
Abstract

Data pipelining is the processing, analysis, and mining of large volumes of data

through a branching network of computational steps. A data pipelining system consists

of a collection of modular computational components and a network for streaming data

between them. By defining a logical path for data through a network of computational

components and configuring each component accordingly, a user can create a protocol to

perform virtually any desired function with data and extract knowledge from them.

A set of data pipelines were constructed to explore the relationship between the

biodegradability and structural properties of halogenated aliphatic compounds in a data

set in which each compound has one degradation rate and nine structure-derived

properties. After training, the data pipeline was able to calculate the degradation rates of

new compounds with a relatively accurate rate.

A second set of data pipelines was generated to cluster new DNA sequences. The

data pipelining technology was applied to identify a core sequence to represent a DNA

cluster and construct the 95% confidence distance interval for the cluster. The result

shows that 74% of the DNA sequences were correctly clustered and there was no false

clustering.

APPLICATION OF DATA PIPELINING TECHNOLOGY IN
CHEMINFORMATICS AND BIOINFORMATICS

Linyong Mao

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Master of Sciences

in the School of Informatics
Indiana University

December 2002

Accepted by the Graduate Faculty, Indiana University, in partial

fulfillment of the requirements for the degree of Master of Sciences.

 Douglas G. Perry, Ph.D.

 Kenneth B. Lipkowitz, Ph.D.

Master’s Thesis
Committee

Sam A. Falk Milosevich, Ph.D.

 ii

Table of Contents

Chapter I. Introduction ……………………………………………………………… 1

I. Introduction to Bioinformatics ………………………………………..... 1

II. Challenges in Bioinformatics …………………………………………... 5

III. Introduction to Chemical Informatics …………………………………… 9

IV. Challenges in Chemical Informatics …………………………………….. 11

Chapter II. Using Data Pipelining to Convert Data into Useful Knowledge ………… 15

I. Introduction ………………………………………………………………. 15

II. Functional Requirements of Data Pipelining …………………………….. 16

III. System Requirement and Human Resource …………………………… 18

IV. Overall Design …………………………………………………………….. 18

V. Manuals, Screen Layout and Report Layout …………………………… 21

Chapter III. Application of Data Pipelining Technology in Cheminformatics and

Bioinformatics …………………………………………………………………………. 28

I. Establishing Quantitative Structure Biodegradability Relationship (QSBR)

Using Data Pipelining ……………………………………………………………. 28

II. Applying Data Pipelining in Bioinformatics to Perform DNA Sequence

Clustering ………………………………………………………………………… 37

Chapter IV. Discussion ……………………………………………………………… 54

I. Discussion ……………………………………………………………….. 54

II. Conclusion ………………………………………………………………. 56

Vita …………………………………………………………………………………… 57

 iii

Chapter I. Introduction

I. Introduction to Bioinformatics

Over the last few decades, biotechnology has experienced a rapid development.

Traditional biology, which studies the mechanism of life at the organism and cell level,

has migrated to modern molecular biology, which studies life at the DNA, protein and

other molecular levels. With the rapid progress of the human genome project, which

provides a full spectrum of human genomic sequences, biological data are produced at an

exponential rate. How to manage and analyse these data efficiently and effectively in

order to convert them into the useful knowledge is a huge challenge. Enter

bioinformatics, a new discipline that uses the mathematical modeling, statistical methods,

and computational approaches to acquire, manage, analyze and visualize biological data.

The first journal dedicated to the research in bioinformatics, Computer

Applications in the Biosciences, was published in 1985 [1]. Several years later, it

changed its name to Bioinformatics [1]. In the later 1960’s, Dayhoff created the first

bioinformatics database, which included all the sequences available at that time [2]. The

Protein DataBank, founded in 1972, had originally ten X-ray crystallographic protein

structures. In 1987, the SWISS-PROT protein sequence database was established [2].

After that, GenBank was founded in the US and its first release was published in the form

of printed book and computer tape [1]. Two sequence analysis tools, the Needleman-

Wunsch and Smith-Waterman algorithms, were developed in 1970 and 1981, respectively

[3].

 Although databases were established early on, database searching tools evolved

more slowly. At first, researchers used very simple methods such as keyword matching

 1

to perform searches [2]. In 1990, a fast but not very sophisticated algorithm, BLAST,

was used in searching databases, complemented with a sophisticated but slow algorithm,

FASTA [2][3]. Since then, two important events transformed the entire bioinformatics

field: rapid development of the internet and advances in sequencing technology [1]. The

first of these advances made it possible for researchers to share data and cooperate world

wide; the second generated huge quantities of genome data that must be analyzed and

managed by computer [1].

 Today, bioinformatics has become one of the hottest research areas and lots of

scientists, including biologists, computer scientists, mathematicians and other

disciplinary experts, have switched their research focus to bioinformatics. Accordingly, a

large number of bioinformatics tools became available as a result of these scientists’

efforts. These tools can be divided into the following categories according to their

functions:

• Databases. Many databases exist and they can be further divided into nucleotide

sequence databases, such as GenBank and EMBL, protein sequence databases,

such as PDB and SWISS-PROT, sequence-structure databases, such as DSSP and

DALI, sequence mapping databases, such as GeneMap 98 and Marshfield genetic

map, and publication and bibliography databases, such as PubMed [4]. All of

these databases can be accessed from the Internet and researchers can submit and

retrieve sequences by using the software that is integrated into the database or by

using other separate software. Among these databases, many are not isolated but

instead, they are linked to each other.

 2

• Sequence alignment tools. These tools are used to find homology regions in

sequences. They can be used to perform pair-wise alignment or multiple

sequence alignment. Most of the sequence databases have sequence alignment

tools, such as BLAST and FASTA, so that users can do similarity searching.

There are also some sequence alignment tools that users can install in their own

machines, such as Clustal W. Sequence alignment tools can usually do both

nucleotide and protein sequence alignment.

• Predication tools based upon DNA sequences. These tools are used to identify

genes and other specific regions from DNA sequences. Some examples of these

tools are GRAIL, which is used in gene prediction, FGENEH, which is used to

find exons, and GENESCAN, which is used to find complete gene structures [5].

Again, some of these tools are built into the databases to facilitate the analysis.

• Prediction tools based upon protein sequences. These tools are used to predict

the properties, structures and functions of proteins from their sequences. Most of

these tools can also make predictions using DNA sequences. These tools include

programs to predict the physical properties of proteins, such as SAPS and

MOWSE; programs to determine the identity of a protein based on its amino acid

composition, such as AACompIdent and PROPSEARCH; motif and pattern

searching tools, such as BLOCKS and Pfam; secondary structure and folding

class prediction tools, such as PREDATOR and nnpredict; special structure and

feature prediction tools, such as COILS and PHDtopology; and tertiary structure

prediction tools, such as UCLA-DOE and SWISS-MODEL [5].

 3

• EST analysis tools. The expressed sequence tags (ESTs) are short fragments of

genes. Although ESTs can be generated at a fast rate by using DNA microarrays,

it is a time and labor consuming effort to analyze them. Currently, these

sequences are stored in databases such as GenBank, EMBL and DDBJ [5]. These

sequences can be used to discover genes and perform sequence polymorphism

analysis, although the qualities of these sequences are currently not very good [5].

Tools such as UniGene can be used to classify them, and it is very easy and fast to

find novel genes in dbEST [5].

• Phylogenic analysis tools. This kind of tool is used to find the evolutionary

relationships among sequences. The basic steps for this kind of analysis include

multiple sequence alignment, determining a substitution model, building a

phylogenic tree, and evaluating that tree [5]. At present, the most widely used

phylogenic analysis software is Phylip. There are also other tools such as

PUZZLE and MOLPHY [5].

• Comparative genome analysis tools. Currently, the full range of several

organisms’ genomes have been mapped [5]. The genomes of these organisms can

be compared to find the functions of unknown genes. There are several databases

that can be used for this comparative genomic analysis, such as PEDANT and

COGs. The database for a specific organism, such as for E. Coli and for

B. subtilis, can also be used for such analysis [5].

Due to the limitations of the scope of this thesis, the above mentioned tools by no

means provide a complete list of bioinformatics tools. Many scientists are still working

 4

hard to develop the new tools and improve the quality of the available tools. With the

completion of human genome project and other organisms’ genome projects, large

quantities of biological data are being generated. Instead of looking for weak similarities

from scarce amounts of data, it now becomes possible and important to search for strong

similarity from a wealth of data [1]. On the other hand, among genes discovered every

day, many of them have similar functions and might be grouped into the same gene

families, or they are probably the products of the proliferation of some genes within

certain tissues. Thus, finding such information can eliminate data redundancy and reduce

sample size [1].

The ultimate goal of bioinformatics is to fully understand the mechanism of life.

To achieve this goal, we not only need to model how molecules function within a cell,

but also model the intercellular interactions and understand how cells compose a tissue.

After all these tasks have been accomplished, maybe we can begin to model the whole

life system [1].

Although many bioinformatics tools exist, they almost always have some

drawbacks. In the next section, challenges in bioinformatics will be discussed.

II. Challenges in Bioinformatics

 Bioinformatics is an interdisciplinary approach to analyzing biological data. It

involves expertise in biology, computer science, statistics, mathematics and other

disciplines. Due to its interdisciplinary nature and the complexity of biological data,

challenges arise in bioinformatics.

 5

Database and information management

 One important aspect of bioinformatics involves storage and management of a

large amount of data. Challenges related to this subject include:

• Data integration and data mining. One of the goals of studying genes is to predict

their functions. However, it is often impossible to accomplish this task either by

just accessing a DNA database, a protein database, a protein 3-D structure

database, or by only doing searches for similarities in sequence or structure.

Integrating all the relevant information from related databases and using

appropriate analysis tools are necessary to predict genes’ functions. Currently,

there are two ways to perform data integration. One is to embed external links to

other databases within a database; the other is to integrate accesses across several

data sources [6]. However, with so many existing databases, it is still a great

challenge for data integration. Another important issue associated with

information management is the data mining. Data mining is the procedure to

discover the information that is implicit--previously unknown yet useful--from

existing data. Widely used data mining methods include machine learning,

statistical methods, etc. With the large amounts of data out there but yet to be

analyzed, and, with new raw data generated every day, the development of

efficient data mining methods and their application become urgent.

• Scalability. In April 2001, there were 300 complete genomes, 15,000

macromolecular structures, 400,000 protein sequences, 11.5 million DNA

sequences, and 11 million citations related to bioinformatics [6]. And these

numbers are increasing at a fast rate. On average, the size of the GenBank

 6

database doubles every 15 months. Therefore, the scalability of bioinformatics

tools needs to be considered at the designing phase of these tools [6].

