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ABSTRACT: 
 
Firstly, start with the application and requirement of Global Geo-Grid System, the paper analyzes the essentiality of generating 
partial grids. On the basis of them, the fundermental thought of generating partial grid which is under the global geo-grid frame are 
proposed, detailed edge problems of partial high-precision grid are analyzed. Start with the ubiety between a point and a spherical 
triangle, we discuss the ubiety between a point and a spherical random polygon, and then edge simplifying algorithm of spherical 
random polygon are studied, as well as co-relationship between points and spherical random polygon, grid district clipping based on 
span the developed surface, grid data hierarchical creating algorithm. In the end we prove exactness and efficiency of the algorithm 
through the experiments. 
 
 

1. INTRODUCTION 

With the enrichment of earth observing measures, the 
interesting field of traditional photogrammetry and remote 
sensing monitoring has expanded gradually to the whole world. 
In order to satisfy the need of scientific research and national 
defense, researchers have done much work of dynamic remote 
sensing monitoring these years. All the work is within the scope 
of the whole earth and its importance has aroused people’s 
interest bit by bit. Under this background, traditional planar 
data structure no longer satisfies the requirements of global 
spatial information management. Constructing a continuous, 
hierarchical and dynamic sphere data structure has therefore 
become a significant research direction. How to design a global 
geo-grid frame that fits multi-scale presentation and 
management of global remote sensing data has thus to be solved 
promptly, while Global Geo-Grid System is just such an 
effective frame (A. Vince, 2006; Sahr, 2003; Goodchild, 2000; 
White, 1998; Zhao, 2003). 
 

 
 

Figure 1.  The subdivision methods of GGS 
 

In the early researches, some researchers tried to construct 
global grid on geographic coordinate system (Tobler, 1986). 
Although they had obtained great results, they couldn’t solve 
the problem of serious unit distortion and uneven distribution. 
Thus researchers try to find the other ways. One way is using 
regular polyhedron instead of sphere and, compared to the other 
methods, this method has its own advantages (White, 1998; 
Sahr, 2003). Author and others discussed the constructing ideas 
of Global Geo-Grid based on the icosahedron in the literature 
(Tong, 2006; Zhang, 2006) (Figure 1), but in practice the local 

area is more useful than the global scope. So how to construct a 
partial geo-grid in the global geo-grid frame is the concern of 
many scholars. Based on the global multi-resolution geo-grid 
the paper brings forward a method of constructing partial geo-
grid which has the same attributes, and it can easily bring into 
the global geo-grid frame. 

 
 

2. THE EDGE PROGRAM OF LOCAL AREA 

The subject investigated of Global Geo-grid generation 
algorithm is the whole sphere itself, and it need not consider the 
edge of geo-grid, but toward the partial geo-grid, the program 
of edge become prominent especially. Spherical arbitrary 
irregular regions are all compose of major arcs which links end 
to end. How to find the units which are in the closed area is the 
first program need to solve. So during the process of design 
algorithm, we should consider the ubiety between a point and a 
spherical random polygon. 
 
2.1 The Ubiety Between Points and Spherical Triangle 
Areas 

It is difficult to judge whether a spherical point C is inside any 
of the spherical areas as P0…PiPj…PN-1 or not. So, above all, 
we discuss the ubiety between an arbitrary point C and a 
spherical triangle. On a spherical triangular of an unfolded 
spherical icosahedron, we could connect two arbitrary points 
PiPj with the projection center A (gravity center) to build a 
spherical triangle, and then judge the ubiety between C and the 
spherical triangle △PiPjA, as shown in Figure.2 
 

 
 

Figure 2.  The ubiety between a point and a spherical triangle 
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According to literature (Snyder, 1992), if we choose Snyder 
polyhedral equal-area projection to build the ubiety between the 
plane and the sphere, though errors could be controlled within a 
grid unit by hierarchical grids, it is impossible that the edges of 
spherical great arcs on the unfolded sphere could be straight 
lines, so it may cause mistakes to directly judge the ascription 
question without considering this kind of distortion. Literature 
(Tong, 2006) analyzes the complexity of ascription calculating 
problem when the point and the edge are directly projected to 
the plane. This paper adopts inverse computation method to 
judge directly on the sphere. The following is a simple judging 
principle: 
 

1. Connect CA, CPi and CPj  on the sphere, then 
calculate the areas S, S1, S2 and S3 of spherical triangles △
PiPjA, △PiPjC, △PiCA and △CPjA according to spherical 
triangle functions. 

2. When S=S1+S2+S3, it can be judged that the point C 
is inside the spherical triangle △ PiPjA, and terminate; 
Whereas, C is outside the spherical triangle △PiPjA, then turn 
to step3. 

3. When S+S1=S2+S3, it can be judged that 

AC
∩

and i jPP
∩

intersect, then record the values of i and j, 

terminate; whereas, terminate. 
 
By this method, we could determine the ubiety between points 
and spherical triangles, building a foundation for the further 
work to judge whether a point is inside a spherical polygon area 
or not. 
 
2.2 The Ubiety Between Points and Spherical Polygon 
Regions 

In order to simplify the above problems, the edges of spherical 
areas are positioned in one of the icosahedron’s triangle. So, 
now the problems are determining the ubiety between point C 
and spherical polygon P0…PiPj…PN-1. 
 
Analysis reveals that the position of projection center A and the 
type of spherical polygon are two important factors for the 
ascription of point C. Figure 3 shows some of the different 
ascription examples of point C, which are caused by factors 
referred above. 
 
