
Abstract 
 

Data pipelining is the processing, analysis, and mining of large volumes of data 

through a branching network of computational steps.  A data pipelining system consists 

of a collection of modular computational components and a network for streaming data 

between them.  By defining a logical path for data through a network of computational 

components and configuring each component accordingly, a user can create a protocol to 

perform virtually any desired function with data and extract knowledge from them. 

A set of data pipelines were constructed to explore the relationship between the 

biodegradability and structural properties of halogenated aliphatic compounds in a data 

set in which each compound has one degradation rate and nine structure-derived 

properties.  After training, the data pipeline was able to calculate the degradation rates of 

new compounds with a relatively accurate rate.  

A second set of data pipelines was generated to cluster new DNA sequences. The 

data pipelining technology was applied to identify a core sequence to represent a DNA 

cluster and construct the 95% confidence distance interval for the cluster.  The result 

shows that 74% of the DNA sequences were correctly clustered and there was no false 

clustering. 
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Chapter I. Introduction 

I. Introduction to Bioinformatics 

Over the last few decades, biotechnology has experienced a rapid development.  

Traditional biology, which studies the mechanism of life at the organism and cell level, 

has migrated to modern molecular biology, which studies life at the DNA, protein and 

other molecular levels.  With the rapid progress of the human genome project, which 

provides a full spectrum of human genomic sequences, biological data are produced at an 

exponential rate.  How to manage and analyse these data efficiently and effectively in 

order to convert them into the useful knowledge is a huge challenge.  Enter 

bioinformatics, a new discipline that uses the mathematical modeling, statistical methods, 

and computational approaches to acquire, manage, analyze and visualize biological data. 

The first journal dedicated to the research in bioinformatics, Computer 

Applications in the Biosciences, was published in 1985 [1].  Several years later, it 

changed its name to Bioinformatics [1].  In the later 1960’s, Dayhoff created the first 

bioinformatics database, which included all the sequences available at that time [2].  The 

Protein DataBank, founded in 1972, had originally ten X-ray crystallographic protein 

structures.  In 1987, the SWISS-PROT protein sequence database was established [2].  

After that, GenBank was founded in the US and its first release was published in the form 

of printed book and computer tape [1].  Two sequence analysis tools, the Needleman-

Wunsch and Smith-Waterman algorithms, were developed in 1970 and 1981, respectively 

[3]. 

 Although databases were established early on, database searching tools evolved 

more slowly.  At first, researchers used very simple methods such as keyword matching 
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to perform searches [2].  In 1990, a fast but not very sophisticated algorithm, BLAST, 

was used in searching databases, complemented with a sophisticated but slow algorithm, 

FASTA [2][3].  Since then, two important events transformed the entire bioinformatics 

field:  rapid development of the internet and advances in sequencing technology [1].  The 

first of these advances made it possible for  researchers to share data and cooperate world 

wide; the second generated huge quantities of genome data that must be analyzed and 

managed by computer [1]. 

 Today, bioinformatics has become one of the hottest research areas and lots of 

scientists, including biologists, computer scientists, mathematicians and other 

disciplinary experts, have switched their research focus to bioinformatics.  Accordingly, a 

large number of bioinformatics tools became available as a result of these scientists’ 

efforts.  These tools can be divided into the following categories according to their 

functions: 

• Databases.  Many databases exist and they can be further divided into nucleotide 

sequence databases, such as GenBank and EMBL, protein sequence databases, 

such as PDB and SWISS-PROT, sequence-structure databases, such as DSSP and 

DALI, sequence mapping databases, such as GeneMap 98 and Marshfield genetic 

map, and publication and bibliography databases, such as PubMed [4].  All of 

these databases can be accessed from the Internet and researchers can submit and 

retrieve sequences by using the software that is integrated into the database or by 

using other separate software.  Among these databases, many are not isolated but 

instead, they are linked to each other. 

 2



• Sequence alignment tools.  These tools are used to find homology regions in 

sequences.  They can be used to perform pair-wise alignment or multiple 

sequence alignment.  Most of the sequence databases have sequence alignment 

tools, such as BLAST and FASTA, so that users can do similarity searching.  

There are also some sequence alignment tools that users can install in their own 

machines, such as Clustal W.  Sequence alignment tools can usually do both 

nucleotide and protein sequence alignment. 

• Predication tools based upon DNA sequences.  These tools are used to identify 

genes and other specific regions from DNA sequences.  Some examples of these 

tools are GRAIL, which is used in gene prediction, FGENEH, which is used to 

find exons, and GENESCAN, which is used to find complete gene structures [5].  

Again, some of these tools are built into the databases to facilitate the analysis. 

• Prediction tools based upon protein sequences.  These tools are used to predict 

the properties, structures and functions of proteins from their sequences.  Most of 

these tools can also make predictions using DNA sequences.  These tools include 

programs to predict the physical properties of proteins, such as SAPS and 

MOWSE; programs to determine the identity of a protein based on its amino acid 

composition, such as AACompIdent and PROPSEARCH; motif and pattern 

searching tools, such as BLOCKS and Pfam; secondary structure and folding 

class prediction tools, such as PREDATOR and nnpredict; special structure and 

feature prediction tools, such as COILS and PHDtopology; and tertiary structure 

prediction tools, such as UCLA-DOE and SWISS-MODEL [5]. 
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• EST analysis tools. The expressed sequence tags (ESTs) are short fragments of 

genes.  Although ESTs can be generated at a fast rate by using DNA microarrays, 

it is a time and labor consuming effort to analyze them.  Currently, these 

sequences are stored in databases such as GenBank, EMBL and DDBJ [5].  These 

sequences can be used to discover genes and perform sequence polymorphism 

analysis, although the qualities of these sequences are currently not very good [5].  

Tools such as UniGene can be used to classify them, and it is very easy and fast to 

find novel genes in dbEST [5]. 

• Phylogenic analysis tools. This kind of tool is used to find the evolutionary 

relationships among sequences.  The basic steps for this kind of analysis include 

multiple sequence alignment, determining a substitution model, building a 

phylogenic tree, and evaluating that tree [5].  At present, the most widely used 

phylogenic analysis software is Phylip.  There are also other tools such as 

PUZZLE and MOLPHY [5]. 

• Comparative genome analysis tools. Currently, the full range of several 

organisms’ genomes have been mapped [5].  The genomes of these organisms can 

be compared to find the functions of unknown genes.  There are several databases 

that can be used for this comparative genomic analysis, such as PEDANT and 

COGs.  The database for a specific organism, such as for E. Coli and for 

B. subtilis, can also be used for such analysis [5]. 

 

Due to the limitations of the scope of this thesis, the above mentioned tools by no 

means provide a complete list of bioinformatics tools.  Many scientists are still working 
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hard to develop the new tools and improve the quality of the available tools.  With the 

completion of human genome project and other organisms’ genome projects, large 

quantities of biological data are being generated.  Instead of looking for weak similarities 

from scarce amounts of data, it now becomes possible and important to search for strong 

similarity from a wealth of data [1].  On the other hand, among genes discovered every 

day, many of them have similar functions and might be grouped into the same gene 

families, or they are probably the products of the proliferation of some genes within 

certain tissues.  Thus, finding such information can eliminate data redundancy and reduce 

sample size [1]. 

The ultimate goal of bioinformatics is to fully understand the mechanism of life.  

To achieve this goal, we not only need to model how molecules function within a cell, 

but also model the intercellular interactions and understand how cells compose a tissue.  

After all these tasks have been accomplished, maybe we can begin to model the whole 

life system [1]. 

Although many bioinformatics tools exist, they almost always have some 

drawbacks.  In the next section, challenges in bioinformatics will be discussed. 

 

II. Challenges in Bioinformatics 

 Bioinformatics is an interdisciplinary approach to analyzing biological data.  It 

involves expertise in biology, computer science, statistics, mathematics and other 

disciplines.  Due to its interdisciplinary nature and the complexity of biological data, 

challenges arise in bioinformatics. 
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Database and information management 

 One important aspect of bioinformatics involves storage and management of a 

large amount of data.  Challenges related to this subject include: 

• Data integration and data mining. One of the goals of studying genes is to predict 

their functions.  However, it is often impossible to accomplish this task either by 

just accessing a DNA database, a protein database, a protein 3-D structure 

database, or by only doing searches for similarities in sequence or structure.  

Integrating all the relevant information from related databases and using 

appropriate analysis tools are necessary to predict genes’ functions.  Currently, 

there are two ways to perform data integration.  One is to embed external links to 

other databases within a database; the other is to integrate accesses across several 

data sources [6].  However, with so many existing databases, it is still a great 

challenge for data integration.  Another important issue associated with 

information management is the data mining.  Data mining is the procedure to 

discover the information that is implicit--previously unknown yet useful--from 

existing data.  Widely used data mining methods include machine learning, 

statistical methods, etc.  With the large amounts of data out there but yet to be 

analyzed, and, with new raw data generated every day, the development of 

efficient data mining methods and their application become urgent. 

• Scalability. In April 2001, there were 300 complete genomes, 15,000 

macromolecular structures, 400,000 protein sequences, 11.5 million DNA 

sequences, and 11 million citations related to bioinformatics [6].  And these 

numbers are increasing at a fast rate.  On average, the size of the GenBank 
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database doubles every 15 months.  Therefore, the scalability of bioinformatics 

tools needs to be considered at the designing phase of these tools [6]. 

• Redundancy and multiplicity of data.  All biological data can be grouped 

according to similarities of their biological meaning to avoid redundancy and 

multiplicity [6].  For example, genes can be grouped according to their functions; 

proteins can be grouped by their structures.  This kind of grouping simplifies 

databases.  For example, the number of gene sequences is very large, however, 

the number of the structures of the proteins they encode is relatively small. 

• Data standardization.  There are many public and private databases and many of 

them have their own data definitions and formats.  In addition, different databases 

have different naming rules for the same data.  Although some effort has been 

made to solve some of these problems (e.g., most databases support FASTA 

format and use a GenBank sequence ID), more work needs to be done to establish 

universal naming and formatting systems. 

 

Homology search 

One way to find the function of a new gene is to find homologies between the 

gene of interest and other genes whose functions are known.  Many programs have been 

developed to do homology searches.  One of the major challenges is how to search for 

remote similarities [7].  In this case, it is very difficult to extract signals from noise [6].  