• Redundancy and multiplicity of data. All biological data can be grouped

according to similarities of their biological meaning to avoid redundancy and

multiplicity [6]. For example, genes can be grouped according to their functions;

proteins can be grouped by their structures. This kind of grouping simplifies

databases. For example, the number of gene sequences is very large, however,

the number of the structures of the proteins they encode is relatively small.

• Data standardization. There are many public and private databases and many of

them have their own data definitions and formats. In addition, different databases

have different naming rules for the same data. Although some effort has been

made to solve some of these problems (e.g., most databases support FASTA

format and use a GenBank sequence ID), more work needs to be done to establish

universal naming and formatting systems.

Homology search

One way to find the function of a new gene is to find homologies between the

gene of interest and other genes whose functions are known. Many programs have been

developed to do homology searches. One of the major challenges is how to search for

remote similarities [7]. In this case, it is very difficult to extract signals from noise [6].

Another challenge is how to improve the efficiency of algorithms [7]. Choosing a model

that is appropriate for a particular domain is also one of the research areas in homology

searching [6].

 7

Sequence multiple alignment

Many sequence multiple alignment programs, such as Clustal W, don’t guarantee

finding optimal solutions [5]. Users have to carefully choose the parameters and provide

their expert knowledge to find solutions that have true biological meaning [5]. How

these sequence multiple alignment tools can be designed to have some intelligence so that

they can perform these tasks automatically remains a challenge.

Protein structure and function prediction

Although several predictive tools using protein sequences have been successfully

used in some studies, the overall accuracy rate of prediction is not very high. For

example, PredictProtein has an average accuracy rate of 72% and nnpredict has an

accuracy rate of 65% [5]. Both tools are used to predict protein secondary structure. It is

known that the primary structure and some environmental factors determine the 3-D

structure of a protein. But the mechanism governing this determination is not very clear.

For algorithms to predict protein structures, the complexity of the search space is still a

challenge for software developers [7].

Automated text analysis

It takes a lot of time and effort to manually extract useful information from a

textual database, such as Medline, even for an expert [8]. Some relations among several

different objects studied in different publications, such as a relation between a protein and

a disease, can sometimes be found. Due to the size of the textual database, automated

 8

text analysis tools are needed to facilitate the extraction of useful information from the

literature [8]. Although there are some techniques to solve this problem, such as natural

language processing (NLP), overall performance is not satisfactory [8].

III. Introduction to Chemical Informatics

With the invention of new technologies such as combinatorial chemistry and high

throughput screening, the amount of information in chemistry is increasing dramatically.

This is evident from the fact that the Chemical Abstracts Service adds over 700,000 new

compounds to its database annually [9]. Each new compound has its own physical and

chemical properties (e.g., reaction information) that need to be stored in the database.

Chemists have developed a nomenclature system to name a substance that adds another

dimension to chemical information. The development of an informatics infrastructure

with the capability not only to acquire and manage huge amounts of data but also to

discover the relations, trends and patterns from the data is the major concern of chemical

informatics.

Studies in chemical informatics include molecular simulation, chemical

information management, and data analysis techniques with high quality graphical

visualization. Chemical visualization and modeling techniques are revolutionizing

chemical research. A novel compound can be built on a computer and its physical and

chemical properties and its interactions with other molecules, can be calculated with a

high degree of accuracy using a molecular modeling package even before the compound

is actually synthesized.

 9

Chemical informatics techniques are used extensively by the pharmaceutical

industry to facilitate and accelerate the drug discovery process. Chemical informatics

also plays an important role in instrument design. With the inclusion of modern sensors

in chemical instrumentation, a large volume of data is generated. Future instrumentation

needs to include the ability to read data from existing chemical databases and have the

ability to analyze data as it is generated with the modeling technique. Such abilities will

enable instruments to make intelligent decisions while the data is being collected and

analyzed. The incorporation of chemical informatics will provide a competitive

advantage to the companies that are involved in medical, environmental, and chemical

instrumentation research.

 Research areas in chemical informatics include [10]:

• Molecular modeling

• Chemical database systems (including spectral and reaction systems)

• Chemometrics (the use of mathematical, statistical, and other methods of formal

logic to determine, by indirect means, properties of substances that otherwise

would be very difficult to measure)

• Automated synthesis

• High throughput screening

• Structure coding systems (including nomenclature)

• Electronic chemical publishing systems

• Chemical patent information sources

• Laboratory automation

• Laboratory information management systems (LIMS)

 10

IV. Challenges in Chemical Informatics

 Many people view chemical informatics as an extension of chemical information,

which is a well established concept covering many areas that employ chemical structures,

data storage, such as compound library and online chemical literature, and computational

methods, such as SAR (structure-activity relationship) analysis and molecular property

calculation [11]. In this section, some challenges faced by researchers in the chemical

informatics field are discussed.

Bridging the gap between bioinformatics and cheminformatics

 In the field of life science research, huge amounts of data are generated by

genomics, proteomics, high throughput screening (HTS), and combinatorial chemistry.

While cheminformatics scientists have focused on HTS and chemical data,

bioinformatics scientists have focused on genomic and proteomic data. There is typically

little or no interaction between these groups [12]. However, it is important for

cheminformatics scientists and bioinformatics scientists to communicate with each other

constantly and to make effective use of data from each other in order to find scientific

relationships and build hypotheses. For example, drug discovery today involves both

bioinformatics for target discovery and cheminformatics for lead identification [13]. If

the data from these two fields can be integrated, the task of achieving new insights and

discovery of hidden relationships may become easier. Providing the technologies to

bridge these islands of information and allow researchers to query across diverse data

domains is one challenge faced by informaticists.

 11

Chemical structure representation

Currently, different data sources store and represent chemical structures in a

variety of proprietary file formats, making it difficult to access and interchange them

among applications [14]. The Life Sciences Research/Cheminformatics Task Group of

the Object Management Group is currently developing the chemical structure access and

representation standard. It is an open standard based on XML/CML (extensible markup

language/chemical markup language), an open W3C data representation standard [15].

Challenges in molecular modeling

The three most important problems in molecular modeling include [16]:

• The difficulty of calculating free energies of molecules by computer.

• Representation of solvent effects in calculations.

• Simulation of chemical reactions.

Given the advances in theory, hardware, and software one expects that these issues will

become less problematic in the near future.

 12

References

1. Higgins, D.; Taylor, W. Bioinformatics: Sequence, Structure and Databanks. Oxford:

New York, 2000.

2. Gardner, S. The Evolution of Bioinformatics. Retrieved June 15, 2002, from

http://www.bitsjournal.com/sgard.html.

3. Richon A. B. A Short History of Bioinformatics. Retrieved June 15, 2002, from

http://www.netsci.org/Science/Bioinform/feature06.html.

4. European Bioinformatics Institute: http://www.ebi.ac.uk/, 2002.

5. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Baxevanis,

A. D.; Francis Ouellette, B. F., Ed.; John Wiley & Sons: Denver, 2001.

6. Kaminski, N. American Journal of Respiratory Cell and Molecular Biology 2000,

23(6), 750-711.

7. Computational Methods in Molecular Biology. Salzberg, S. L.; Searls, D. B.; Kasif, S.;

Eds.; Elsevier: Amsterdam, Netherlands, 1999.

8. Stephens, M.; Palakal, M.; Mukhopadhyay, S.; Raje. R. Detecting gene relations from

Medline abstracts. Pacific symposium on biocomputing, 2001.

9. Chemical Abstracts Service: http://www.cas.org, 2002.

10. Indiana University School of Informatics: http://www.informatics.iupui.edu/, 2002.

11. Ritchie, T. Chemoinformatics: manipulating chemical information to facilitate

decision- making in drug discovery. Drug Discovery Today 2001, 6(16), 813-814.

12. Langton, W.; Higgins, M. Mind the gap: Bridging the gulf between bioinformatics

and cheminformatics, 221st ACS National Meeting, San Diego, CA, April 1-5, 2001.

 13

13. Tozer, J. R. Ask More of Your Discovery Data. Genomics & Proteomics

July/August 2001, 65-68.

14. Cambridge Healthtech Institute:

http://www.genomicglossaries.com/content/chemoinformatics_gloss.asp, 2002.

15. Fry, J. An Open Chemical Structure Interchange Form Based on WC3 Standards,

Cambridge Healthtech Institute’s 6th Annual Cheminformatics Meeting, Philadelphia,

PA, May 6- 8, 2002.

16. Leach, A. R. Molecular Modeling; Addison Wesley Longman: Singapore, 1996;

Chapter 9.

 14

Chapter II. Using Data Pipelining to Convert Data into Useful

Knowledge

I. Introduction

With huge volumes of raw data being generated by new advances in

bioinformatics and chemical informatics, a new technology, data pipelining, has been

developed to convert data into useful knowledge by addressing the challenges of

scalability, data integration and data mining.

Data pipelining is the processing, analysis, and mining of large volumes of data

through a branching network of computational steps [1]. A data pipelining system

consists of a collection of modular computational components and a network for

streaming data between them. Some components make simple calculations, like standard

deviation, some components merge or sort data according to key properties in the data,

some filter or branch data to different downstream components based upon data

properties or live calculations, and some components function to simply import or read a

particular source of data [2]. By defining a logical path for data through a network of

these components and configuring each component accordingly, a user can create a

protocol to perform virtually any desired function with data, and subsequently extract

knowledge.

Data pipelining technology serves as the complement to database systems for

discovery informatics. Data pipelining does not store or manage data collections itself, it

imports data collections from flat files or databases and stores the running results in a file

or a database. The nature of database systems requires that research inquiries be

restricted to what has been pre-conceived and already calculated in the system [3]. With

 15

the technology of data pipelining, it is possible to mine data from multiple disparate

collections without the need to unify the data in a single database. Database technology,

along with data pipelining, provides uncompromising management and analysis

capabilities.

 In the following sections, we will discuss the desired functional requirements,

system requirements, overall design, manuals, screen layout and report layout of a well-

designed data pipelining application.

II. Functional Requirements of Data Pipelining

The data pipeline itself must have extremely high performance if it is to keep pace

with the rate of data generation. Modern discovery research relies upon many different

data sources across entire scientific domains, and in many cases it is their collective

analyses that provide the most valuable insights. The ability to integrate data from

disparate sources is an essential requirement of data pipelining. Data from multiple

disparate sources is fed into a single processing pipeline. By defining the relationships

between data in the pipeline itself, the sources of data themselves need not be altered in

any way.

