It is important to note that the
boundary energy term can be neglected here because the pri-
mary cell system can be extended to give an arbitrarily large
volume (V → ∞) without affecting the computed values of
Madelung energy per ion. Another way to justify the omis-
sion of boundary energy in the present study is that one can
always construct a primary cell system for which the sum of
the charges in Eq. (7) becomes zero. Thus, the total energy of
particle i can be written as

EIPS
i =

∑
j∈SRc [i]−{i}

εC
ij (rij ) + εC

ii(Rc), (8)

where the second term on right arises from the 1-1 term. Note
that with this choice of boundary and configurational ener-
gies, no additional charge correction is needed for the IPS
calculations, in contrast to the ZC and Wolf treatments.

III. RESULTS AND DISCUSSION

To test these existing methods, we computed the
Madelung energy per ion for a periodically repeated NaCl
crystal system using the ZC (Eq. (1)), Wolf (Eq. (2)), and
both IPS potentials (Eq. (8)). In practice, this is equivalent
to computing the electrostatic energy for particle i located at
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FIG. 1. Energy per ion computed from the ZC, Wolf, and three IPS poten-
tials (IPSn, IPSp, and damped-IPSn). Inset: deviations with respect to the
reference Madelung energy plotted on a log scale.

the center of a cubic block of the crystal. In what follows, we
assume a box length of l > 2Rc and a nearest-neighbor ion
separation of a/2. In the Wolf potential calculations, we used
a value of α = 0.8/a for the control parameter.25 The com-
puted Madelung energies are shown in Fig. 1 as a function
of the cutoff distance. Although all four methods, including
IPSn and IPSp, tend to converge to the reference Madelung
energy at large cutoff distances, the ZC method shows sub-
stantial oscillations whose amplitude decreases as the cutoff
radius increases. The Wolf potential, IPSn, and IPSp meth-
ods display a much lower degree of oscillations compared to
the ZC method such that the convergence curves of the three
methods cannot be easily distinguished from one another for
Rc > 6a.

To monitor the detailed convergence behavior of these
methods, we also calculated the deviations of the computed
Madelung energies from its reference value EMad as follows:

|�E| = ∣∣EX
i − EMad

∣∣, (9)

where X refers to any of the methods discussed above
and EMad is the Madelung constant which is equal to
−3.49512918q2/a (see Ref. 6). The energy deviations for all
methods are plotted in the inset of Fig. 1 on a log scale. We
can see that the ZC method displays the largest deviation
which is on average ∼10−2 energy units over the Rc range
of 18–24a. The Wolf method seems to converge for the cut-
off distances Rc > 6a with a deviation of 10−8 energy units.
The IPSn method deviates from the reference value by ∼10−4

energy units for the Rc range of 18–24a, whereas the IPSp
method results in an average deviation of ∼10−7 energy units
for the same range of cutoff radius.

Large energy oscillations in the ZC calculations can be
clearly seen from the corresponding deviation curve. Interest-
ingly, the Wolf method does not show significant oscillations
for Rc > 6a. Although the IPSn and IPSp methods display
a deceptively similar oscillating pattern as that observed in
the ZC method on a logarithmic scale, the actual oscillations
in the IPS methods are much smaller than those in the ZC

method. For example, the oscillations in the IPSn and IPSp
methods are bounded by ∼10−4 and ∼10−7 energy units over
the Rc range of 18–24a, whereas the oscillations in the ZC
method for the same cutoff range are in the order of ∼10−2 en-
ergy units. Recall that the IPSp method differs from the IPSn
method by a screening potential contribution. Thus, the addi-
tion of the screening potential to IPSn seems to decrease its
level of oscillations, making the IPSp method to converge the
Madelung energy more rapidly and more smoothly. However,
even when the oscillations are reduced considerably, they are
not completely avoided in the two IPS methods.

To remove the oscillations at large cutoff distances in the
IPSn method, we have studied a damped IPSn potential (des-
ignated damped-IPSn), which is given by

E
damped-IPSn
i =

∑
j∈SRc [i]−{i}

ε
damped-C
ij (rij )

+ ε
damped-C
ii (Rc) − 2α

π1/2
q2

i , (10)

where the first two terms on right correspond to the damped
IPS interactions in Eq. (8). Although the so-called self term
(the last term on the right-hand side of Eq. (10)) cannot be
deduced directly from the original set of the IPS equations
in Ref. 19, it can be obtained by following a similar pro-
cedure used by Wolf et al.6 for charge neutralization. We
found inclusion of this self term essential for the damped-
IPSn method to converge the Madelung energy. The expres-
sion of the ε

damped−C
ij term is given by

ε
damped-C
ij

=
{−εIPS

ii (Rc)erfc(αRc) 1-1 term

εIPS
ij (rij )erfc(αrij ) − εIPS

ij (Rc)erfc(αRc) otherwise
.

(11)

Note that Eq. (10) resembles the form of the Wolf potential
in Eq. (2) except that the r−1 term is substituted by the IPS
potential.

We plotted the energy per ion obtained by the damped-
IPSn method (with α = 0.8/a)25 in Fig. 1 together with the de-
viation from the reference Madelung energy, which is shown
in the inset panel. The damped-IPSn method converges to
the reference Madelung energy with an average deviation of
∼10−7 energy units over the cutoff range of 18–24a. Other
two important features can be noticed from the curve of the
damped-IPSn method: first, the oscillations are removed; sec-
ond, the damping factor turns the original IPSn curve into the
envelop curve of the IPSp curve. These results suggest that in
addition to facilitating convergence of the IPSn method, the
damping factor may also act similarly as the screening poten-
tial present in the IPSp method.

In conclusion, the IPSn and IPSp methods accurately
converge the computed Madelung energy to its reference
value with an uncertainty of ∼10−4 and ∼10−7 energy units,
respectively, which is similar to that of the Wolf method
(∼10−8 energy units, or specifically ∼2 × 10−6 kcal/mol for
NaCl). This level of agreement is encouraging consider-
ing that electrostatics is handled quite differently in these
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methods. We also found that the screening potential included
in the IPSp method may serve a similar function of the damp-
ing term, which decreases the level of oscillations in IPSn.
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