Another challenge is how to improve the efficiency of algorithms [7].  Choosing a model 

that is appropriate for a particular domain is also one of the research areas in homology 

searching [6]. 
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Sequence multiple alignment 

Many sequence multiple alignment programs, such as Clustal W, don’t guarantee 

finding optimal solutions [5].  Users have to carefully choose the parameters and provide 

their expert knowledge to find solutions that have true biological meaning [5].  How 

these sequence multiple alignment tools can be designed to have some intelligence so that 

they can perform these tasks automatically remains a challenge. 

 

Protein structure and function prediction 

Although several predictive tools using protein sequences have been successfully 

used in some studies, the overall accuracy rate of prediction is not very high.  For 

example, PredictProtein has an average accuracy rate of 72% and nnpredict has an 

accuracy rate of 65% [5].  Both tools are used to predict protein secondary structure.  It is 

known that the primary structure and some environmental factors determine the 3-D 

structure of a protein.  But the mechanism governing this determination is not very clear.  

For algorithms to predict protein structures, the complexity of the search space is still a 

challenge for software developers [7]. 

 

Automated text analysis 

It takes a lot of time and effort to manually extract useful information from a 

textual database, such as Medline, even for an expert [8].  Some relations among several 

different objects studied in different publications, such as a relation between a protein and 

a disease, can sometimes be found.  Due to the size of the textual database, automated 
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text analysis tools are needed to facilitate the extraction of useful information from the 

literature [8].  Although there are some techniques to solve this problem, such as natural 

language processing (NLP), overall performance is not satisfactory [8]. 

 

III. Introduction to Chemical Informatics 

With the invention of new technologies such as combinatorial chemistry and high 

throughput screening, the amount of information in chemistry is increasing dramatically.  

This is evident from the fact that the Chemical Abstracts Service adds over 700,000 new 

compounds to its database annually [9].  Each new compound has its own physical and 

chemical properties (e.g., reaction information) that need to be stored in the database.  

Chemists have developed a nomenclature system to name a substance that adds another 

dimension to chemical information.  The development of an informatics infrastructure 

with the capability not only to acquire and manage huge amounts of data but also to 

discover the relations, trends and patterns from the data is the major concern of chemical 

informatics. 

Studies in chemical informatics include molecular simulation, chemical 

information management, and data analysis techniques with high quality graphical 

visualization.  Chemical visualization and modeling techniques are revolutionizing 

chemical research.  A novel compound can be built on a computer and its physical and 

chemical properties and its interactions with other molecules, can be calculated with a 

high degree of accuracy using a molecular modeling package even before the compound 

is actually synthesized. 
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Chemical informatics techniques are used extensively by the pharmaceutical 

industry to facilitate and accelerate the drug discovery process.  Chemical informatics 

also plays an important role in instrument design.  With the inclusion of modern sensors 

in chemical instrumentation, a large volume of data is generated. Future instrumentation 

needs to include the ability to read data from existing chemical databases and have the 

ability to analyze data as it is generated with the modeling technique.  Such abilities will 

enable instruments to make intelligent decisions while the data is being collected and 

analyzed.  The incorporation of chemical informatics will provide a competitive 

advantage to the companies that are involved in medical, environmental, and chemical 

instrumentation research. 

 Research areas in chemical informatics include [10]: 

• Molecular modeling 

• Chemical database systems (including spectral and reaction systems) 

• Chemometrics (the use of mathematical, statistical, and other methods of formal 

logic to determine, by indirect means, properties of substances that otherwise 

would be very difficult to measure) 

• Automated synthesis 

• High throughput screening 

• Structure coding systems (including nomenclature) 

• Electronic chemical publishing systems 

• Chemical patent information sources 

• Laboratory automation 

• Laboratory information management systems (LIMS) 
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IV. Challenges in Chemical Informatics 

 Many people view chemical informatics as an extension of chemical information,  

which is a well established concept covering many areas that employ chemical structures, 

data storage, such as compound library and online chemical literature, and computational 

methods, such as SAR (structure-activity relationship) analysis and molecular property 

calculation [11].  In this section, some challenges faced by researchers in the chemical 

informatics field are discussed. 

 

Bridging the gap between bioinformatics and cheminformatics 

 In the field of life science research, huge amounts of data are generated by 

genomics, proteomics, high throughput screening (HTS), and combinatorial chemistry.  

While cheminformatics scientists have focused on HTS and chemical data, 

bioinformatics scientists have focused on genomic and proteomic data.  There is typically 

little or no interaction between these groups [12]. However, it is important for 

cheminformatics scientists and bioinformatics scientists to communicate with each other 

constantly and to make effective use of data from each other in order to find scientific 

relationships and build hypotheses.  For example, drug discovery today involves both 

bioinformatics for target discovery and cheminformatics for lead identification [13].  If 

the data from these two fields can be integrated, the task of achieving new insights and 

discovery of hidden relationships may become easier.  Providing the technologies to 

bridge these islands of information and allow researchers to query across diverse data 

domains is one challenge faced by informaticists. 
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Chemical structure representation 

Currently, different data sources store and represent chemical structures in a 

variety of proprietary file formats, making it difficult to access and interchange them 

among applications [14].  The Life Sciences Research/Cheminformatics Task Group of 

the Object Management Group is currently developing the chemical structure access and 

representation standard.  It is an open standard based on XML/CML (extensible markup 

language/chemical markup language), an open W3C data representation standard [15]. 

 

Challenges in molecular modeling 

The three most important problems in molecular modeling include [16]: 

• The difficulty of calculating free energies of molecules by computer. 

• Representation of solvent effects in calculations. 

• Simulation of chemical reactions. 

Given the advances in theory, hardware, and software one expects that these issues will 

become less problematic in the near future. 
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Chapter II.  Using Data Pipelining to Convert Data into Useful 

Knowledge 

I.  Introduction 

With huge volumes of raw data being generated by new advances in 

bioinformatics and chemical informatics, a new technology, data pipelining, has been 

developed to convert data into useful knowledge by addressing the challenges of 

scalability, data integration and data mining. 

Data pipelining is the processing, analysis, and mining of large volumes of data 

through a branching network of computational steps [1].  A data pipelining system 

consists of a collection of modular computational components and a network for 

streaming data between them.  Some components make simple calculations, like standard 

deviation, some components merge or sort data according to key properties in the data, 

some filter or branch data to different downstream components based upon data 

properties or live calculations, and some components function to simply import or read a 

particular source of data [2].  By defining a logical path for data through a network of 

these components and configuring each component accordingly, a user can create a 

protocol to perform virtually any desired function with data, and subsequently extract 

knowledge. 

Data pipelining technology serves as the complement to database systems for 

discovery informatics.  Data pipelining does not store or manage data collections itself, it 

imports data collections from flat files or databases and stores the running results in a file 

or a database.  The nature of database systems requires that research inquiries be 

restricted to what has been pre-conceived and already calculated in the system [3].  With 
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the technology of data pipelining, it is possible to mine data from multiple disparate 

collections without the need to unify the data in a single database.  Database technology, 

along with data pipelining, provides uncompromising management and analysis 

capabilities. 

 In the following sections, we will discuss the desired functional requirements, 

system requirements, overall design, manuals, screen layout and report layout of a well-

designed data pipelining application. 

 

II.  Functional Requirements of Data Pipelining 

The data pipeline itself must have extremely high performance if it is to keep pace 

with the rate of data generation.  Modern discovery research relies upon many different 

data sources across entire scientific domains, and in many cases it is their collective 

analyses that provide the most valuable insights.  The ability to integrate data from 

disparate sources is an essential requirement of data pipelining.  Data from multiple 

disparate sources is fed into a single processing pipeline.  By defining the relationships 

between data in the pipeline itself, the sources of data themselves need not be altered in 

any way. 

Component-based Pipeline Definition 

Pipelines should be viewed conceptually as collections of modular computational 

components within a framework for streaming data between them [4].  A pipeline for a 

specific task can be created by selecting appropriate components, configuring each 

component accordingly, and defining a logical path for streaming data through these 

components. 
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Modularity of Components 

 A data pipeline consists of connected computational components.  The individual 

component must be modular to allow its seamless insertion into any new protocol.  In 

order to allow data to run through components in a pipeline, one component should be 

compatible with the other components. 

Data Modeling Capability 

 Some computational components can be implemented with artificial intelligence 

methods, machine learning techniques, statistical methods, etc. to identify trends, 

discover unusual patterns, and find hidden relationships from multiple disparate data 

sources.  This learning capability greatly extends the function of data pipelining. 

Open Architecture 

 With the rapid progress of scientific research, new ideas and new research fields 

are emerging.  On the case when none of the present components provides a desired 

functionality, the modular design and open architecture of the system should allow a user 

to create new components for his proprietary purposes. 

Pipeline Protocols 

 A data pipeline protocol is a logical layout of modular components to perform a 

specific task.  Once created, these protocols can be saved for future re-use or to be shared 

with a broad community of users. 

Visualization and Reporting 

Visualization functionality should be provided by the system to allow a user to 

design new pipelines, monitor the status of pipeline executions, and save pipeline 
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protocols.  In addition, a user will desire the visualization and reporting functionality to 

view results and present them to others. 

 

III.  System Requirement and Human Resource 

 A data pipelining system adopts the client/server architecture.  The Unix server 

stores databases (e.g., in Oracle format) that can be queried and the query results are then 

fed into a data pipeline.  A user can access the server through a web interface on a client 

machine.  The web interface provides available computational components and tools to 

construct a pipeline.  After a pipeline is constructed, the job is submitted to the server and 

run on the server.  The execution results can be either saved as a file on a client machine 

or loaded into the database that is stored on the server. 

Human Resource Requirement 

• Project Manager: this person is responsible for the installation, system 

maintenance, interacting with users, etc. 

• Unix System Administrator: a person needed to install, configure and maintain 

servers and storage devices since our databases are stored on a Unix system. 

• Oracle Database Administrator: a person who is responsible for installing the 

Oracle database and maintaining it. 

• End Users: the bioinformatics and cheminformatics scientists. 

 

IV.  Overall Design 

 Since a data pipeline is constructed from modular computational components, 

exactly which components should be provided and how each of these components should 
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be designed become critical issues.  The following types of components are usually 

included in the data pipelining system: 

Data Reading Components 

 In order to integrate different data sources, many components function to simply 

import or read a particular source of data.  Data reading components are a group of 

components, each of which reads or imports an Oracle database, delimited flat files, and 

SD molecule records, etc. 