Component-based Pipeline Definition

Pipelines should be viewed conceptually as collections of modular computational

components within a framework for streaming data between them [4]. A pipeline for a

specific task can be created by selecting appropriate components, configuring each

component accordingly, and defining a logical path for streaming data through these

components.

 16

Modularity of Components

 A data pipeline consists of connected computational components. The individual

component must be modular to allow its seamless insertion into any new protocol. In

order to allow data to run through components in a pipeline, one component should be

compatible with the other components.

Data Modeling Capability

 Some computational components can be implemented with artificial intelligence

methods, machine learning techniques, statistical methods, etc. to identify trends,

discover unusual patterns, and find hidden relationships from multiple disparate data

sources. This learning capability greatly extends the function of data pipelining.

Open Architecture

 With the rapid progress of scientific research, new ideas and new research fields

are emerging. On the case when none of the present components provides a desired

functionality, the modular design and open architecture of the system should allow a user

to create new components for his proprietary purposes.

Pipeline Protocols

 A data pipeline protocol is a logical layout of modular components to perform a

specific task. Once created, these protocols can be saved for future re-use or to be shared

with a broad community of users.

Visualization and Reporting

Visualization functionality should be provided by the system to allow a user to

design new pipelines, monitor the status of pipeline executions, and save pipeline

 17

protocols. In addition, a user will desire the visualization and reporting functionality to

view results and present them to others.

III. System Requirement and Human Resource

 A data pipelining system adopts the client/server architecture. The Unix server

stores databases (e.g., in Oracle format) that can be queried and the query results are then

fed into a data pipeline. A user can access the server through a web interface on a client

machine. The web interface provides available computational components and tools to

construct a pipeline. After a pipeline is constructed, the job is submitted to the server and

run on the server. The execution results can be either saved as a file on a client machine

or loaded into the database that is stored on the server.

Human Resource Requirement

• Project Manager: this person is responsible for the installation, system

maintenance, interacting with users, etc.

• Unix System Administrator: a person needed to install, configure and maintain

servers and storage devices since our databases are stored on a Unix system.

• Oracle Database Administrator: a person who is responsible for installing the

Oracle database and maintaining it.

• End Users: the bioinformatics and cheminformatics scientists.

IV. Overall Design

 Since a data pipeline is constructed from modular computational components,

exactly which components should be provided and how each of these components should

 18

be designed become critical issues. The following types of components are usually

included in the data pipelining system:

Data Reading Components

 In order to integrate different data sources, many components function to simply

import or read a particular source of data. Data reading components are a group of

components, each of which reads or imports an Oracle database, delimited flat files, and

SD molecule records, etc.

Calculation Component

 This component can make simple calculations, like standard deviation, or perform

live calculations on the available data source to derive new properties.

Data Merging Component

 This component merges data from different sources, finds duplicates, and

branches data to different downstream components.

Data Sorting Component

 This component sorts data records in a file according to a specific file of the data

record.

Data Filtering Component

 This component filters data to different downstream components based upon data

properties.

Data Modeling Component

 This component is implemented with some artificial intelligence method. It

extends the capabilities of data pipelining by automatically learning from the data. The

learning ability is realized with a straightforward learn-by-example paradigm: users

 19

simply mark sample data that have the traits they are looking for, and the modeling

component learns to distinguish it from other background data. The data modeling

component automatically identifies the properties that can affect the trait and weights

them accordingly.

Results Viewing Component

 This component enables a user to view the execution results of data pipelining

with the visualization tools.

Data Writing Component

 This component gives a user the option to either save the running result of data

pipelining in the format of a flat file on a client machine or load the result into the

database stored on the server.

Molecular Modeling Component

 This component is designed for tasks related to cheminformatics. It reads a

molecular structure, and calculates molecular properties based on its structure using

molecular mechanics, semi-empirical, or quantum mechanics methods.

Molecular Fingerprint

 This component is designed for tasks related to cheminformatics. It generates a

fingerprint (a binary bit string) to represent the three dimensional structure of a molecule.

Bioinformatics Component

This is a group of components, each of which is dedicated to a specific function.

It typically includes components for:

• Homology searching: sequence similarity and homology search against a

nucleotide or a protein database

 20

• Multiple sequence alignment

• Gene prediction

• DNA sequence translation

• Protein motif and pattern searching

• Protein fold classification and structural alignment

• Protein secondary and tertiary structure prediction

• Protein function prediction

 After different types of components become available, a user can construct a data

pipeline for a specific task by selecting an appropriate set of components, configuring

each of them accordingly, and connecting these components to allow data to run through

them.

V. Manuals, Screen Layout and Report Layout

 The first step typically involves a user to open Internet Explorer or Netscape to

connect to the data pipelining server. After the user provides his login name and

password, an interface I designed for the data pipelining system (Figure 2.1) is presented

to the user to allow him to build his data pipeline and submit the job to the server.

 21

Figure 2.1 A data pipeline web interface.

The interface consists of a menu, component area, tool bar and working area:

• The menu includes Protocol and Edit. When the Protocol button is clicked, a

menu pops out which contains Protocol Templates, Read Protocols, Save

Protocols, Save as, and Print Protocols. Protocol Templates provide a user with a

collection of popular, routinely used protocols. Read Protocols allows a user to

import a saved protocol into the working area. Save Protocols permits a user to

 22

save the current protocol constructed in the working area on the local PC

machine. Print Protocols prints out the protocols showing in the working area.

Edit menu contains Redo, Undo, Select, Copy, Paste and Erase. Select allows a

user to select a particular component in a pipeline, Copy allows a user to paste the

pipeline image into a word document or other formats of documents, and Erase

allows a user to remove the selected component from a pipeline.

• The component area contains all types of components described in the Overall

Design section.

• The tool bar contains Connecting, Select, Erase, and Submit. Connecting allows a

user to bridge two components, A and B, thus output from the component A can

be directed to the component B as input. The Select and Erase are the same as

those contained in the Edit Menu. When the Submit button is clicked, execution

of a constructed data pipeline will be submitted to the server.

• The working area is where a user builds and edits a data pipeline.

 A user selects a component by clicking that component in the component area and

then clicks it again in the working area. The component now appears in the working

area. By right-clicking the component in the working area, a configuration window pops

out that allows a user to modify parameters for that component. For example, a user can

specify the name of a flat file and the delimiter used in the file for a data reading

component to retrieve data records in that file. Or, a user can issue an SQL (structural

query language) statement in the configuration window of a data reading component to

retrieve data records from a database. A user configures a data sorting component by

specifying a particular data field as the sorting criterion. A filtering component is

 23

configured by setting the filtering criteria that may be a range of a property such as

molecular weight. A data writing component can be configured to save the running result

of data pipelining either in the format of a flat file on a client PC or in a database stored

on the server.

 A component has one or more input lines and/or one or more output lines. For

example, a data merging component has more than one input line and more than one

output line, as demonstrated in figure 2.2.

 Input Output

 Data Source A Merged Data

 Data Source B Duplicates

Data Merging
Component

Figure 2.2 The input lines and output lines of a data merging component.

How then do we connect components to allow data to run through them? The

example in figure 2.3 illustrates how to make connections between components.

 24

 A E
 C

 D F
 B

Data
Reading
Component

Data Merging
Component

Data
Reading
Component

Figure 2.3 Three separate components appearing in the working area.

The above figure shows three separated components in the working area: two data

reading components and a data merging component. To connect them, a user clicks the

Connecting button on the tool bar. The program prompts the user to first select an output

line and then an input line. For example, in the figure above, output line A and input line

C are selected sequentially. After C is selected, a line connecting A and C appears in the

working area indicating that data flows from A to C. Similarly, data flowing from B to D

can be made. Three connected components are shown in figure 2.4.

 A C E

 F
 B D

Data
Reading
Component

Data Merging
Component

Data
Reading
Component

Figure 2.4 Illustration of making connections between components.

 25

In Figure 2.5, line E outputs the merged data and directs these data to a data

writing component. Similarly, line F outputs the duplicates to be shown in the result

viewing component.

 A C E (Merged Data)

 F (Duplicates)
 B D

Data
Reading
Component

Result Viewing
Component

Data Writing
Component

Data Merging
Component

Data
Reading
Component

Figure 2.5 An example of a data merging protocol.

A data pipeline in the working area can be edited using the Select and Erase tools

in the tool bar. Once a pipeline is constructed, a user can click the submit button in the

tool bar to submit the job to the server, and the execution of a data pipeline will run on

the server. The server will inform the user after the job is completed. A constructed data

pipeline can be saved in the local machine for the future re-use or edit.

 Report layout is protocol specific. Different protocols have different report

layouts. The details of report layout will be demonstrated in the following chapter.

 26

References

1. Scitegic: http://www.scitegic.com/main.html, 2002.

2. Tozer, J. R. Ask More of Your Discovery Data. Genomics & Proteomics July/August

2001, 65-68.

3. Kostrowicki, J.; Peng, Z.; Kuki, A. A River of Data Runs Through It. Modern Drug

Discovery 2001, 4(5), 94-96.

4. Resnick, R. (December, 1999) White Paper: A Scalable, Extensible High-throughput

Pipeline Framework. http://www.bitsjournal.com/informatics_genomics.html.

 27

Chapter III. Application of Data Pipelining Technology in

Cheminformatics and Bioinformatics

I. Establishing Quantitative Structure Biodegradability Relationship

(QSBR) Using Data Pipelining

In chemistry, the activity of a molecule is often a composite of many factors. A

structure-activity study can help to identify which features of a molecule give rise to its

activity and help to make modified compounds with enhanced activities. A quantitative

structure-activity relationship (QSAR) relates numerical properties of the molecular

structure to the activity via a mathematical model [1].

The table 3.1 lists a typical QSAR data set [2]. There are 24 compounds in the

data set. For each compound, one activity (Y2) was determined experimentally and nine

structure-derived properties (Mw through BCLU) were calculated using molecular

modeling packages [2]. Y2 represents the dehalogenation rate constant obtained from

assays using the intact cells of Rhodococcus erythropolis Y2. It is expressed as a

percentage of the dehalogenation rate constant obtained under the same conditions with

1-chlorobutane. Nine structural properties used to describe the hydrophobicity, steric and

electronic characteristics of each compound are: molecular weight (Mw), moments of

inertia along the x-axis (IX), logarithm of the octanol/water partition coefficient (logP),

heat of formation (Hf), total energy (TE), electronic energy (EE), energy of the highest

occupied molecular orbital (HOMO), dipole moment (Dip) and the bond contribution of

the lowest unoccupied molecular orbital (BCLU).