Calculation Component 

 This component can make simple calculations, like standard deviation, or perform 

live calculations on the available data source to derive new properties. 

Data Merging Component 

 This component merges data from different sources, finds duplicates, and 

branches data to different downstream components. 

Data Sorting Component 

 This component sorts data records in a file according to a specific file of the data 

record. 

Data Filtering Component 

 This component filters data to different downstream components based upon data 

properties. 

Data Modeling Component 

 This component is implemented with some artificial intelligence method.  It 

extends the capabilities of data pipelining by automatically learning from the data.  The 

learning ability is realized with a straightforward learn-by-example paradigm: users 
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simply mark sample data that have the traits they are looking for, and the modeling 

component learns to distinguish it from other background data.  The data modeling 

component automatically identifies the properties that can affect the trait and weights 

them accordingly. 

Results Viewing Component 

 This component enables a user to view the execution results of data pipelining 

with the visualization tools. 

Data Writing Component 

 This component gives a user the option to either save the running result of data 

pipelining in the format of a flat file on a client machine or load the result into the 

database stored on the server. 

Molecular Modeling Component 

 This component is designed for tasks related to cheminformatics.  It reads a 

molecular structure, and calculates molecular properties based on its structure using 

molecular mechanics, semi-empirical, or quantum mechanics methods. 

Molecular Fingerprint 

 This component is designed for tasks related to cheminformatics.  It generates a 

fingerprint (a binary bit string) to represent the three dimensional structure of a molecule. 

Bioinformatics Component 

This is a group of components, each of which is dedicated to a specific function.  

It typically includes components for:  

• Homology searching: sequence similarity and homology search against a 

nucleotide or a protein database 
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• Multiple sequence alignment 

• Gene prediction 

• DNA sequence translation 

• Protein motif and pattern searching 

• Protein fold classification and structural alignment 

• Protein secondary and tertiary structure prediction 

• Protein function prediction 

 After different types of components become available, a user can construct a data 

pipeline for a specific task by selecting an appropriate set of components, configuring 

each of them accordingly, and connecting these components to allow data to run through 

them. 

 

V.  Manuals, Screen Layout and Report Layout 

 The first step typically involves a user to open Internet Explorer or Netscape to 

connect to the data pipelining server.  After the user provides his login name and 

password, an interface I designed for the data pipelining system (Figure 2.1) is presented 

to the user to allow him to build his data pipeline and submit the job to the server. 
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Figure 2.1  A data pipeline web interface. 

 

The interface consists of a menu, component area, tool bar and working area: 

• The menu includes Protocol and Edit.  When the Protocol button is clicked, a 

menu pops out which contains Protocol Templates, Read Protocols, Save 

Protocols, Save as, and Print Protocols.  Protocol Templates provide a user with a 

collection of popular, routinely used protocols.  Read Protocols allows a user to 

import a saved protocol into the working area.  Save Protocols permits a user to 
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save the current protocol constructed in the working area on the local PC 

machine.  Print Protocols prints out the protocols showing in the working area.  

Edit menu contains Redo, Undo, Select, Copy, Paste and Erase.  Select allows a 

user to select a particular component in a pipeline, Copy allows a user to paste the 

pipeline image into a word document or other formats of documents, and Erase 

allows a user to remove the selected component from a pipeline. 

• The component area contains all types of components described in the Overall 

Design section. 

• The tool bar contains Connecting, Select, Erase, and Submit.  Connecting allows a 

user to bridge two components, A and B, thus output from the component A can 

be directed to the component B as input.  The Select and Erase are the same as 

those contained in the Edit Menu.  When the Submit button is clicked, execution 

of a constructed data pipeline will be submitted to the server. 

• The working area is where a user builds and edits a data pipeline. 

 A user selects a component by clicking that component in the component area and 

then clicks it again in the working area.  The component now appears in the working 

area.  By right-clicking the component in the working area, a configuration window pops 

out that allows a user to modify parameters for that component.  For example, a user can 

specify the name of a flat file and the delimiter used in the file for a data reading 

component to retrieve data records in that file.  Or, a user can issue an SQL (structural 

query language) statement in the configuration window of a data reading component to 

retrieve data records from a database.  A user configures a data sorting component by 

specifying a particular data field as the sorting criterion.  A filtering component is 
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configured by setting the filtering criteria that may be a range of a property such as 

molecular weight.  A data writing component can be configured to save the running result 

of data pipelining either in the format of a flat file on a client PC or in a database stored 

on the server. 

 A component has one or more input lines and/or one or more output lines.  For 

example, a data merging component has more than one input line and more than one 

output line, as demonstrated in figure 2.2. 

 
 
                   Input                                                                                   Output 
 
              
 
            Data Source A                                                                     Merged Data 
  
 
 
 
            Data Source B                                                                     Duplicates  

Data Merging 
Component 

 
 
  
Figure 2.2  The input lines and output lines of a data merging component. 

 

How then do we connect components to allow data to run through them? The 

example in figure 2.3 illustrates how to make connections between components. 
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   A                                    E 
 C 
 
 
 D                                                F 
 B                                                                  
 
 

Data 
Reading 
Component 

Data Merging 
Component 

Data 
Reading 
Component  

 

Figure 2.3  Three separate components appearing in the working area. 

 

The above figure shows three separated components in the working area: two data 

reading components and a data merging component.  To connect them, a user clicks the 

Connecting button on the tool bar.  The program prompts the user to first select an output 

line and then an input line.  For example, in the figure above, output line A and input line 

C are selected sequentially.  After C is selected, a line connecting A and C appears in the 

working area indicating that data flows from A to C.  Similarly, data flowing from B to D 

can be made.  Three connected components are shown in figure 2.4. 

 
 
 
   A                  C                                                E 
  
 
 
                                                     F 
 B  D                                                  
 
 
 

Data 
Reading 
Component 

Data Merging 
Component 

Data 
Reading 
Component  

Figure 2.4  Illustration of making connections between components. 
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In Figure 2.5, line E outputs the merged data and directs these data to a data 

writing component.  Similarly, line F outputs the duplicates to be shown in the result 

viewing component. 

 
 
 
   A       C                                              E (Merged Data) 
  
 
 
  F (Duplicates) 
 B      D                 
 
 
 

Data 
Reading 
Component 

Result Viewing 
Component 

Data Writing 
Component 

Data Merging 
Component 

Data 
Reading 
Component  

 
Figure 2.5  An example of a data merging protocol. 
 

A data pipeline in the working area can be edited using the Select and Erase tools 

in the tool bar.  Once a pipeline is constructed, a user can click the submit button in the 

tool bar to submit the job to the server, and the execution of a data pipeline will run on 

the server.  The server will inform the user after the job is completed.  A constructed data 

pipeline can be saved in the local machine for the future re-use or edit. 

 Report layout is protocol specific.  Different protocols have different report 

layouts.  The details of report layout will be demonstrated in the following chapter. 
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Chapter III.  Application of Data Pipelining Technology in 

Cheminformatics and Bioinformatics 

I.  Establishing Quantitative Structure Biodegradability Relationship 

(QSBR) Using Data Pipelining 

In chemistry, the activity of a molecule is often a composite of many factors.  A 

structure-activity study can help to identify which features of a molecule give rise to its 

activity and help to make modified compounds with enhanced activities.  A quantitative 

structure-activity relationship (QSAR) relates numerical properties of the molecular 

structure to the activity via a mathematical model [1]. 

The table 3.1 lists a typical QSAR data set [2].  There are 24 compounds in the 

data set.  For each compound, one activity (Y2) was determined experimentally and nine 

structure-derived properties (Mw through BCLU) were calculated using molecular 

modeling packages [2].  Y2 represents the dehalogenation rate constant obtained from 

assays using the intact cells of Rhodococcus erythropolis Y2.  It is expressed as a 

percentage of the dehalogenation rate constant obtained under the same conditions with 

1-chlorobutane.  Nine structural properties used to describe the hydrophobicity, steric and 

electronic characteristics of each compound are:  molecular weight (Mw), moments of 

inertia along the x-axis (IX), logarithm of the octanol/water partition coefficient (logP), 

heat of formation (Hf), total energy (TE), electronic energy (EE), energy of the highest 

occupied molecular orbital (HOMO), dipole moment (Dip) and the bond contribution of 

the lowest unoccupied molecular orbital (BCLU). 
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Table 3.1.  Dehalogenation rates and descriptors [2] 
 

  

  
Y2 Mw IX logP Hf TE EE HOMO Dip BCLU

1-chlorobutane 100 92.57 4.97 2.64 -39.82 -1010.99 -3438.47 -11.1327 1.74 -1.98
1-chloropentane 105 106.60 5.67 3.05 -46.67 -1166.82 -4424.73 -11.1326 1.76 -1.97
1-chlorohexane 99 120.62 7.18 3.58 -53.51 -1322.66 -5475.49 -11.1325 1.77 -1.98
1-chloroheptane 87 134.65 7.94 4.15 -60.36 -1478.49 -6581.83 -11.1329 1.78 -1.98
1-chlorooctane 62 148.68 9.37 4.64 -67.20 -1634.33 -7737.48 -11.1329 1.78 -1.98
1-chlorononane 51 162.71 10.16 5.17 -74.05 -1790.16 -8937.12 -11.1326 1.79 -1.98
1-chlorodecane 38 176.73 11.51 5.70 -80.90 -1946.00 -10176.60 -11.1327 1.79 -1.98

1-chlorododecane 20 204.79 13.66 6.76 -94.58 -2257.66 -12762.00 -11.1021 1.79 -1.98
1-

chlorotetradecane 16 232.84 15.84 7.81 -108.28 -2569.33 -15471.70 -11.0619 1.80 -1.98

1-
chlorohexadecane 0 260.85 17.87 8.87 -121.98 -2881.00 -18288.40 -11.0270 1.80 -1.98

1-
chlorooctadecane 0 288.95 25.05 9.93 -135.53 -3192.67 -21210.10 -10.9987 1.80 -1.98

1-bromoethane 92 108.97 2.71 1.61 -13.12 -678.77 -1658.57 -10.6925 1.66 -1.99
1-bromobutane 108 137.03 5.18 2.75 -26.77 -990.44 -3381.10 -10.6882 1.72 -2.00
1-bromohexane 78 165.08 7.56 3.80 -40.45 -1302.11 -5414.47 -10.6878 1.75 -2.00

1-
bromotetradecane 27 277.30 16.61 7.95 -95.24 -2548.79 -15405.20 -10.6901 1.77 -2.00

1-iodobutane 73 184.02 5.39 3.05 -14.69 -984.41 -3348.76 -10.4276 1.56 -1.99
1-iodopentane 65 198.05 5.98 3.58 -21.54 -1140.25 -4331.49 -10.4277 1.58 -1.99
1-iodohexane 35 212.08 7.93 4.11 -28.38 -1296.08 -5379.64 -10.4277 1.58 -1.99

1,3-
dichloropropane 152 112.99 5.12 2.00 -40.75 -1215.29 -3511.31 -11.3721 1.51 -2.02

1,4-
dichlorobutane 155 127.01 5.34 2.24 -48.09 -1371.15 -4497.10 -11.2981 0.00 -2.00

1,6-
dichlorohexane 113 155.07 7.69 3.29 -62.02 -1682.83 -6653.46 -11.2219 0.00 -1.99

1,9-
dichlorononane 66 197.15 11.99 4.88 -82.66 -2150.33 -10248.00 -11.1794 1.54 -1.98

1,10-
dichlorodecane 60 211.18 12.29 5.41 -89.53 -2306.17 -11523.90 -11.1707 0.05 -1.98

1,2-
dibromoethane 87 187.87 11.28 1.96 -7.56 -1018.35 -2522.43 -10.7587 2.21 -1.99

 
 
 Four data pipelines, as shown in figure 3.1, were constructed in the working area 

of a web interface, which was described in Chapter 2, to establish the Quantitative 
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Structure Biodegradability Relationship (QSBR) and apply it to predict the 

dehalogenation rates. 

 
 

ipeline A: Dividing the transformed data set (24 compounds) into a training set (18 

ipeline B: Using a neural network to establish structure-biodegradability relationship. 

data reading
 component

data sorting
 component

data 
preprocessing
component

 PCA
 component

data filtering 
component

data writing 
component

data writing 
component

read file of
24 compounds

sort data records
based on the 
degradation rate

normalization  principal component 
analysis

save the result in 
file train.dat (18 training compounds)

save the result in 
file test.dat (6 testing compounds)

P
compounds) and a testing set (6 compounds). 
 
 

data reading
 component

data modeling
component
(DMA)

read train.dat
file

establish QSBR

 
P
 
 

 30



data reading
 component

data modeling
component
(DMA)

read train.dat
file

apply QSBR

data 
postprocessing
component

result 
viewing
component

un-normalization regression analysis

 
Pipeline C: Applying the QSBR model to calculate the biodegradation rates of 18 training 
compounds, and comparing them with the actual values. 
 
 

ipeline D: Applying the QSBR model to calculate the biodegradation rates of 6 testing 

igure 3.1 Four data pipelines (A-D) constructed in the working area of a web interface. 

Pipeline A first read 24 compounds and sorted the data set according to the Y2 

values.  After the sorted data set ran through the data preprocessing component, both 

original inputs (9 structural properties) and original targets (Y2) were normalized so that 

both of them had zero means and unity standard deviations in order to derive the 

structure-biodegradability relationship more efficiently.  The normalized inputs were 

further processed by the PCA (principal component analysis) component.  The PCA 

technique had three effects on the normalized inputs: it orthogonalized the components of 

the input vectors so that they became uncorrelated with each other; it sorted the resulting 

orthogonal components (principal components) based upon their contributions to the total 

variation in the data set; and it eliminated those components that contributed the least.  In 

lying the QSBR model to calculate the biodegradation rates of 6 testing 

igure 3.1 Four data pipelines (A-D) constructed in the working area of a web interface. 

Pipeline A first read 24 compounds and sorted the data set according to the Y2 

values.  After the sorted data set ran through the data preprocessing component, both 

original inputs (9 structural properties) and original targets (Y2) were normalized so that 

both of them had zero means and unity standard deviations in order to derive the 

structure-biodegradability relationship more efficiently.  The normalized inputs were 

further processed by the PCA (principal component analysis) component.  The PCA 

technique had three effects on the normalized inputs: it orthogonalized the components of 

the input vectors so that they became uncorrelated with each other; it sorted the resulting 

orthogonal components (principal components) based upon their contributions to the total 

variation in the data set; and it eliminated those components that contributed the least.  In 
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the data pipeline A, the PCA component was configured such that the principal 

components with less than 5% contributions to the total variation in the inputs were 

discarded.  The result was that only the top four principal components remained.  The 

normalized value of Y2 and the top four principal components for each of the 24 

compounds are listed in table 3.2. 

Table 3.2 The normalized value of Y2  
and the top four principal components for each of the 24 compounds 

 Y2 compon component component 
 principal 

component 

 
Normalized 1st principal 2nd principal 3rd principal 4th

ent 
1-chlorohexadecane -1.6624 -4.3603 0.2807 -0.0686 0.1320 
1-chlorooctadecane -1.6624 -5.8564 0.5591 0.2044 0.1845 
1-chlorotetradecane -1.2844 -3.2739 0.0796 -0.3087 0.1705 
1-chlorododecane -1.1899 -2.1867 -0.1465 -0.5429 0.2054 
1-bromotetradecane -1.0246 -3.0549 1.5713 1.5686 0.5397 
1-iodohexane -0.8356 0.9849 1.8684 0.5988 -0.8869 
1-chlorodecane -0.7648 -1.1077 -0.3398 -0.7794 0.2376 
1-chlorononane -0.4577 -0.5463 -0.4024 -0.8898 0.2267 
1,10-dichlorodecane -0.2451 -1.6550 -1.8926 1.0809 -1.5312 
1-chlorooctane -0.1978 -0.0309 -0.4651 -0.9869 0.2155 
1-iodopentane -0.1270 1.5780 1.7942 0.4860 -0.9055 
1,9-dichlorononane -0.1033 -1.2769 -0.6246 -0.4284 -0.0062 
1-iodobutane 0.0620 2.0616 1.7267 0.4019 -0.9225 
1-bromohexane 0.1801 1.2925 1.0912 0.7160 0.4580 
1-chloroheptane 0.3927 0.5230 -0.5281 -1.0973 0.2046 
1,2-dibromoethane 0.3927 1.7543 1.5962 -0.3397 0.2714 
1-bromoethane 0.5108 3.2634 0.6465 -0.3193 -0.2271 
1-chlorohexane 0.6762 1.0362 -0.5902 -1.1927 0.1932 
1-chlorobutane 0.6998 2.0666 -0.7307 -1.3786 0.1539 
1-chloropentane 0.8179 1.4412 -0.7701 -1.9834 -0.4048 
1-bromobutane 0.8888 2.3555 0.9426 0.5293 0.4156 
1,6-dichlorohexane 1.0069 0.6655 -2.1992 1.3520 -0.9588 
1,3-dichloropropane 1.9281 2.4581 -1.0610 1.5967 2.5169 
1,4-dichlorobutane 1.9990 1.8681 -2.4061 1.7811 -0.2827 
 
 

The data filtering component divided the transformed dataset into a training subset of 18 

compounds and 6 testing compounds respectively. 

compounds and a testing subset of the remaining 6 compounds whose Y2 values ranked 

2nd, 6th, 10th, …, 22nd in Table 3.2.  The file train.dat and file test.dat had 18 training 
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 Pipeline B, C and D were submitted to the data pipeline server at the same time 

for execution.  Pipeline B was built to generate a predictive model of dehalogenation 

tes.  I

                                                

ra t first read the file train.dat.  This file had 18 compounds.  For each compound, it 

had one normalized value of dehalogenation rate constant and four principal components 

representing its structural properties.  The data modeling component was implemented 

with a two-layer backpropagation neural network.  The neural network was configured 

with two neurons in the hidden layer and one neuron in the output layer, as indicated in 

figure 3.2.  The Tan-Sigmoid transfer function1 was used for the hidden neurons and a 

linear transfer function (y = x) for the output layer.  A 4-element input was fed into the 

neural network, corresponding to four principal components.  The Levenberg Marquardt 

(LM) algorithm2 was applied to train the neural network to overcome the slow 

convergence caused by the gradient descent training algorithm.  The LM algorithm 

appears to be the fastest method for training backpropagation networks with up to a few 

hundred weights to perform function approximations [3].  The advantage becomes even 

more pronounced if very accurate training is desired.  In many cases, the LM algorithm is 

able to achieve lower mean square errors than any of the other algorithms tested [3].  The 

network was trained using 18 training compounds to establish a relationship between 

molecular structure and the dehalogenation rate.  The network was trained in a batch 

mode, which updated the weights and biases after all of training data set was applied to 

the network.  The total training iterations were set to 500 epochs, and the performance 

 
1 Tan-Sigmoid transfer function: y = [1-exp(-x)] / [1+exp(-x)]  It squashes the infinite input range, (-∞, 
+∞), into the range of (-1, +1). 
2 LM algorithm: A neural network training algorithm that was designed to approach second-order training 
speed without having to compute the Hessian matrix. 
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goal was set to zero.  The data modeling component was given a particular name like 

DMA in its configuration window. 
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Figure 3.2.  The architecture of the neural network created to implement the data 

odeling component in pipeline B. 

After the QSBR model was developed in the pipeline B, the model was applied to 

m
 
 
 

calculate the dehalogenation rates of 18 training compounds, as shown in the pipeline C 

(Figure 3.1).  After four principal components of each compound were fed into the data 

modeling component DMA as an input to the neural network, DMA computed its 

dehalogenation rate in the normalized form, which was un-normalized by the data 

postprocessing component.  The result viewing component applied linear regression 

analysis to compare the output from DMA (A) with the actual dehalogenation rates (T), 

as shown in Figure 3.3.  The dashed line in the figure indicates a perfect fit: A = T.  The 

solid line shows the actual linear relation between the DMA outputs and actual 

dehalogenation rates: A = 0.989T + 0.821, which is very close to the perfect fit.  The 
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correlation coefficient (R), 0.994, indicates that 99.4% of the variation in the DMA 

outputs is explained by the variation in the actual values. 