 28

Table 3.1. Dehalogenation rates and descriptors [2]

Y2 Mw IX logP Hf TE EE HOMO Dip BCLU

1-chlorobutane 100 92.57 4.97 2.64 -39.82 -1010.99 -3438.47 -11.1327 1.74 -1.98
1-chloropentane 105 106.60 5.67 3.05 -46.67 -1166.82 -4424.73 -11.1326 1.76 -1.97
1-chlorohexane 99 120.62 7.18 3.58 -53.51 -1322.66 -5475.49 -11.1325 1.77 -1.98
1-chloroheptane 87 134.65 7.94 4.15 -60.36 -1478.49 -6581.83 -11.1329 1.78 -1.98
1-chlorooctane 62 148.68 9.37 4.64 -67.20 -1634.33 -7737.48 -11.1329 1.78 -1.98
1-chlorononane 51 162.71 10.16 5.17 -74.05 -1790.16 -8937.12 -11.1326 1.79 -1.98
1-chlorodecane 38 176.73 11.51 5.70 -80.90 -1946.00 -10176.60 -11.1327 1.79 -1.98

1-chlorododecane 20 204.79 13.66 6.76 -94.58 -2257.66 -12762.00 -11.1021 1.79 -1.98
1-

chlorotetradecane 16 232.84 15.84 7.81 -108.28 -2569.33 -15471.70 -11.0619 1.80 -1.98

1-
chlorohexadecane 0 260.85 17.87 8.87 -121.98 -2881.00 -18288.40 -11.0270 1.80 -1.98

1-
chlorooctadecane 0 288.95 25.05 9.93 -135.53 -3192.67 -21210.10 -10.9987 1.80 -1.98

1-bromoethane 92 108.97 2.71 1.61 -13.12 -678.77 -1658.57 -10.6925 1.66 -1.99
1-bromobutane 108 137.03 5.18 2.75 -26.77 -990.44 -3381.10 -10.6882 1.72 -2.00
1-bromohexane 78 165.08 7.56 3.80 -40.45 -1302.11 -5414.47 -10.6878 1.75 -2.00

1-
bromotetradecane 27 277.30 16.61 7.95 -95.24 -2548.79 -15405.20 -10.6901 1.77 -2.00

1-iodobutane 73 184.02 5.39 3.05 -14.69 -984.41 -3348.76 -10.4276 1.56 -1.99
1-iodopentane 65 198.05 5.98 3.58 -21.54 -1140.25 -4331.49 -10.4277 1.58 -1.99
1-iodohexane 35 212.08 7.93 4.11 -28.38 -1296.08 -5379.64 -10.4277 1.58 -1.99

1,3-
dichloropropane 152 112.99 5.12 2.00 -40.75 -1215.29 -3511.31 -11.3721 1.51 -2.02

1,4-
dichlorobutane 155 127.01 5.34 2.24 -48.09 -1371.15 -4497.10 -11.2981 0.00 -2.00

1,6-
dichlorohexane 113 155.07 7.69 3.29 -62.02 -1682.83 -6653.46 -11.2219 0.00 -1.99

1,9-
dichlorononane 66 197.15 11.99 4.88 -82.66 -2150.33 -10248.00 -11.1794 1.54 -1.98

1,10-
dichlorodecane 60 211.18 12.29 5.41 -89.53 -2306.17 -11523.90 -11.1707 0.05 -1.98

1,2-
dibromoethane 87 187.87 11.28 1.96 -7.56 -1018.35 -2522.43 -10.7587 2.21 -1.99

 Four data pipelines, as shown in figure 3.1, were constructed in the working area

of a web interface, which was described in Chapter 2, to establish the Quantitative

 29

Structure Biodegradability Relationship (QSBR) and apply it to predict the

dehalogenation rates.

ipeline A: Dividing the transformed data set (24 compounds) into a training set (18

ipeline B: Using a neural network to establish structure-biodegradability relationship.

data reading
 component

data sorting
 component

data
preprocessing
component

 PCA
 component

data filtering
component

data writing
component

data writing
component

read file of
24 compounds

sort data records
based on the
degradation rate

normalization principal component
analysis

save the result in
file train.dat (18 training compounds)

save the result in
file test.dat (6 testing compounds)

P
compounds) and a testing set (6 compounds).

data reading
 component

data modeling
component
(DMA)

read train.dat
file

establish QSBR

P

 30

data reading
 component

data modeling
component
(DMA)

read train.dat
file

apply QSBR

data
postprocessing
component

result
viewing
component

un-normalization regression analysis

Pipeline C: Applying the QSBR model to calculate the biodegradation rates of 18 training
compounds, and comparing them with the actual values.

ipeline D: Applying the QSBR model to calculate the biodegradation rates of 6 testing

igure 3.1 Four data pipelines (A-D) constructed in the working area of a web interface.

Pipeline A first read 24 compounds and sorted the data set according to the Y2

values. After the sorted data set ran through the data preprocessing component, both

original inputs (9 structural properties) and original targets (Y2) were normalized so that

both of them had zero means and unity standard deviations in order to derive the

structure-biodegradability relationship more efficiently. The normalized inputs were

further processed by the PCA (principal component analysis) component. The PCA

technique had three effects on the normalized inputs: it orthogonalized the components of

the input vectors so that they became uncorrelated with each other; it sorted the resulting

orthogonal components (principal components) based upon their contributions to the total

variation in the data set; and it eliminated those components that contributed the least. In

lying the QSBR model to calculate the biodegradation rates of 6 testing

igure 3.1 Four data pipelines (A-D) constructed in the working area of a web interface.

Pipeline A first read 24 compounds and sorted the data set according to the Y2

values. After the sorted data set ran through the data preprocessing component, both

original inputs (9 structural properties) and original targets (Y2) were normalized so that

both of them had zero means and unity standard deviations in order to derive the

structure-biodegradability relationship more efficiently. The normalized inputs were

further processed by the PCA (principal component analysis) component. The PCA

technique had three effects on the normalized inputs: it orthogonalized the components of

the input vectors so that they became uncorrelated with each other; it sorted the resulting

orthogonal components (principal components) based upon their contributions to the total

variation in the data set; and it eliminated those components that contributed the least. In

data reading
 component

data modeling
component
(DMA)

read test.dat
file

apply QSBR

data
postprocessing
component

result
viewing
component

un-normalization regression analysis

P
compounds, and comparing them with the actual values.

compounds, and comparing them with the actual values.

FF

 31

the data pipeline A, the PCA component was configured such that the principal

components with less than 5% contributions to the total variation in the inputs were

discarded. The result was that only the top four principal components remained. The

normalized value of Y2 and the top four principal components for each of the 24

compounds are listed in table 3.2.

Table 3.2 The normalized value of Y2
and the top four principal components for each of the 24 compounds

 Y2 compon component component
 principal

component

Normalized 1st principal 2nd principal 3rd principal 4th

ent
1-chlorohexadecane -1.6624 -4.3603 0.2807 -0.0686 0.1320
1-chlorooctadecane -1.6624 -5.8564 0.5591 0.2044 0.1845
1-chlorotetradecane -1.2844 -3.2739 0.0796 -0.3087 0.1705
1-chlorododecane -1.1899 -2.1867 -0.1465 -0.5429 0.2054
1-bromotetradecane -1.0246 -3.0549 1.5713 1.5686 0.5397
1-iodohexane -0.8356 0.9849 1.8684 0.5988 -0.8869
1-chlorodecane -0.7648 -1.1077 -0.3398 -0.7794 0.2376
1-chlorononane -0.4577 -0.5463 -0.4024 -0.8898 0.2267
1,10-dichlorodecane -0.2451 -1.6550 -1.8926 1.0809 -1.5312
1-chlorooctane -0.1978 -0.0309 -0.4651 -0.9869 0.2155
1-iodopentane -0.1270 1.5780 1.7942 0.4860 -0.9055
1,9-dichlorononane -0.1033 -1.2769 -0.6246 -0.4284 -0.0062
1-iodobutane 0.0620 2.0616 1.7267 0.4019 -0.9225
1-bromohexane 0.1801 1.2925 1.0912 0.7160 0.4580
1-chloroheptane 0.3927 0.5230 -0.5281 -1.0973 0.2046
1,2-dibromoethane 0.3927 1.7543 1.5962 -0.3397 0.2714
1-bromoethane 0.5108 3.2634 0.6465 -0.3193 -0.2271
1-chlorohexane 0.6762 1.0362 -0.5902 -1.1927 0.1932
1-chlorobutane 0.6998 2.0666 -0.7307 -1.3786 0.1539
1-chloropentane 0.8179 1.4412 -0.7701 -1.9834 -0.4048
1-bromobutane 0.8888 2.3555 0.9426 0.5293 0.4156
1,6-dichlorohexane 1.0069 0.6655 -2.1992 1.3520 -0.9588
1,3-dichloropropane 1.9281 2.4581 -1.0610 1.5967 2.5169
1,4-dichlorobutane 1.9990 1.8681 -2.4061 1.7811 -0.2827

The data filtering component divided the transformed dataset into a training subset of 18

compounds and 6 testing compounds respectively.

compounds and a testing subset of the remaining 6 compounds whose Y2 values ranked

2nd, 6th, 10th, …, 22nd in Table 3.2. The file train.dat and file test.dat had 18 training

 32

 Pipeline B, C and D were submitted to the data pipeline server at the same time

for execution. Pipeline B was built to generate a predictive model of dehalogenation

tes. I

ra t first read the file train.dat. This file had 18 compounds. For each compound, it

had one normalized value of dehalogenation rate constant and four principal components

representing its structural properties. The data modeling component was implemented

with a two-layer backpropagation neural network. The neural network was configured

with two neurons in the hidden layer and one neuron in the output layer, as indicated in

figure 3.2. The Tan-Sigmoid transfer function1 was used for the hidden neurons and a

linear transfer function (y = x) for the output layer. A 4-element input was fed into the

neural network, corresponding to four principal components. The Levenberg Marquardt

(LM) algorithm2 was applied to train the neural network to overcome the slow

convergence caused by the gradient descent training algorithm. The LM algorithm

appears to be the fastest method for training backpropagation networks with up to a few

hundred weights to perform function approximations [3]. The advantage becomes even

more pronounced if very accurate training is desired. In many cases, the LM algorithm is

able to achieve lower mean square errors than any of the other algorithms tested [3]. The

network was trained using 18 training compounds to establish a relationship between

molecular structure and the dehalogenation rate. The network was trained in a batch

mode, which updated the weights and biases after all of training data set was applied to

the network. The total training iterations were set to 500 epochs, and the performance

1 Tan-Sigmoid transfer function: y = [1-exp(-x)] / [1+exp(-x)] It squashes the infinite input range, (-∞,
+∞), into the range of (-1, +1).
2 LM algorithm: A neural network training algorithm that was designed to approach second-order training
speed without having to compute the Hessian matrix.