 

 
 
 
Figure 3.3 The linear regression analysis between the DMA outputs (A) for the training 
compounds and the corresponding actual dehalogenation rates (T). 
  
 

Similarly, the QSBR model was applied to predict the dehalogenation rates of 6 

testing compounds, as shown in the pipeline D (Figure 3.1).  The result viewing 

component in pipeline D applied linear regression analysis to compare the output from 

DMA for 6 testing compounds with the actual dehalogenation rates, as shown in 

Figure 3.4.  The best linear fit between the outputs and actual values is described by the 

equation A = 1.03T + 5.57.  The slope of the linear fit, 1.03, is very close to one.  The 

intercept, 5.57, is slightly greater than zero, which causes the best linear fit to shift 
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upwards to a small extent from the perfect linear fit A=T.  The correlation coefficient, 

0.99, indicates that 99% of the variation in the DMA outputs is explained by the actual 

values for the testing compounds. 

 

 
 
Figure 3.4.  The linear regression analysis between the DMA outputs (A) for 6 testing 
compounds and the actual dehalogenation rates of these compounds (T). 

 
 
The results from Figure 3.3 and 3.4 indicate that the data modeling component 

trained in the pipeline B has a relatively accurate predictive rate with the low training 

error. 

Due to the architecture of the neural network used to implement the data 

modeling component and the mechanism of how it generates outputs, it is very difficult 

to determine which principal component has the most influence on the dehalogenation 

 36



rate. It becomes even more difficult or impossible to assess which original structural 

property is the primary descriptor affecting the dehalogenation rate since each principal 

component is a combination of nine structural properties. A neural network works like a 

black box. A user provides it an input, the black box generates an output. But the user 

can’t know what actually happens in the black box, or, how it generates the output. 

 

II.  Applying Data Pipelining in Bioinformatics to Perform DNA 

Sequence Clustering 

 As of mid-2000, GeneBank contained just under 1.9 million human EST 

(expressed sequence tag) records [4].  The number of human genes is estimated to be 

30,000 – 40,000.  Without doing any sequence comparison, it is clear that each of these 

ESTs cannot represent a unique gene.  The UniGene resource clusters ESTs and other 

mRNA sequences, along with coding sequences (CDSs) annotated on genomic DNA, 

into subsets of related sequences [5].  In most cases, sequences in each cluster are 

produced by a single gene, including alternatively spliced transcripts.  However, some 

genes may be represented by more than one cluster [4]. 

 As of July 2000, there are 1.7 million sequences belonging to 82,000 clusters in 

the human subset of UniGene [4].  In this section, application of data pipelining to 

perform DNA sequence clustering will be discussed. 

A.  Identifying a Core Sequence of a Cluster and Construct the 95% Confidence 

Interval 

 Eleven human clusters were downloaded from the UniGene [6].  Typically, a 

cluster consists of thousands of sequences that include 5’-end ESTs, 3’-end ESTs and 
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mRNA.  For example, the cluster Hs.1516 (cluster identifier where Hs represents Homo 

sapiens) located in the 17th human chromosome contains 1123 sequences.  A C++ 

program was written to select the 1st 100 5’-end ESTs from each cluster for the purpose 

of sample analysis.  The C++ program also picked the next 10 5’-end ESTs for the testing 

purpose. 

 
 

gure 3.5  The data pipeline used to identify a core sequence to represent a cluster and 

Figure 3.5 demonstrates the data pipeline used to cluster ESTs.  To better 

illustrate the data flow over the data pipeline, a sample data set, which contains ten 

5’-end ESTs belonging to the cluster Hs.1516, is used.  The sample data set is shown 

below: 

 
 459146 gnl|UG|Hs#S459146 zk34a07.r1 Homo sapiens cDNA, 5' end 

.1516 

  

data reading
component

multiple sequence
alignment
component

Phylip
component

calculation
component

statistical 
analysis
component

read file of DNA
sequences

DNA sequence
multiple alignment

calculate 
distance matrix

idendify core
sequence

construct 95%
confidence interval

Fi
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>
/clone=IMAGE:484692 /clone_end=5' /gb=AA037567 /gi=1512667 /ug=Hs
/len=468 
ATCGTCCTTCCTCTCAAGCTAGCCAGAGGGTGGGAGCCTAAGGAAGCGTGGGGTAGCAGA 
TGGAGTAATGGTCACGAGGTCCAGACCCACTCCCAAAGCTCAGACTTGCCAGGCTCCCTT 
TCTCTTCTTCCCCAGGTCCTTCCTTTAGGTCTGGTTGTTGCACCATCTGCTTGGTTGGCT 
GGCAGCTGAGAGCCCTGCTGTGGGAGAGCGAAGGGGGTCAAAGGAAGACTTGAAGCACAG 
AGGGCTAGGGAAGGTGGGGTACATTTCTCTGAAGCAGTCAGGGTGGGAAGAAAGAATGCA 
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AGAAGTGGACTTGAATGTGCCCTAATGGAGAAGACCCCACCGTTGCTANGGGGAATGGAG 
GGGCTTTCCTGGGGNNCCTGGTTCCCCTAACCCCATTTTNGTGGGTCCACAAGCCATGAA 
AGTCACCGGGAATGAACCTATCCTTCCAGTGGCTCGCTCCCTGTAGCT 

A, 5' end > 27025 gnl|UG|Hs#S27025 EST88091 Homo sapiens cDN
/clone=ATCC:106939 /clone_end=5' /gb=T29629 /gi=611727 /ug=Hs.1516 
/len=396 
GGACATTTTTTGGTTTTNTNCTGTTTTGTTAAAAAAAAGAAAAAGAAGAAAAGACATCAT 

516 

53F1 Homo sapiens cDNA, 5' end 
516 

CCTACACCTCCCTCCCCACACCTCCCTACTCCCCTGGGCATCTTCTGGCT 

8F1 Homo sapiens cDNA, 5' end 

CCACACCTCCCTACTCCCCTGGGCATCTTCTGGCTTGA 

82342F1 Homo sapiens cDNA, 5' end 

TCTCTTCTTCCCCAGGTCCTTCCTTTAGGTCTGGTTGT 

 
s.1516 

GGCCAACTGGTAGGTTCCTAAGTNTCCTTCCATCCAGTCAAGCCAGAAGATGCCCAGGGG 
AGTAGGGAGGTNTNGGGAGGGAGGTGTAGGGGAAGGAGATATGGAGAGGGAGGCAGAGCT 
ACAGGGAGCGAGCCACTGGAAGGATAGGTTCATCCCGGTGACTTCATGGCTGTNACCACA 
AATGGGGTAGGGAACAGGACCCAGGAAGCCCCTCATCCCCTAGCACGTGGGTCTTCTCCA 
TTAGGCACATTTCAGTCCACTTTTTGCATTCTTTTCTTNCCAACCCTGACTTGTTCAGAG 
GAATGTTACCCCACCTNCCTTAGCCCTTTGTGCTTA 
> 302512 gnl|UG|Hs#S302512 yu82g04.r1 Homo sapiens cDNA, 5' end 
/clone=IMAGE:240342 /clone_end=5' /gb=H89809 /gi=1080239 /ug=Hs.1
/len=394 
ATTCGGCACAGGAGACATGTACCTTGACCATCGTCCTTCCTCTCAAGCTAGCCAGAGGGT 
GGGAGCCTAAGGAAGCGTGGGGTAGCAGATGGAGTAATGGTCACGAGGTCCAGACCCACT 
CCCAAAGCTCAGACTTGAAGCACAGAGGGCTAGGGAGGTGGGGTACATTTCTCTGAGCAG 
TCAGGGTGGGAAGAAAGAATGCAAGAGTGGACTGAATGTGCCTAATGGAGAAGACCCACG 
TGCTAGGGGATGAGGGGCTTCCTGGGGTCCTGTTCCCTACCCCATTTGTGGTCACAGCCA 
TGAAGTCACCGGGATGANCCTATCCTTCCAGTTGGCTCGCTCCCTGTAGCTCTGCCTNCC 
TTCTCCATAATCTTCCTTTCCCTAACAACTTCCT 
> 2282903 gnl|UG|Hs#S2282903 6014732
/clone=IMAGE:3876205 /clone_end=5' /gb=BE619428 /gi=9890366 /ug=Hs.1
/len=155 
ATCTCCTTCC
TGACTGGATGGAAGGAGACTTAGGAACCTACCAGTTGGCCATGATGTCTTTTCTTCTTTT 
TCTTTTTTTTAACAAAACAGAACAAAACCAAAAAA 
> 2369565 gnl|UG|Hs#S2369565 60147418
/clone=IMAGE:3877124 /clone_end=5' /gb=BE784560 /gi=10205845 
/ug=Hs.1516 /len=151 
TCCTTCCCCTACACCTCCCTCC
CTGGATGGAAGGAGACTTAGGAACCTACCAGTGGCCATGATGTCTTTTCTTCTTTTTCTT 
TTTTTTAACAAAACAGAACAAAACCAAAAAA 
> 2474669 gnl|UG|Hs#S2474669 6016
/clone=IMAGE:3952451 /clone_end=5' /gb=BE898918 /gi=10365882 
/ug=Hs.1516 /len=620 
CTCAGACTTGCCAGGCTCCCTT
TGCACCATCTGCTTGGTTGGCTGGCAGCTGAGAGCCCTGCTGTGGGAGAGCGAAGGGGGT 
CAAAGGAAGACTTGAAGCACAGAGGGCTAGGGAGGTGGGGTACATTTCTCTGAGCAGTCA 
GGGTGGGAAGAAAGAATGCAAGAGTGGACTGAATGTGCCTAATGGAGAAGACCCACGTGC 
TAGGGGATGAGGGGCTTCCTGGGTCCTGTTCCCTACCCCATTTGTGGTCACAGCCATGAA 
GTCACCGGGATGAACCTATCCTTCCAGTGGCTCGCTCCTGTAGCTCTGCTCCCTCTCCAT 
ATTTTCTTTCCCCTAAAACTCCTCCCCAAAACTCCCTAATCCCCTGGGCATCTTCTGGTT 
GACTGTTTGGGAGGGACTTAGGAACTACAGGTGGGCATGATGTCTTTCTTCTTTTCCTTT 
TTTTACCACAACAGACCAAACCAATATGTCCGAAAAAAAAAAAAAAATCGCGGCTCTTTC 
GGGGGCGCACAAGGGTGGAAGGGCCGGGCTACTTGTCCGCCCCTTTGTTCAAGGGAAAGC 
CGGCCAAAGAGCGAAATGAC 

8248 EST32906 Homo sapiens cDNA, 5' end> 648248 gnl|UG|Hs#S64
/clone=ATCC:130960 /clone_end=5' /gb=AA329312 /gi=1981556 /ug=H
/len=178 
GCTCCCTGTAGCTCTGCCTCCCTCTCCATATCTCCTTCCCCTACACCTCCCTCCCCACAC 
CTCCCTACTCCCCTGGGCATCTTCTGGCTTGACTGGATGGAAGGAGACTTAGGAACCTAC 
CAGTTGGCCATGATGTCTTTTCTTCTTTTTCTTTNTTTTAACAAAACAGAACAAAACC 
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> 2282904 gnl|UG|Hs#S2282904 601473255F1 Homo sapiens cDNA, 5' end 
/clone=IMAGE:3876301 /clone_end=5' /gb=BE619429 /gi=9890367 /ug=Hs.1516 
/len=787 
GAAGGGGGTCAAAGGAAGACTTGAAGCACAGAGGGCTAGGGAGGTGGGGTACATTTCTCT 
GAGCAGTCAGGGTGGGAAGAAAGAATGCAAGAGTGGACTGAATGTGCCTAATGGAGAAGA 
CCCACGTGCTAGGGGATGAGGGGCTTCCTGGGTCCTGTTCCCTACCCCATTTGTGGTCAC 
AGCCATGAAGTCACCGGGATGAACCTATCCTTCCAGTGGCTCGCTCCCTGTAGCTCTGCC 
TCCCTCTCCATATCTCCTTCCCCTACACCTCCCTCCCCACACCTCCCTACTCCCCTGGGC 
ATCTTCTGGCTTGACTGGATGGAAGGAGACTTAGGAACCTACCAGTTGGCCATGATGTCT 
TTTCTTCTTTTTCTTTTTTTTAACAAAACAGAACAAAACCAAAAAATGTCCAGAAAAAAA 
CAACACAAAAAAAAAAAAACACACAGAGCAAAAGAGAAACACAAAAGCAACCGACCCGCG 
CCGCGCAGCGAAGAAAAAAGGAGAGAAGAAGAGGGGAGCAGACAGAGGAGAAGAAGCAAG 
GAGAGGCAAGCGGAGCGACACGATGGAAGAGGGCGAAGAGAAGAGAAGAAGAAAGAACAA 
GAAGACAGAACGAGTAGGTGGGCAGTAGGGTGTAGGAGGAAAGGGAGGGAGGGAGAGAGG 
AGCAAAGGAGAGAGCAAGGGAGGGAGAGAAGGAGAGCGAGAGGGAAGGGGGAGAGGAGAG 
AGGAGGGCGAAGGCGGTTCTGTTGTGAGGAGGAGGGCGAGGAGGAGGGGGGAGAGGGCAG 
ACCGCGG 
> 1597887 gnl|UG|Hs#S1597887 df29g03.y1 Homo sapiens cDNA, 5' end 
/clone=IMAGE:2485036 /clone_end=5' /gb=AW021895 /gi=5875425 /ug=Hs.1516 
/len=350 
GCACGAGGTGGACTGAATGTGCCTAATGGAGAAGACCCACGTGCTAGGGGATGAGGGGCT 
TCCTGGGTCCTGTTCCCTACCCCATTTGTGGTCACAGCCATGAAGTCACCGGGATGAACC 
TATCCTTCCAGTGGCTCGCTCCCTGTAGCTCTGCCTCCCTCTCCATATCTCCTTCCCCTA 
CACCTCCCTCCCCACACCTCCCTACTCCCCTGGGCATCTTCTGGCTTGACTGGATGGAAG 
GAGACTTAGGAACCTACCAGTTGGCCATGATGTCTTTTCTTCTTTTTCTTTTTTTTAACA 
AAACAGAACAAAACCAAAAAATGTCCAGAAAAAAAAAAAAAAAAAAAAAA 
> 3895887 gnl|UG|Hs#S3895887 603047615F1 Homo sapiens cDNA, 5' end 
/clone=IMAGE:5188011 /clone_end=5' /gb=BI763259 /gi=15754837 
/ug=Hs.1516 /len=466 
CAGCTGAGAGCCCTGCTGTGGGAGAGCGAAGGGGGTCAAAGGAAGACTTGAAGCACAGAG 
GGCTAGGGAGGTGGGGTACATTTCTCTGAGCAGTCAGGGTGGGAAGAAAGAATGCAAGAG 
TGGACTGAATGTGCCTAATGGAGAAGACCCACGTGCTAGGGGATGAGGGGCTTCCTGGGT 
CCTGTTCCCTACCCCATTTGTGGTCACAGCCATGAAGTCACCGGGATGAACCTATCCTTC 
CAGTGGCTCGCTCCCTGTAGCTCTGCCTCCCTCTCCATATCTCCTTCCCCTACACCTCCC 
TCCCCACACCTCCCTACTCCCCTGGGCATCTTCTGGCTTGACTGGATGGAAGGAGACTTA 
GGAACCTACCAGTTGGCCATGATGTCTTTTCTTCTTTTTCTTTTTTTTAACAAAACAGAA 
CAAAACCAAAAAATGTCCAAAAAAAAAAACAAAAAAAAAAAAAGGG 
 
The data pipeline first read the file of the sample data set.  The multiple sequence 

alignment component applied the Clustal W to align the ten sequences [7].  In the 

configuration window of the multiple sequence alignment component, the output was set 

to be the Phylip format.  The following shows the multiple alignment output of ten ESTs 

in Phylip format. 

 
    10    901 
459146     ATCGTCCTTC CTCTCAAGCT AGCCAGAGGG TGGGAGCCTA AGGAAGCGTG  
302512     ---------- ---------- ---------- ---------- ----------  
648248     ---------- ---------- ---------- ---------- ----------  
2282904    ---------- ---------- ---------- ---------- ----------  

 40



2282903    ---------- ---------- ---------- ---------- ----------  
2369565    ---------- ---------- ---------- ---------- ----------  
1597887    ---------- ---------- ---------- ---------- ----------  
3895887    ---------- ---------- ---------- ---------- ----------  
2474669    CTCAGACTTG CCAGGCTCCC TTTCTCTTCT TCCCCAGGTC CTTCCTTTAG  
27025      ---------- ---------- ---------- ---------- ----------  
 
           GGGTAGCAGA TGGAGTAATG GTCACGAGGT CCAGACCCAC TCCCAAAGCT  
           ---------- ---------- ---------- ---------- --------AT  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ----CAGCTG AGAGCCCTGC  
           GTCTGGTTGT TGCACCATCT GCTTGGTTGG CTGGCAGCTG AGAGCCCTGC  
           ---------- ---------- ---------- ---------- ----------  
 
           CAGACTTGCC AGGCTCCCTT TCTCTTCTTC CCCAGGTCCT TCCTTTAGGT  
           TCGGCACAGG AGACATGTAC CTTGACCATC GTCCTTCCTC TCAAGCTAGC  
           ---------- ---------- ---------- ---------- ----------  
           ---------- -GAAGGGGGT CAAAGGAAGA CTTGAAGCAC AGAGGGCTAG  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           TGTGGGAGAG CGAAGGGGGT CAAAGGAAGA CTTGAAGCAC AGAGGGCTAG  
           TGTGGGAGAG CGAAGGGGGT CAAAGGAAGA CTTGAAGCAC AGAGGGCTAG  
           ------GGAC ATTTTTTGGT TTTNTNCTGT TTTGTTAAAA AAAAGAAAAA  
 
           CTGGTTGTTG CACCATCTGC TTG--GTTGG CTGGCAGCTG AGAGCCCTGC  
           CAGAGGGTGG GAGCCTAAGG AAG-CGTGGG GTAGCAGATG GAGTAATGGT  
           ---------- ---------- ---------- ---------- ----------  
           GGAGGTGGGG TACATTTCTC TGA-GCAGTC AGGGTGGGAA GAAAGAATGC  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- -------GCA  
           GGAGGTGGGG TACATTTCTC TGA-GCAGTC AGGGTGGGAA GAAAGAATGC  
           GGAGGTGGGG TACATTTCTC TGA-GCAGTC AGGGTGGGAA GAAAGAATGC  
           GAAGAAAAGA CATCATGGCC AACTGGTAGG TTCCTAAGTN TCCTTCCATC  
 
           TGTGGGAGAG CGAAGGGGGT CAAAGGA--A GACTTGAAGC ACAGAGGGCT  
           CACGAGGTCC AGACCCACTC CCAAAGCTCA GACTTGAAGC ACAGAGGGCT  
           ---------- ---------- ---------- ---------- ----------  
           AAGAGTGGAC TGAATGTGCC TAATGGAGAA GACCCACGTG CTAGGGGATG  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           CGAGGTGGAC TGAATGTGCC TAATGGAGAA GACCCACGTG CTAGGGGATG  
           AAGAGTGGAC TGAATGTGCC TAATGGAGAA GACCCACGTG CTAGGGGATG  
           AAGAGTGGAC TGAATGTGCC TAATGGAGAA GACCCACGTG CTAGGGGATG  
           CAGTCAAGCC AGAAGATGCC CAGGGGAGTA GG---GAGGT NTNGGGAGGG  
 
           AGGGAA-GGT GGGGTACATT TCTCTGAAGC AGTCAGGGTG GGAAGAAAGA  
           AGGGA--GGT GGGGTACATT TCTCTGA-GC AGTCAGGGTG GGAAGAAAGA  
           ---------- ---------- ---------- ---------- ----------  
           AGGGGCTTCC TGGGTCCTGT TCCCTACCCC ATTTGTGGTC ACAGCCATGA  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
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           AGGGGCTTCC TGGGTCCTGT TCCCTACCCC ATTTGTGGTC ACAGCCATGA  
           AGGGGCTTCC TGGGTCCTGT TCCCTACCCC ATTTGTGGTC ACAGCCATGA  
           AGGGGCTTCC TGGGTCCTGT TCCCTACCCC ATTTGTGGTC ACAGCCATGA  
           AGGTGTAGGG GAAGGAGATA TGGA-GAGGG AGGCAGAGCT ACAGGGAGCG  
 