 33

goal was set to zero. The data modeling component was given a particular name like

DMA in its configuration window.

sum.

sum. tansig

tansig

sum. purelin

bias

bias

biasP1

P2

P3

P4

output

weights
weights

input hidden layer output layer

Figure 3.2. The architecture of the neural network created to implement the data

odeling component in pipeline B.

After the QSBR model was developed in the pipeline B, the model was applied to

m

calculate the dehalogenation rates of 18 training compounds, as shown in the pipeline C

(Figure 3.1). After four principal components of each compound were fed into the data

modeling component DMA as an input to the neural network, DMA computed its

dehalogenation rate in the normalized form, which was un-normalized by the data

postprocessing component. The result viewing component applied linear regression

analysis to compare the output from DMA (A) with the actual dehalogenation rates (T),

as shown in Figure 3.3. The dashed line in the figure indicates a perfect fit: A = T. The

solid line shows the actual linear relation between the DMA outputs and actual

dehalogenation rates: A = 0.989T + 0.821, which is very close to the perfect fit. The

 34

correlation coefficient (R), 0.994, indicates that 99.4% of the variation in the DMA

outputs is explained by the variation in the actual values.

Figure 3.3 The linear regression analysis between the DMA outputs (A) for the training
compounds and the corresponding actual dehalogenation rates (T).

Similarly, the QSBR model was applied to predict the dehalogenation rates of 6

testing compounds, as shown in the pipeline D (Figure 3.1). The result viewing

component in pipeline D applied linear regression analysis to compare the output from

DMA for 6 testing compounds with the actual dehalogenation rates, as shown in

Figure 3.4. The best linear fit between the outputs and actual values is described by the

equation A = 1.03T + 5.57. The slope of the linear fit, 1.03, is very close to one. The

intercept, 5.57, is slightly greater than zero, which causes the best linear fit to shift

 35

upwards to a small extent from the perfect linear fit A=T. The correlation coefficient,

0.99, indicates that 99% of the variation in the DMA outputs is explained by the actual

values for the testing compounds.

Figure 3.4. The linear regression analysis between the DMA outputs (A) for 6 testing
compounds and the actual dehalogenation rates of these compounds (T).

The results from Figure 3.3 and 3.4 indicate that the data modeling component

trained in the pipeline B has a relatively accurate predictive rate with the low training

error.

Due to the architecture of the neural network used to implement the data

modeling component and the mechanism of how it generates outputs, it is very difficult

to determine which principal component has the most influence on the dehalogenation

 36

rate. It becomes even more difficult or impossible to assess which original structural

property is the primary descriptor affecting the dehalogenation rate since each principal

component is a combination of nine structural properties. A neural network works like a

black box. A user provides it an input, the black box generates an output. But the user

can’t know what actually happens in the black box, or, how it generates the output.

II. Applying Data Pipelining in Bioinformatics to Perform DNA

Sequence Clustering

 As of mid-2000, GeneBank contained just under 1.9 million human EST

(expressed sequence tag) records [4]. The number of human genes is estimated to be

30,000 – 40,000. Without doing any sequence comparison, it is clear that each of these

ESTs cannot represent a unique gene. The UniGene resource clusters ESTs and other

mRNA sequences, along with coding sequences (CDSs) annotated on genomic DNA,

into subsets of related sequences [5]. In most cases, sequences in each cluster are

produced by a single gene, including alternatively spliced transcripts. However, some

genes may be represented by more than one cluster [4].

 As of July 2000, there are 1.7 million sequences belonging to 82,000 clusters in

the human subset of UniGene [4]. In this section, application of data pipelining to

perform DNA sequence clustering will be discussed.

A. Identifying a Core Sequence of a Cluster and Construct the 95% Confidence

Interval

 Eleven human clusters were downloaded from the UniGene [6]. Typically, a

cluster consists of thousands of sequences that include 5’-end ESTs, 3’-end ESTs and

 37

mRNA. For example, the cluster Hs.1516 (cluster identifier where Hs represents Homo

sapiens) located in the 17th human chromosome contains 1123 sequences. A C++

program was written to select the 1st 100 5’-end ESTs from each cluster for the purpose

of sample analysis. The C++ program also picked the next 10 5’-end ESTs for the testing

purpose.

gure 3.5 The data pipeline used to identify a core sequence to represent a cluster and

Figure 3.5 demonstrates the data pipeline used to cluster ESTs. To better

illustrate the data flow over the data pipeline, a sample data set, which contains ten

5’-end ESTs belonging to the cluster Hs.1516, is used. The sample data set is shown

below:

 459146 gnl|UG|Hs#S459146 zk34a07.r1 Homo sapiens cDNA, 5' end

.1516

data reading
component

multiple sequence
alignment
component

Phylip
component

calculation
component

statistical
analysis
component

read file of DNA
sequences

DNA sequence
multiple alignment

calculate
distance matrix

idendify core
sequence

construct 95%
confidence interval

Fi
construct 95% confidence distance interval for that cluster.

>
/clone=IMAGE:484692 /clone_end=5' /gb=AA037567 /gi=1512667 /ug=Hs
/len=468
ATCGTCCTTCCTCTCAAGCTAGCCAGAGGGTGGGAGCCTAAGGAAGCGTGGGGTAGCAGA
TGGAGTAATGGTCACGAGGTCCAGACCCACTCCCAAAGCTCAGACTTGCCAGGCTCCCTT
TCTCTTCTTCCCCAGGTCCTTCCTTTAGGTCTGGTTGTTGCACCATCTGCTTGGTTGGCT
GGCAGCTGAGAGCCCTGCTGTGGGAGAGCGAAGGGGGTCAAAGGAAGACTTGAAGCACAG
AGGGCTAGGGAAGGTGGGGTACATTTCTCTGAAGCAGTCAGGGTGGGAAGAAAGAATGCA

 38

AGAAGTGGACTTGAATGTGCCCTAATGGAGAAGACCCCACCGTTGCTANGGGGAATGGAG
GGGCTTTCCTGGGGNNCCTGGTTCCCCTAACCCCATTTTNGTGGGTCCACAAGCCATGAA
AGTCACCGGGAATGAACCTATCCTTCCAGTGGCTCGCTCCCTGTAGCT

A, 5' end > 27025 gnl|UG|Hs#S27025 EST88091 Homo sapiens cDN
/clone=ATCC:106939 /clone_end=5' /gb=T29629 /gi=611727 /ug=Hs.1516
/len=396
GGACATTTTTTGGTTTTNTNCTGTTTTGTTAAAAAAAAGAAAAAGAAGAAAAGACATCAT

516

53F1 Homo sapiens cDNA, 5' end
516

CCTACACCTCCCTCCCCACACCTCCCTACTCCCCTGGGCATCTTCTGGCT

8F1 Homo sapiens cDNA, 5' end

CCACACCTCCCTACTCCCCTGGGCATCTTCTGGCTTGA

82342F1 Homo sapiens cDNA, 5' end

TCTCTTCTTCCCCAGGTCCTTCCTTTAGGTCTGGTTGT

s.1516

GGCCAACTGGTAGGTTCCTAAGTNTCCTTCCATCCAGTCAAGCCAGAAGATGCCCAGGGG
AGTAGGGAGGTNTNGGGAGGGAGGTGTAGGGGAAGGAGATATGGAGAGGGAGGCAGAGCT
ACAGGGAGCGAGCCACTGGAAGGATAGGTTCATCCCGGTGACTTCATGGCTGTNACCACA
AATGGGGTAGGGAACAGGACCCAGGAAGCCCCTCATCCCCTAGCACGTGGGTCTTCTCCA
TTAGGCACATTTCAGTCCACTTTTTGCATTCTTTTCTTNCCAACCCTGACTTGTTCAGAG
GAATGTTACCCCACCTNCCTTAGCCCTTTGTGCTTA
> 302512 gnl|UG|Hs#S302512 yu82g04.r1 Homo sapiens cDNA, 5' end
/clone=IMAGE:240342 /clone_end=5' /gb=H89809 /gi=1080239 /ug=Hs.1
/len=394
ATTCGGCACAGGAGACATGTACCTTGACCATCGTCCTTCCTCTCAAGCTAGCCAGAGGGT
GGGAGCCTAAGGAAGCGTGGGGTAGCAGATGGAGTAATGGTCACGAGGTCCAGACCCACT
CCCAAAGCTCAGACTTGAAGCACAGAGGGCTAGGGAGGTGGGGTACATTTCTCTGAGCAG
TCAGGGTGGGAAGAAAGAATGCAAGAGTGGACTGAATGTGCCTAATGGAGAAGACCCACG
TGCTAGGGGATGAGGGGCTTCCTGGGGTCCTGTTCCCTACCCCATTTGTGGTCACAGCCA
TGAAGTCACCGGGATGANCCTATCCTTCCAGTTGGCTCGCTCCCTGTAGCTCTGCCTNCC
TTCTCCATAATCTTCCTTTCCCTAACAACTTCCT
> 2282903 gnl|UG|Hs#S2282903 6014732
/clone=IMAGE:3876205 /clone_end=5' /gb=BE619428 /gi=9890366 /ug=Hs.1
/len=155
ATCTCCTTCC
TGACTGGATGGAAGGAGACTTAGGAACCTACCAGTTGGCCATGATGTCTTTTCTTCTTTT
TCTTTTTTTTAACAAAACAGAACAAAACCAAAAAA
> 2369565 gnl|UG|Hs#S2369565 60147418
/clone=IMAGE:3877124 /clone_end=5' /gb=BE784560 /gi=10205845
/ug=Hs.1516 /len=151
TCCTTCCCCTACACCTCCCTCC
CTGGATGGAAGGAGACTTAGGAACCTACCAGTGGCCATGATGTCTTTTCTTCTTTTTCTT
TTTTTTAACAAAACAGAACAAAACCAAAAAA
> 2474669 gnl|UG|Hs#S2474669 6016
/clone=IMAGE:3952451 /clone_end=5' /gb=BE898918 /gi=10365882
/ug=Hs.1516 /len=620
CTCAGACTTGCCAGGCTCCCTT
TGCACCATCTGCTTGGTTGGCTGGCAGCTGAGAGCCCTGCTGTGGGAGAGCGAAGGGGGT
CAAAGGAAGACTTGAAGCACAGAGGGCTAGGGAGGTGGGGTACATTTCTCTGAGCAGTCA
GGGTGGGAAGAAAGAATGCAAGAGTGGACTGAATGTGCCTAATGGAGAAGACCCACGTGC
TAGGGGATGAGGGGCTTCCTGGGTCCTGTTCCCTACCCCATTTGTGGTCACAGCCATGAA
GTCACCGGGATGAACCTATCCTTCCAGTGGCTCGCTCCTGTAGCTCTGCTCCCTCTCCAT
ATTTTCTTTCCCCTAAAACTCCTCCCCAAAACTCCCTAATCCCCTGGGCATCTTCTGGTT
GACTGTTTGGGAGGGACTTAGGAACTACAGGTGGGCATGATGTCTTTCTTCTTTTCCTTT
TTTTACCACAACAGACCAAACCAATATGTCCGAAAAAAAAAAAAAAATCGCGGCTCTTTC
GGGGGCGCACAAGGGTGGAAGGGCCGGGCTACTTGTCCGCCCCTTTGTTCAAGGGAAAGC
CGGCCAAAGAGCGAAATGAC