           ATGCAAGAAG TGGACTTGAA TGTGCCCTAA TGGAGAAGAC CCCACCGTTG  
           ATGCAAGA-G TGGACT-GAA TGTGCC-TAA TGGAGAAGAC CC--ACGT-G  
           ---------- ---------- ---------- ----GCTCCC TGTAGCTCTG  
           AGTCACCGGG ATGAACCTAT CCTTCCAGTG GCTCGCTCCC TGTAGCTCTG  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           AGTCACCGGG ATGAACCTAT CCTTCCAGTG GCTCGCTCCC TGTAGCTCTG  
           AGTCACCGGG ATGAACCTAT CCTTCCAGTG GCTCGCTCCC TGTAGCTCTG  
           AGTCACCGGG ATGAACCTAT CCTTCCAGTG GCTCGCTCC- TGTAGCTCTG  
           AGCCACTGGA AGGATAGGTT CATCCCGGTG ACTTCATGGC TGTNACCACA  
 
           CTANGGGGAA TGGAGGGGCT TT-CCTGGGG NNCCTGGTTC CCCTAACCCC  
           CTAGGGGAT- --GAGGGGCT T--CCTGGGG TCCT--GTTC CCT--ACCCC  
           CCTCCCTCTC CATATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT  
           CCTCCCTCTC CATATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT  
           ---------- ---ATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT  
           ---------- ------TCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT  
           CCTCCCTCTC CATATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT  
           CCTCCCTCTC CATATCTCCT TCCCCTACAC CTCCCTCCCC ACACCTCCCT  
           C-TCCCTCTC CATATTTTCT TTCCCCTAAA ACTCCTCCCC AAAACTCCCT  
           A-ATGGGGTA GGGAACAGGA CCCAGGAAGC CCCTCATCCC CTAGCACGTG  
 
           ATTTTNGTGG GT-CCACAAG CCATGAAAGT CACCGGGAAT GAACCTAT--  
           ATT--TGTGG ---TCACA-G CCATGAA-GT CACCGGGA-T GANCCTAT--  
           ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA  
           ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA  
           ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA  
           ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA  
           ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA  
           ACTCCCCTGG GCATCTTCTG GCTTGAC--T GGATGGAAGG AGACTTAGGA  
           AATCCCCTGG GCATCTTCTG G-TTGAC--T GTTTGGGAGG -GACTTAGGA  
           GGTCTTCT-- ---CCATTAG GCACATTTCA GTCCACTTTT TGCATTCTTT  
 
           -CCTTCCAGT -GGCT----C GCTCCCTGTA GCT------- ----------  
           -CCTTCCAGT TGGCT----C GCTCCCTGTA GCTCTGCCTN CCTTCTCCAT  
           ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT NTTTTAACAA  
           ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA  
           ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA  
           ACCTACCAGT -GGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA  
           ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA  
           ACCTACCAGT TGGCCATGAT GTCTTTTCTT CTTTTTCTTT TTTTTAACAA  
           AC-TACAGGT -GGGCATGAT GTCTTTCTT- -CTTTTCCTT TTTTTACCAC  
           TCTTNCCAAC --CCTGACTT GTTCAGAGGA ATGTTACCCC ACCTN-CCTT  
 
           ---------- ---------- ---------- ---------- ----------  
           AATCTTCCTT TCCCTAACAA CTTCCT---- ---------- ----------  
           AACAGAACAA AACC------ ---------- ---------- ----------  
           AACAGAACAA AACCAAAAAA TGTCCAGAAA AAAACAACAC AAAAAAAAAA  
           AACAGAACAA AACCAAAAAA ---------- ---------- ----------  
           AACAGAACAA AACCAAAAAA ---------- ---------- ----------  
           AACAGAACAA AACCAAAAAA TGTCCAGAAA AAAAAAAAAA AAAAAAAAA-  
           AACAGAACAA AACCAAAAAA TGTCCAAAAA AAAAAACAAA AAAAAAAAAA  
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           AACAGACCAA A-CCAATATG TCCGAAAAAA AAAAAAAAAT CGCGGCTCTT  
           AGCCCTTTGT GCTTA----- ---------- ---------- ----------  
 
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           AAACACACAG AGCAAAAGAG AAACACAAAA GCAACCGACC CGCGCCGCGC  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           GGG------- ---------- ---------- ---------- ----------  
           TCGGGGGCGC ACAAGGGTGG AAGGGCCGGG CTACTTGTCC GCCCCTTTGT  
           ---------- ---------- ---------- ---------- ----------  
 
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           AGCGAAGAAA AAAGGAGAGA AGAAGAGGGG AGCAGACAGA GGAGAAGAAG  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           TCAAGGGAAA GCCGGCCAAA GAGCGAAATG AC-------- ----------  
           ---------- ---------- ---------- ---------- ----------  
 
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           CAAGGAGAGG CAAGCGGAGC GACACGATGG AAGAGGGCGA AGAGAAGAGA  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
 
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           AGAAGAAAGA ACAAGAAGAC AGAACGAGTA GGTGGGCAGT AGGGTGTAGG  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
 
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           AGGAAAGGGA GGGAGGGAGA GAGGAGCAAA GGAGAGAGCA AGGGAGGGAG  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
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           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           AGAAGGAGAG CGAGAGGGAA GGGGGAGAGG AGAGAGGAGG GCGAAGGCGG  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
 
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           TTCTGTTGTG AGGAGGAGGG CGAGGAGGAG GGGGGAGAGG GCAGACCGCG  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
           ---------- ---------- ---------- ---------- ----------  
 
           - 
           - 
           - 
           G 
           - 
           - 
           - 
           - 
           - 
           - 
 
It can be seen that the original ten sequences vary in length, but the resulting aligned 

sequences in the Phylip format have the same length (901 bp) by adding the heading and 

trailing consecutive gaps. 

 The Phylip component calculated a distance between any two sequences among 

the ten multiple aligned sequences.  The distance is an inverse measurement of the 

similarity between two sequences.  The distance between a sequence and itself is zero.  

The result of the Phylip component, a distance matrix, is shown below: 
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 459146 302512 648248 2282904 2282903 2369565 1597887 3895887 2474669 27025 
459146 0.0000 0.3395 1.3490 1.9841 1.0431 1.0096 1.4486 2.4239 3.2881 1.8964
302512 0.3395 0.0000 1.3055 1.8778 1.0532 1.0418 1.5116 1.9057 2.1233 1.6695
648248 1.3490 1.3055 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1797 2.9492
2282904 1.9841 1.8778 0.0000 0.0000 0.0000 0.0000 0.0294 0.0185 0.2475 2.5662
2282903 1.0431 1.0532 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2386 2.6062
2369565 1.0096 1.0418 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2351 2.6762
1597887 1.4486 1.5116 0.0000 0.0294 0.0000 0.0000 0.0000 0.0263 0.1737 2.1128
3895887 2.4239 1.9057 0.0000 0.0185 0.0000 0.0000 0.0263 0.0000 0.1140 2.5565
2474669 3.2881 2.1233 0.1797 0.2475 0.2386 0.2351 0.1737 0.1140 0.0000 2.4989
27025 1.8964 1.6695 2.9492 2.5662 2.6062 2.6762 2.1128 2.5565 2.4989 0.0000
 
 
 

The distance matrix has 11 rows and 11 columns.  The 1st column and 1st row represent 

the sequence numbers of ten sequences.  Ten values in the 2nd row, 0.0000, 0.3395, 

1.3490, …, 1.8964 represent the distance between the sequence 459146 and itself, the 

distance between the sequence 459146 and the sequence 302512, the distance between 

the sequence 459146 and the sequence 648248, ..., the distance between the sequence 

459146 and the sequence 27025, respectively.  The left rows represent distance values 

analogously.  Occasionally, if the distance between two sequences is too large or the 

similarity is too small, the distance value becomes NaN (not a number). 

The calculation component selects one sequence from ten ESTs and uses it as a 

core sequence to represent them based on the distance matrix.  For each of the ten 

sequences, the component calculates its mean square distance (MSD), which is defined in 

equation 3.1. 

MSD(i) = (d1,i
2 + d2,i

2 + … + d10,i
2) / 10          [3.1] 

In this equation, i represents the ith sequence in the distance matrix, and dn,i represents the 

distance between the nth sequence and ith sequence.  The sequence with the smallest MSD 

among the ten sequences is chosen as the core sequence.  In our example, the 7th 
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sequence, sequence 1597887, is determined to be the core sequence to represent the ten 

sequences since it has the minimal MSD, 0.8879. 

 Among the ten distance values to the core sequence, any distance greater than 1 is 

considered to be an outlier and is removed by the statistical analysis component.  In our 

example, three sequences whose distances to the core sequence 1597887 are greater than 

1 are removed as outliers.  The component then makes the histogram to show the 

distribution of the remaining seven distance values to the core sequence (Figure 3.6).  In 

the histogram, the x-axis reflects the range of distances to the core sequence, 0 – 0.1737, 

which is divided into 20 equally spaced containers.  The y-axis shows the number of 

distance values that fall within the containers. 

 
 Figure 3.6 The histogram of distances to the core sequence 1597887 after removing 
outliers. 
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Assuming the distribution of the distances to the core sequence 1597887 is a gamma 

distribution, the statistical analysis component calculates the maximum likelihood 

estimates (MLEs) for the parameters of the gamma distribution.  Then it constructs the 

95% confidence interval of the gamma distribution, which is from 0 to 0.2044. 

 In the real study of DNA sequence clustering, 100 5’-end ESTs of a cluster were 

used to identify the core sequence and construct the 95% confidence distance interval for 

that cluster.  In the computation of MSDs, equation 3.1 is used, but only dn,i whose value 

is a real number and is less than 10 is considered.  Figure 3.7 shows the histogram of 

distribution of distances to the core sequence of the cluster Hs.78771 located in the x 

chromosome after removing outliers.  From the shape of the histogram, the distribution 

was estimated and tested to be the gamma distribution.  Its 95% confidence distance 

interval was from 0 to 0.1583. 
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Figure 3.7 The histogram of distribution of distances to the core sequence of the cluster 
Hs.78771 after removing outliers. 
 