8248 EST32906 Homo sapiens cDNA, 5' end> 648248 gnl|UG|Hs#S64
/clone=ATCC:130960 /clone_end=5' /gb=AA329312 /gi=1981556 /ug=H
/len=178
GCTCCCTGTAGCTCTGCCTCCCTCTCCATATCTCCTTCCCCTACACCTCCCTCCCCACAC
CTCCCTACTCCCCTGGGCATCTTCTGGCTTGACTGGATGGAAGGAGACTTAGGAACCTAC
CAGTTGGCCATGATGTCTTTTCTTCTTTTTCTTTNTTTTAACAAAACAGAACAAAACC

 39

> 2282904 gnl|UG|Hs#S2282904 601473255F1 Homo sapiens cDNA, 5' end
/clone=IMAGE:3876301 /clone_end=5' /gb=BE619429 /gi=9890367 /ug=Hs.1516
/len=787
GAAGGGGGTCAAAGGAAGACTTGAAGCACAGAGGGCTAGGGAGGTGGGGTACATTTCTCT
GAGCAGTCAGGGTGGGAAGAAAGAATGCAAGAGTGGACTGAATGTGCCTAATGGAGAAGA
CCCACGTGCTAGGGGATGAGGGGCTTCCTGGGTCCTGTTCCCTACCCCATTTGTGGTCAC
AGCCATGAAGTCACCGGGATGAACCTATCCTTCCAGTGGCTCGCTCCCTGTAGCTCTGCC
TCCCTCTCCATATCTCCTTCCCCTACACCTCCCTCCCCACACCTCCCTACTCCCCTGGGC
ATCTTCTGGCTTGACTGGATGGAAGGAGACTTAGGAACCTACCAGTTGGCCATGATGTCT
TTTCTTCTTTTTCTTTTTTTTAACAAAACAGAACAAAACCAAAAAATGTCCAGAAAAAAA
CAACACAAAAAAAAAAAAACACACAGAGCAAAAGAGAAACACAAAAGCAACCGACCCGCG
CCGCGCAGCGAAGAAAAAAGGAGAGAAGAAGAGGGGAGCAGACAGAGGAGAAGAAGCAAG
GAGAGGCAAGCGGAGCGACACGATGGAAGAGGGCGAAGAGAAGAGAAGAAGAAAGAACAA
GAAGACAGAACGAGTAGGTGGGCAGTAGGGTGTAGGAGGAAAGGGAGGGAGGGAGAGAGG
AGCAAAGGAGAGAGCAAGGGAGGGAGAGAAGGAGAGCGAGAGGGAAGGGGGAGAGGAGAG
AGGAGGGCGAAGGCGGTTCTGTTGTGAGGAGGAGGGCGAGGAGGAGGGGGGAGAGGGCAG
ACCGCGG
> 1597887 gnl|UG|Hs#S1597887 df29g03.y1 Homo sapiens cDNA, 5' end
/clone=IMAGE:2485036 /clone_end=5' /gb=AW021895 /gi=5875425 /ug=Hs.1516
/len=350
GCACGAGGTGGACTGAATGTGCCTAATGGAGAAGACCCACGTGCTAGGGGATGAGGGGCT
TCCTGGGTCCTGTTCCCTACCCCATTTGTGGTCACAGCCATGAAGTCACCGGGATGAACC
TATCCTTCCAGTGGCTCGCTCCCTGTAGCTCTGCCTCCCTCTCCATATCTCCTTCCCCTA
CACCTCCCTCCCCACACCTCCCTACTCCCCTGGGCATCTTCTGGCTTGACTGGATGGAAG
GAGACTTAGGAACCTACCAGTTGGCCATGATGTCTTTTCTTCTTTTTCTTTTTTTTAACA
AAACAGAACAAAACCAAAAAATGTCCAGAAAAAAAAAAAAAAAAAAAAAA
> 3895887 gnl|UG|Hs#S3895887 603047615F1 Homo sapiens cDNA, 5' end
/clone=IMAGE:5188011 /clone_end=5' /gb=BI763259 /gi=15754837
/ug=Hs.1516 /len=466
CAGCTGAGAGCCCTGCTGTGGGAGAGCGAAGGGGGTCAAAGGAAGACTTGAAGCACAGAG
GGCTAGGGAGGTGGGGTACATTTCTCTGAGCAGTCAGGGTGGGAAGAAAGAATGCAAGAG
TGGACTGAATGTGCCTAATGGAGAAGACCCACGTGCTAGGGGATGAGGGGCTTCCTGGGT
CCTGTTCCCTACCCCATTTGTGGTCACAGCCATGAAGTCACCGGGATGAACCTATCCTTC
CAGTGGCTCGCTCCCTGTAGCTCTGCCTCCCTCTCCATATCTCCTTCCCCTACACCTCCC
TCCCCACACCTCCCTACTCCCCTGGGCATCTTCTGGCTTGACTGGATGGAAGGAGACTTA
GGAACCTACCAGTTGGCCATGATGTCTTTTCTTCTTTTTCTTTTTTTTAACAAAACAGAA
CAAAACCAAAAAATGTCCAAAAAAAAAAACAAAAAAAAAAAAAGGG

The data pipeline first read the file of the sample data set. The multiple sequence

alignment component applied the Clustal W to align the ten sequences [7]. In the

configuration window of the multiple sequence alignment component, the output was set

to be the Phylip format. The following shows the multiple alignment output of ten ESTs

in Phylip format.

 10 901
459146 ATCGTCCTTC CTCTCAAGCT AGCCAGAGGG TGGGAGCCTA AGGAAGCGTG
302512 ---------- ---------- ---------- ---------- ----------
648248 ---------- ---------- ---------- ---------- ----------
2282904 ---------- ---------- ---------- ---------- ----------

 40

2282903 ---------- ---------- ---------- ---------- ----------
2369565 ---------- ---------- ---------- ---------- ----------
1597887 ---------- ---------- ---------- ---------- ----------
3895887 ---------- ---------- ---------- ---------- ----------
2474669 CTCAGACTTG CCAGGCTCCC TTTCTCTTCT TCCCCAGGTC CTTCCTTTAG
27025 ---------- ---------- ---------- ---------- ----------

 GGGTAGCAGA TGGAGTAATG GTCACGAGGT CCAGACCCAC TCCCAAAGCT
 ---------- ---------- ---------- ---------- --------AT
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ----CAGCTG AGAGCCCTGC
 GTCTGGTTGT TGCACCATCT GCTTGGTTGG CTGGCAGCTG AGAGCCCTGC
 ---------- ---------- ---------- ---------- ----------

 CAGACTTGCC AGGCTCCCTT TCTCTTCTTC CCCAGGTCCT TCCTTTAGGT
 TCGGCACAGG AGACATGTAC CTTGACCATC GTCCTTCCTC TCAAGCTAGC
 ---------- ---------- ---------- ---------- ----------
 ---------- -GAAGGGGGT CAAAGGAAGA CTTGAAGCAC AGAGGGCTAG
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 TGTGGGAGAG CGAAGGGGGT CAAAGGAAGA CTTGAAGCAC AGAGGGCTAG
 TGTGGGAGAG CGAAGGGGGT CAAAGGAAGA CTTGAAGCAC AGAGGGCTAG
 ------GGAC ATTTTTTGGT TTTNTNCTGT TTTGTTAAAA AAAAGAAAAA

 CTGGTTGTTG CACCATCTGC TTG--GTTGG CTGGCAGCTG AGAGCCCTGC
 CAGAGGGTGG GAGCCTAAGG AAG-CGTGGG GTAGCAGATG GAGTAATGGT
 ---------- ---------- ---------- ---------- ----------
 GGAGGTGGGG TACATTTCTC TGA-GCAGTC AGGGTGGGAA GAAAGAATGC
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- -------GCA
 GGAGGTGGGG TACATTTCTC TGA-GCAGTC AGGGTGGGAA GAAAGAATGC
 GGAGGTGGGG TACATTTCTC TGA-GCAGTC AGGGTGGGAA GAAAGAATGC
 GAAGAAAAGA CATCATGGCC AACTGGTAGG TTCCTAAGTN TCCTTCCATC

 TGTGGGAGAG CGAAGGGGGT CAAAGGA--A GACTTGAAGC ACAGAGGGCT
 CACGAGGTCC AGACCCACTC CCAAAGCTCA GACTTGAAGC ACAGAGGGCT
 ---------- ---------- ---------- ---------- ----------
 AAGAGTGGAC TGAATGTGCC TAATGGAGAA GACCCACGTG CTAGGGGATG
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 CGAGGTGGAC TGAATGTGCC TAATGGAGAA GACCCACGTG CTAGGGGATG
 AAGAGTGGAC TGAATGTGCC TAATGGAGAA GACCCACGTG CTAGGGGATG
 AAGAGTGGAC TGAATGTGCC TAATGGAGAA GACCCACGTG CTAGGGGATG
 CAGTCAAGCC AGAAGATGCC CAGGGGAGTA GG---GAGGT NTNGGGAGGG

 AGGGAA-GGT GGGGTACATT TCTCTGAAGC AGTCAGGGTG GGAAGAAAGA
 AGGGA--GGT GGGGTACATT TCTCTGA-GC AGTCAGGGTG GGAAGAAAGA
 ---------- ---------- ---------- ---------- ----------
 AGGGGCTTCC TGGGTCCTGT TCCCTACCCC ATTTGTGGTC ACAGCCATGA
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------

 41

 AGGGGCTTCC TGGGTCCTGT TCCCTACCCC ATTTGTGGTC ACAGCCATGA
 AGGGGCTTCC TGGGTCCTGT TCCCTACCCC ATTTGTGGTC ACAGCCATGA
 AGGGGCTTCC TGGGTCCTGT TCCCTACCCC ATTTGTGGTC ACAGCCATGA
 AGGTGTAGGG GAAGGAGATA TGGA-GAGGG AGGCAGAGCT ACAGGGAGCG

 ATGCAAGAAG TGGACTTGAA TGTGCCCTAA TGGAGAAGAC CCCACCGTTG
 ATGCAAGA-G TGGACT-GAA TGTGCC-TAA TGGAGAAGAC CC--ACGT-G
 ---------- ---------- ---------- ----GCTCCC TGTAGCTCTG
 AGTCACCGGG ATGAACCTAT CCTTCCAGTG GCTCGCTCCC TGTAGCTCTG
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 AGTCACCGGG ATGAACCTAT CCTTCCAGTG GCTCGCTCCC TGTAGCTCTG
 AGTCACCGGG ATGAACCTAT CCTTCCAGTG GCTCGCTCCC TGTAGCTCTG
 AGTCACCGGG ATGAACCTAT CCTTCCAGTG GCTCGCTCC- TGTAGCTCTG
 AGCCACTGGA AGGATAGGTT CATCCCGGTG ACTTCATGGC TGTNACCACA

 CTANGGGGAA TGGAGGGGCT TT-CCTGGGG NNCCTGGTTC CCCTAACCCC
 CTAGGGGAT- --GAGGGGCT T--CCTGGGG TCCT--GTTC CCT--ACCCC
 CCTCCCTCTC CATATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT
 CCTCCCTCTC CATATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT
 ---------- ---ATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT
 ---------- ------TCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT
 CCTCCCTCTC CATATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT
 CCTCCCTCTC CATATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT
 C-TCCCTCTC CATATTTTCT TTCCCCTAAA ACTCCTCCCC AAAACTCCCT
 A-ATGGGGTA GGGAACAGGA CCCAGGAAGC CCCTCATCCC CTAGCACGTG

 ATTTTNGTGG GT-CCACAAG CCATGAAAGT CACCGGGAAT GAACCTAT--
 ATT--TGTGG ---TCACA-G CCATGAA-GT CACCGGGA-T GANCCTAT--
 ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA
 ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA
 ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA
 ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA
 ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA
 ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA
 AATCCCCTGG GCATCTTCTG G-TTGAC--T GTTTGGGAGG -GACTTAGGA
 GGTCTTCT-- ---CCATTAG GCACATTTCA GTCCACTTTT TGCATTCTTT

 -CCTTCCAGT -GGCT----C GCTCCCTGTA GCT------- ----------
 -CCTTCCAGT TGGCT----C GCTCCCTGTA GCTCTGCCTN CCTTCTCCAT
 ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT NTTTTAACAA
 ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA
 ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA
 ACCTACCAGT -GGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA
 ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA
 ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA
 AC-TACAGGT -GGGCATGAT GTCTTTCTT- -CTTTTCCTT TTTTTACCAC
 TCTTNCCAAC --CCTGACTT GTTCAGAGGA ATGTTACCCC ACCTN-CCTT

 ---------- ---------- ---------- ---------- ----------
 AATCTTCCTT TCCCTAACAA CTTCCT---- ---------- ----------
 AACAGAACAA AACC------ ---------- ---------- ----------
 AACAGAACAA AACCAAAAAA TGTCCAGAAA AAAACAACAC AAAAAAAAAA
 AACAGAACAA AACCAAAAAA ---------- ---------- ----------
 AACAGAACAA AACCAAAAAA ---------- ---------- ----------
 AACAGAACAA AACCAAAAAA TGTCCAGAAA AAAAAAAAAA AAAAAAAAA-
 AACAGAACAA AACCAAAAAA TGTCCAAAAA AAAAAACAAA AAAAAAAAAA

 42

 AACAGACCAA A-CCAATATG TCCGAAAAAA AAAAAAAAAT CGCGGCTCTT
 AGCCCTTTGT GCTTA----- ---------- ---------- ----------

 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 AAACACACAG AGCAAAAGAG AAACACAAAA GCAACCGACC CGCGCCGCGC
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 GGG------- ---------- ---------- ---------- ----------
 TCGGGGGCGC ACAAGGGTGG AAGGGCCGGG CTACTTGTCC GCCCCTTTGT
 ---------- ---------- ---------- ---------- ----------

 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 AGCGAAGAAA AAAGGAGAGA AGAAGAGGGG AGCAGACAGA GGAGAAGAAG
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 TCAAGGGAAA GCCGGCCAAA GAGCGAAATG AC-------- ----------
 ---------- ---------- ---------- ---------- ----------

 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 CAAGGAGAGG CAAGCGGAGC GACACGATGG AAGAGGGCGA AGAGAAGAGA
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------

 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 AGAAGAAAGA ACAAGAAGAC AGAACGAGTA GGTGGGCAGT AGGGTGTAGG
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------

 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 AGGAAAGGGA GGGAGGGAGA GAGGAGCAAA GGAGAGAGCA AGGGAGGGAG
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------

 43

 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 AGAAGGAGAG CGAGAGGGAA GGGGGAGAGG AGAGAGGAGG GCGAAGGCGG
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------

 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 TTCTGTTGTG AGGAGGAGGG CGAGGAGGAG GGGGGAGAGG GCAGACCGCG
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------
 ---------- ---------- ---------- ---------- ----------

 -
 -
 -
 G
 -
 -
 -
 -
 -
 -

It can be seen that the original ten sequences vary in length, but the resulting aligned

sequences in the Phylip format have the same length (901 bp) by adding the heading and

trailing consecutive gaps.

 The Phylip component calculated a distance between any two sequences among

the ten multiple aligned sequences. The distance is an inverse measurement of the

similarity between two sequences. The distance between a sequence and itself is zero.

The result of the Phylip component, a distance matrix, is shown below:

 44

 459146 302512 648248 2282904 2282903 2369565 1597887 3895887 2474669 27025
459146 0.0000 0.3395 1.3490 1.9841 1.0431 1.0096 1.4486 2.4239 3.2881 1.8964
302512 0.3395 0.0000 1.3055 1.8778 1.0532 1.0418 1.5116 1.9057 2.1233 1.6695
648248 1.3490 1.3055 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1797 2.9492
2282904 1.9841 1.8778 0.0000 0.0000 0.0000 0.0000 0.0294 0.0185 0.2475 2.5662
2282903 1.0431 1.0532 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2386 2.6062
2369565 1.0096 1.0418 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2351 2.6762
1597887 1.4486 1.5116 0.0000 0.0294 0.0000 0.0000 0.0000 0.0263 0.1737 2.1128
3895887 2.4239 1.9057 0.0000 0.0185 0.0000 0.0000 0.0263 0.0000 0.1140 2.5565
2474669 3.2881 2.1233 0.1797 0.2475 0.2386 0.2351 0.1737 0.1140 0.0000 2.4989
27025 1.8964 1.6695 2.9492 2.5662 2.6062 2.6762 2.1128 2.5565 2.4989 0.0000

The distance matrix has 11 rows and 11 columns. The 1st column and 1st row represent

the sequence numbers of ten sequences. Ten values in the 2nd row, 0.0000, 0.3395,

1.3490, …, 1.8964 represent the distance between the sequence 459146 and itself, the

distance between the sequence 459146 and the sequence 302512, the distance between

the sequence 459146 and the sequence 648248, ..., the distance between the sequence

459146 and the sequence 27025, respectively. The left rows represent distance values

analogously. Occasionally, if the distance between two sequences is too large or the

similarity is too small, the distance value becomes NaN (not a number).

The calculation component selects one sequence from ten ESTs and uses it as a

core sequence to represent them based on the distance matrix. For each of the ten

sequences, the component calculates its mean square distance (MSD), which is defined in

equation 3.1.

MSD(i) = (d1,i
2 + d2,i

2 + … + d10,i
2) / 10 [3.1]

In this equation, i represents the ith sequence in the distance matrix, and dn,i represents the

distance between the nth sequence and ith sequence. The sequence with the smallest MSD

among the ten sequences is chosen as the core sequence. In our example, the 7th

 45

sequence, sequence 1597887, is determined to be the core sequence to represent the ten

sequences since it has the minimal MSD, 0.8879.

 Among the ten distance values to the core sequence, any distance greater than 1 is

considered to be an outlier and is removed by the statistical analysis component. In our

example, three sequences whose distances to the core sequence 1597887 are greater than

1 are removed as outliers. The component then makes the histogram to show the

distribution of the remaining seven distance values to the core sequence (Figure 3.6). In

the histogram, the x-axis reflects the range of distances to the core sequence, 0 – 0.1737,

which is divided into 20 equally spaced containers. The y-axis shows the number of

distance values that fall within the containers.

 Figure 3.6 The histogram of distances to the core sequence 1597887 after removing
outliers.

 46

Assuming the distribution of the distances to the core sequence 1597887 is a gamma

distribution, the statistical analysis component calculates the maximum likelihood

estimates (MLEs) for the parameters of the gamma distribution. Then it constructs the

95% confidence interval of the gamma distribution, which is from 0 to 0.2044.

 In the real study of DNA sequence clustering, 100 5’-end ESTs of a cluster were

used to identify the core sequence and construct the 95% confidence distance interval for

that cluster. In the computation of MSDs, equation 3.1 is used, but only dn,i whose value

is a real number and is less than 10 is considered. Figure 3.7 shows the histogram of

distribution of distances to the core sequence of the cluster Hs.78771 located in the x

chromosome after removing outliers. From the shape of the histogram, the distribution

was estimated and tested to be the gamma distribution. Its 95% confidence distance

interval was from 0 to 0.1583.

 47

Figure 3.7 The histogram of distribution of distances to the core sequence of the cluster
Hs.78771 after removing outliers.

 The core sequence number, the 95% confidence distance interval, and the number

of sequences whose distances to the core sequence are less than 1 among the 100 5’-end

ESTs for each of the 11 clusters are summarized in Table 3.3.

 48

Table 3.3 Eleven clusters and their core sequences, 95% confidence distance intervals

Chromosome Cluster
Core

sequence
number

95% confidence distance
interval

Number of
sequences*

17 Hs.1516 43503 0.0000 0.4386 50
17 Hs.79474 676622 0.0000 0.2471 57
18 Hs.155101 2428408 0.0000 0.2117 62
19 Hs.343354 2351216 0.0000 0.0179 75
19 Hs.111334 252674 0.0000 0.2143 59
20 Hs.179666 656436 0.0000 0.0890 54
20 Hs.194676 2429741 0.0000 0.5853 81
21 Hs.85119 698464 0.0000 0.5372 33
22 Hs.181125 2218749 0.0000 0.1008 100
X Hs.78771 597966 0.0000 0.1583 81
Y Hs.180911 658694 0.0000 0.1291 79

* The number of sequences whose distances to the core sequence is less than 1.0 among
the 100 selected ESTs.