 
 The core sequence number, the 95% confidence distance interval, and the number 

of sequences whose distances to the core sequence are less than 1 among the 100 5’-end 

ESTs for each of the 11 clusters are summarized in Table 3.3. 
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Table 3.3 Eleven clusters and their core sequences, 95% confidence distance intervals 

 

Chromosome Cluster 
Core 

sequence 
number 

95% confidence distance 
interval 

Number of 
sequences* 

17 Hs.1516 43503 0.0000 0.4386 50 
17 Hs.79474 676622 0.0000 0.2471 57 
18 Hs.155101 2428408 0.0000 0.2117 62 
19 Hs.343354 2351216 0.0000 0.0179 75 
19 Hs.111334 252674 0.0000 0.2143 59 
20 Hs.179666 656436 0.0000 0.0890 54 
20 Hs.194676 2429741 0.0000 0.5853 81 
21 Hs.85119 698464 0.0000 0.5372 33 
22 Hs.181125 2218749 0.0000 0.1008 100 
X Hs.78771 597966 0.0000 0.1583 81 
Y Hs.180911 658694 0.0000 0.1291 79 
 
* The number of sequences whose distances to the core sequence is less than 1.0 among 
the 100 selected ESTs. 
 
 
B.  Clustering a New Sequence 

 For a new EST, one might ask: to which cluster does it belong?  The following 

pipeline, as shown in Figure 3.8, serves to cluster a new sequence. 

 
data reading
component

multiple sequence
alignment
component

Phylip
component

read file of 11 core
sequences

12 sequences
multiple alignment

calculate 
distance matrix

data reading
component

read a new EST

data merging
component

0 duplicate

12 seq.

 
 
Figure 3.8 A data pipeline functioning to cluster a new sequence. 
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In the pipeline, the data reading component read the file that contains 11 core sequences 

representing 11 clusters and read a 5’-end new EST.  These 11 core sequences and new 

EST were merged by the data merging component.  The multiple sequence alignment 

component and Phylip component did the same thing for the 12 sequences as they did for 

the sample data set.  In the resulting distance matrix, the distance between the new EST 

and each of 11 core sequences was examined.  If the distance between the new EST and 

one core sequence representing the cluster i is within the 95% confidence distance 

interval of the cluster i, then the new EST belongs to that cluster.  If the distance is larger 

than the 95% confidence interval, then no conclusion can be made. 

 As mentioned earlier, the C++ program selected ten 5’-end ESTs for the testing 

purpose for each of the 11 clusters.  Each of the ten testing ESTs was merged with the 11 

core sequences, and its distance to each core sequence was examined.  For example, the 

sequence 2186756 is one of ten testing ESTs belonging to the cluster Hs.78771.  It was 

merged with the 11 core sequences and the distance matrix is shown in the following: 

 
 597966 2186756 656436 2428408 2351216 658694 698464 2429741 676622 43503 2218749 252674

597966 0.0000 0.0375 1.0362 1.5393 1.1724 1.8829 3.3610 2.6676 2.3165 2.9738 3.0390 2.6107 

2186756 0.0375 0.0000 1.0352 1.6662 1.2108 1.9603 3.7646 2.9183 2.2193 3.2450 3.7705 2.6782 

656436 1.0362 1.0352 0.0000 1.1588 1.4928 1.8890 2.5153 2.8292 2.2908 2.9360 2.2131 3.4095 

2428408 1.5393 1.6662 1.1588 0.0000 1.9322 2.0726 3.0319 2.6463 4.2610 2.6295 2.8036 3.6122 

2351216 1.1724 1.2108 1.4928 1.9322 0.0000 1.8951 2.3965 2.3776 2.2809 2.5424 2.3507 2.2431 

658694 1.8829 1.9603 1.8890 2.0726 1.8951 0.0000 2.0137 3.3446 2.4148 6.0600 2.2845 2.5615 

698464 3.3610 3.7646 2.5153 3.0319 2.3965 2.0137 0.0000 6.0600 5.4619 3.0001 3.1561 3.4809 

2429741 2.6676 2.9183 2.8292 2.6463 2.3776 3.3446 6.0600 0.0000 6.0600 6.0600 4.4269 6.0600 

676622 2.3165 2.2193 2.2908 4.2610 2.2809 2.4148 5.4619 6.0600 0.0000 2.9281 3.7138 4.7808 

43503 2.9738 3.2450 2.9360 2.6295 2.5424 6.0600 3.0001 6.0600 2.9281 0.0000 2.9214 2.9701 

2218749 3.0390 3.7705 2.2131 2.8036 2.3507 2.2845 3.1561 4.4269 3.7138 2.9214 0.0000 2.0725 

252674 2.6107 2.6782 3.4095 3.6122 2.2431 2.5615 3.4809 6.0600 4.7808 2.9701 2.0725 0.0000 
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The 3rd row lists the distance between the sequence 2186756 and each of the 11 core 

sequences.  The value 0.0 in the 3rd row is the distance between the sequence 2186756 

and itself.  We can see that the distance between the testing sequence and the core 

sequence 597966 representing the cluster Hs.78771, 0.0375, is within the 95% 

confidence interval of the cluster Hs.78771, 0 – 0.1583 (Table 3.3).  Thus, the testing 

sequence belongs to the cluster Hs.78771 according to our hypothesis.  This is a correct 

clustering since the testing sequence was chosen from the cluster Hs.78771.  We can also 

see that the distance values between the testing sequence and the other core sequences are 

all greater than 1, which are outside the 95% confidence intervals.  Thus there is no false 

clustering. 

 Table 3.4 summarizes the testing results for all of the 110 testing ESTs selected 

from the 11 clusters. 

 
Table 3.4 The testing results of clustering new sequences 

Cluster Number of testing 
sequences 

Number of correct 
clustering* 

Number of false 
clustering** 

Hs.1516 10 5 0 
Hs.79474 10 4 0 
Hs.155101 10 10 0 
Hs.343354 10 9 0 
Hs.111334 10 9 0 
Hs.179666 10 3 0 
Hs.194676 10 10 0 
Hs.85119 10 3 0 
Hs.181125 10 10 0 
Hs.78771 10 9 0 
Hs.180911 10 9 0 
 
*Correct clustering means that the distance between a testing EST chosen from the 
cluster i and the core sequence of cluster i is within that cluster’s 95% confidence 
distance interval. 
**False clustering means the distance between a testing EST of cluster i and the core 
sequence of cluster j (i ≠ j) is within the 95% confidence distance interval of the cluster j. 
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Thus, among 110 testing ESTs, 81 (74%) were correctly clustered, and there was no false 

clustering, which validates our hypothesis. 
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Chapter IV.  Discussion 

I. Discussion 

Today's success in bioinformatics and cheminformatics studies depends largely on 

the integration of hundreds of sources that usually consist of many different data types 

(numerical, text, structural data).  Data reading components of the data pipelining system 

are a group of components, each of which is capable of reading or importing Oracle 

database records, delimited flat files, SD molecule records, etc. respectively.  Thus, data 

sources of different formats can be fed into a single data pipeline, and further analyzed by 

merging, sorting, data modeling and other components.  The data pipelining technology 

allows the most data sets of research interest to be imported into the pipeline and 

processed according to the user specified computational network protocol, thus offering 

virtually unlimited flexibility.  With this new freedom, users will be able to evaluate or 

process multiple data sets (or multiple databases) as if they were within a single source. 

The extremely high performance of data pipelining makes it ideally suitable in a 

high-throughput research environment [1].  By creating a computational protocol to 

capture the human expertise of acquiring, analyzing and managing data, the raw data can 

be automatically processed with the data pipeline as the data is generated.  The results of 

a data pipeline can be ultimately stored in a database.  Served as the complement to the 

database system, data pipelining can be used to clean, evaluate and compare contents of 

databases. 

Data pipelining can be used to virtually screen a compound database to discover 

drug candidate leads.  Creating a new medicine is a complex business, costing over $300 

million and typically taking between 12 and 15 years per marketed drug.  Drugs available 
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in the market have passed rigorous scientific and regulatory hurdles.  From the hundreds 

of thousands of potential drug compounds that are evaluated against disease targets, only 

a handful meet the requirements necessary to progress through the full drug approval 

process.  It is estimated that at least 10,000 compounds are evaluated for each drug that is 

approved for use in the United States.  Data pipelines in Figure 3.1 were constructed to 

predict the dehalogenation rates of chemical compounds.  If we replace the 

dehalogenation rate constant (Y2) with the IC50 as an activity of a compound, which is 

the concentration of the compound required to produce a standard response to a particular 

disease target in a given time, such pipelines can be applied to calculate IC50 values for 

compounds in a chemical library.  Thus, library compounds can be prioritized according 

to their calculated IC50 values, and the top ranked compounds can be experimentally 

tested first to discover drug candidate leads more quickly.  By examining only the highest 

scoring compounds, experimentally testing expenses can be greatly reduced. 

The data pipeline in Figure 3.5 allows a user to identify a core sequence to 

represent a cluster and find the 95% confidence distance interval.  What a user needs to 

do is only to construct the data pipeline once and configure each component 

appropriately.  Without the data pipelining technology, a user may have to accomplish 

tasks in several steps, including using Clustal W to do multiple sequence alignment, 

applying Phylip to calculate distance matrix in Unix, using some statistical software 

package in Windows to identify core sequence and construct the 95% confidence 

interval, and transferring files between different operating systems.  Such work is not 

efficient and the user is likely to make mistakes.  By utilizing the data pipelining 

technology to perform tasks automatically, these problems can be avoided. 
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With components for data modeling, molecular modeling, bioinformatics and 

other functions, a data pipeline is capable of identifying trends, discovering relations and 

patterns among the data running through it, thus allowing data to be converted into useful 

knowledge. 

II.  Conclusion 

The data pipelining approach is designed to address the challenges of scalability, 

data integration and data mining in today’s data-rich environment.  By guiding the flow 

of data through a network of modular computational components, data pipelining 

provides great flexibility and fine control over analysis. 

One of the limitations of the data pipelining technology is that the number of 

computational components that can be provided is limited.  However, the scope and 

topics of research problems in bioinformatics and cheminformatics are changing 

everyday.  In the case where there are no appropriate computational components for a 

specific problem a user is attempting to solve, the open architecture of a data pipelining 

system should allow the user to implement code and construct components by himself. 

 

References 

1.  Tozer, J. R. Ask More of Your Discovery Data. Genomics & Proteomics July/August 

2001, 65-68. 

 

 

 56