B. Clustering a New Sequence

 For a new EST, one might ask: to which cluster does it belong? The following

pipeline, as shown in Figure 3.8, serves to cluster a new sequence.

data reading
component

multiple sequence
alignment
component

Phylip
component

read file of 11 core
sequences

12 sequences
multiple alignment

calculate
distance matrix

data reading
component

read a new EST

data merging
component

0 duplicate

12 seq.

Figure 3.8 A data pipeline functioning to cluster a new sequence.

 49

In the pipeline, the data reading component read the file that contains 11 core sequences

representing 11 clusters and read a 5’-end new EST. These 11 core sequences and new

EST were merged by the data merging component. The multiple sequence alignment

component and Phylip component did the same thing for the 12 sequences as they did for

the sample data set. In the resulting distance matrix, the distance between the new EST

and each of 11 core sequences was examined. If the distance between the new EST and

one core sequence representing the cluster i is within the 95% confidence distance

interval of the cluster i, then the new EST belongs to that cluster. If the distance is larger

than the 95% confidence interval, then no conclusion can be made.

 As mentioned earlier, the C++ program selected ten 5’-end ESTs for the testing

purpose for each of the 11 clusters. Each of the ten testing ESTs was merged with the 11

core sequences, and its distance to each core sequence was examined. For example, the

sequence 2186756 is one of ten testing ESTs belonging to the cluster Hs.78771. It was

merged with the 11 core sequences and the distance matrix is shown in the following:

 597966 2186756 656436 2428408 2351216 658694 698464 2429741 676622 43503 2218749 252674

597966 0.0000 0.0375 1.0362 1.5393 1.1724 1.8829 3.3610 2.6676 2.3165 2.9738 3.0390 2.6107

2186756 0.0375 0.0000 1.0352 1.6662 1.2108 1.9603 3.7646 2.9183 2.2193 3.2450 3.7705 2.6782

656436 1.0362 1.0352 0.0000 1.1588 1.4928 1.8890 2.5153 2.8292 2.2908 2.9360 2.2131 3.4095

2428408 1.5393 1.6662 1.1588 0.0000 1.9322 2.0726 3.0319 2.6463 4.2610 2.6295 2.8036 3.6122

2351216 1.1724 1.2108 1.4928 1.9322 0.0000 1.8951 2.3965 2.3776 2.2809 2.5424 2.3507 2.2431

658694 1.8829 1.9603 1.8890 2.0726 1.8951 0.0000 2.0137 3.3446 2.4148 6.0600 2.2845 2.5615

698464 3.3610 3.7646 2.5153 3.0319 2.3965 2.0137 0.0000 6.0600 5.4619 3.0001 3.1561 3.4809

2429741 2.6676 2.9183 2.8292 2.6463 2.3776 3.3446 6.0600 0.0000 6.0600 6.0600 4.4269 6.0600

676622 2.3165 2.2193 2.2908 4.2610 2.2809 2.4148 5.4619 6.0600 0.0000 2.9281 3.7138 4.7808

43503 2.9738 3.2450 2.9360 2.6295 2.5424 6.0600 3.0001 6.0600 2.9281 0.0000 2.9214 2.9701

2218749 3.0390 3.7705 2.2131 2.8036 2.3507 2.2845 3.1561 4.4269 3.7138 2.9214 0.0000 2.0725

252674 2.6107 2.6782 3.4095 3.6122 2.2431 2.5615 3.4809 6.0600 4.7808 2.9701 2.0725 0.0000

 50

The 3rd row lists the distance between the sequence 2186756 and each of the 11 core

sequences. The value 0.0 in the 3rd row is the distance between the sequence 2186756

and itself. We can see that the distance between the testing sequence and the core

sequence 597966 representing the cluster Hs.78771, 0.0375, is within the 95%

confidence interval of the cluster Hs.78771, 0 – 0.1583 (Table 3.3). Thus, the testing

sequence belongs to the cluster Hs.78771 according to our hypothesis. This is a correct

clustering since the testing sequence was chosen from the cluster Hs.78771. We can also

see that the distance values between the testing sequence and the other core sequences are

all greater than 1, which are outside the 95% confidence intervals. Thus there is no false

clustering.

 Table 3.4 summarizes the testing results for all of the 110 testing ESTs selected

from the 11 clusters.

Table 3.4 The testing results of clustering new sequences

Cluster Number of testing
sequences

Number of correct
clustering*

Number of false
clustering**

Hs.1516 10 5 0
Hs.79474 10 4 0
Hs.155101 10 10 0
Hs.343354 10 9 0
Hs.111334 10 9 0
Hs.179666 10 3 0
Hs.194676 10 10 0
Hs.85119 10 3 0
Hs.181125 10 10 0
Hs.78771 10 9 0
Hs.180911 10 9 0

*Correct clustering means that the distance between a testing EST chosen from the
cluster i and the core sequence of cluster i is within that cluster’s 95% confidence
distance interval.
**False clustering means the distance between a testing EST of cluster i and the core
sequence of cluster j (i ≠ j) is within the 95% confidence distance interval of the cluster j.

 51

Thus, among 110 testing ESTs, 81 (74%) were correctly clustered, and there was no false

clustering, which validates our hypothesis.

 52

References

1. Leach, A. R. Molecular Modelling Addison Wesley Longman Limited: Singapore,

1996.

2. Damborsky, J.; Manova, K.; Kuty, M. A Mechanistic Approach to Deriving

Quantitative Structure-Biodegradability Relationships, In: W.J.G.M. Peijnenburg and J.

Damborsky (Eds.), Biodegradability Prediction. Kluwer Academic Publishers:

Dordrecht, pp. 75-92, 1996.

3. Demuth, H.; Beale, M. Neural Network Toolbox User’s Guide Mathworks Inc., 2001.

4. Bioinformatics: A Practical Guide to the Analysis of Genes and Protein. Baxevanis, A.

D.; Francis Ouellette, B. F., Eds.; John Wiley & Sons: Denver, 2001.

5. Boguski, M. S.; Schuler, G. D. Establishing a human transcript map Nat. Genet. 1995,

10, 369-371.

6. National Center for Biotechnology Information:

http://www.ncbi.nlm.nih.gov/UniGene/, 2002.

7. Thompson, J. D.; Higgins, D. G.; Gibson, T. G. Clustal W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific

gap penalties and weight matrix choice. Nucl. Acids. Res. 1994, 22, 4673-4680.

8. Felsenstein, J. Phylip-phylogeny inference package. Cladistics 1989, 5, 164-166.

 53

Chapter IV. Discussion

I. Discussion

Today's success in bioinformatics and cheminformatics studies depends largely on

the integration of hundreds of sources that usually consist of many different data types

(numerical, text, structural data). Data reading components of the data pipelining system

are a group of components, each of which is capable of reading or importing Oracle

database records, delimited flat files, SD molecule records, etc. respectively. Thus, data

sources of different formats can be fed into a single data pipeline, and further analyzed by

merging, sorting, data modeling and other components. The data pipelining technology

allows the most data sets of research interest to be imported into the pipeline and

processed according to the user specified computational network protocol, thus offering

virtually unlimited flexibility. With this new freedom, users will be able to evaluate or

process multiple data sets (or multiple databases) as if they were within a single source.

The extremely high performance of data pipelining makes it ideally suitable in a

high-throughput research environment [1]. By creating a computational protocol to

capture the human expertise of acquiring, analyzing and managing data, the raw data can

be automatically processed with the data pipeline as the data is generated. The results of

a data pipeline can be ultimately stored in a database. Served as the complement to the

database system, data pipelining can be used to clean, evaluate and compare contents of

databases.

Data pipelining can be used to virtually screen a compound database to discover

drug candidate leads. Creating a new medicine is a complex business, costing over $300

million and typically taking between 12 and 15 years per marketed drug. Drugs available

 54

in the market have passed rigorous scientific and regulatory hurdles. From the hundreds

of thousands of potential drug compounds that are evaluated against disease targets, only

a handful meet the requirements necessary to progress through the full drug approval

process. It is estimated that at least 10,000 compounds are evaluated for each drug that is

approved for use in the United States. Data pipelines in Figure 3.1 were constructed to

predict the dehalogenation rates of chemical compounds. If we replace the

dehalogenation rate constant (Y2) with the IC50 as an activity of a compound, which is

the concentration of the compound required to produce a standard response to a particular

disease target in a given time, such pipelines can be applied to calculate IC50 values for

compounds in a chemical library. Thus, library compounds can be prioritized according

to their calculated IC50 values, and the top ranked compounds can be experimentally

tested first to discover drug candidate leads more quickly. By examining only the highest

scoring compounds, experimentally testing expenses can be greatly reduced.

The data pipeline in Figure 3.5 allows a user to identify a core sequence to

represent a cluster and find the 95% confidence distance interval. What a user needs to

do is only to construct the data pipeline once and configure each component

appropriately. Without the data pipelining technology, a user may have to accomplish

tasks in several steps, including using Clustal W to do multiple sequence alignment,

applying Phylip to calculate distance matrix in Unix, using some statistical software

package in Windows to identify core sequence and construct the 95% confidence

interval, and transferring files between different operating systems. Such work is not

efficient and the user is likely to make mistakes. By utilizing the data pipelining

technology to perform tasks automatically, these problems can be avoided.

 55

With components for data modeling, molecular modeling, bioinformatics and

other functions, a data pipeline is capable of identifying trends, discovering relations and

patterns among the data running through it, thus allowing data to be converted into useful

knowledge.

II. Conclusion

The data pipelining approach is designed to address the challenges of scalability,

data integration and data mining in today’s data-rich environment. By guiding the flow

of data through a network of modular computational components, data pipelining

provides great flexibility and fine control over analysis.

One of the limitations of the data pipelining technology is that the number of

computational components that can be provided is limited. However, the scope and

topics of research problems in bioinformatics and cheminformatics are changing

everyday. In the case where there are no appropriate computational components for a

specific problem a user is attempting to solve, the open architecture of a data pipelining

system should allow the user to implement code and construct components by himself.

References

1. Tozer, J. R. Ask More of Your Discovery Data. Genomics & Proteomics July/August

2001, 65-68.

 56