 

 
a. The convex polygon instance 

 
b. The concave polygon instance 

 
Figure 3.  Different instance result in  

different ascription of point C 
 

Because of the complexity of concave polygon, a rule to 
determine the ubiety between points and convex polygons are 
firstly given as follows. 
 

1. Set initial value for unknown parameters, let i=0，
NUM=0，j=1。 
 

2. Connect the great arcs of APi and APj, and determine 
the ubiety between C and spherical △PiPjA by the methods 
proposed in section 2.1. If C falls in △PiPjA, NUM= NUM+1. 
When NUM＞1, go to step 4, or else go to step 3. 
 

3. i=i+1. If i＞N-1, go to step 4, while i＜N-1, j=i+1 and 
go to step 2. When i=N-1, j=0 and go to step 2. 
 

4. If NUM=1, C falls in the convex polygon, or C falls 
out of the convex polygon. 
 
Algorithms for concave polygon are comparatively more 
complex. Classical clipping algorithm for concave polygons 
proposed in paper (David, 2002) can clip a spherical concave 
polygon into several spherical convex polygons, which are then 
processed separately.  
 
After the 4 steps, the aspiration of C can be determined most of 
the time. However, this algorithm has detrimental limitations as 
follows. 1. If a spherical hexagon has several edges, the 
aspiration of C should be calculated several times and, which 
directly influences the efficiency of generating high precision 
partial grids. 2. The partition of spherical concave polygons is 
not optimal, for the least convex polygons can not be generated. 
Additionally, for these overlapping spherical convex polygons, 
such as star-shaped spherical polygon, the algorithm shows its 
inability. Therefore, a new algorithm should have to be 
designed to ensure the efficiency and correctness of grid 
generation. 
 
Here, a coarse-to-fine thought is proposed as follows. 1. 
Simplify complex edges hierarchically to form multi-scale 
simplified area. 2. Determine the aspiration of C to the 
simplified area and, if C belongs to the simplified area, then C 
is regarded as falling in the polygon area, or else determines the 
aspiration relationship between C and the previous simplified 
area layer. This process doesn’t stop until the original area is 
reached or the ubiety of C and the original spherical polygon is 
determined. 
 
To adopt the coarse-to-fine determination method, the edges’ 
simplification mechanism has to be constructed firstly. Assume 
the original area is S0, and the area after k times simplification is 
Sk (k=0,1,2,…), where the requirement of Sk⊂ Sk-1 has to be 
fulfilled. Then, the simplification strategy can be given as 
follows. 
 

1. The edge points of the original area is anticlockwise 
numbered as P0…PiPj …PN-1 to construct list array Ek on 
different scale. The edge points’ number is stored in the list 
array. Let the initial value of k is 1, and E0 is such a list array 
when the original edge points are not simplified. 
 

2. Conduct the simplification process for k times. 
Assume that the edge points in Ek-1 is expressed by PEj, where 
j∈[0,Nk-1-1] and Nk-1 is the point number on the (k-1)th layer. 
Search all the concave points in Ek-1 list by the convex polygon 
partition method (David, 2002). These points’ subscript is noted  
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3. form the original j to Ti, where i∈[0，U] whose 
initial value is 0 and U is the number of concave points on this 
layer. 
 

4. Start from the concave point 
i

T
PE , whose number is 

Ti, anticlockwise search the next simplification point. If the next 
point 1

i
T

PE
+

 is a concave point, then it is preserved and goes to 

step 4. However, if the next point 1
i

T
PE

+
 is a convex point, then 

the searching process goes on, i=i+1，let M=Ti+1 and go to 
step 5。 
 
 

5. 1
i

T
PE

+
 is preserved and added to the simplified edge 

list Ek, then i=i+1 and go to step 3. 
 

6. If M>Nk-1-4, go to step 6, or determine the convexity 
and concavity of PEM+1, PEM+2 and PEM+3. If they are all 
convex points, add PEM+3 to the list Ek and let M=M+3 and go 
to step 5. If PEM+m（m=1,2,3） are concave points, then i=i+1 
and add 

i
T

PE to list Ek. 

 
7. k=k+1 and when k>the maximum simplification layer, 

terminate the process and record the simplification results 
E1,E2,…, otherwise, go to step 2. 
 
Figure4 shows the simplification process of Chinese mainland 
borderline, where three simplification process is conducted. The 
mainland borderline is a quite irregular spherical polygon and 
holds such geometrical phenomenon as convex, concave and 
overlapping. The partition of concave polygon can not be 
applied to every situation. However, after some edge 
simplification process, special geometrical phenomenon as 
overlapping will disappear and the edge points of the area will 
gradually decrease to be appropriate for the partition method of 
concave polygon and the speed can be ensured. 
 
 

 
 

Figure 4.  The simplification result of Chinese mainland 
borderline 

 
In the following, an algorithm to determine the ubiety between 
spherical points and spherical random polygons is presented. 
 

1. Given the simplification layer K, simplify the 
spherical polygon by the edge simplification algorithm and 
record the list array Ek (k∈[0,K]) for the simplified edges. 
 

2. Partition the simplified layer EK by the spherical 
random polygon’s partition algorithm to obtain different 
spherical convex polygons (David, 2002). Determine the ubiety 
between edge points and the convex polygons by spherical 
polygon determining algorithm. And if a point belongs to one of 
the convex polygons, then the point is assumed to be in the 
random polygon, otherwise, let k=K and go to step 3. 
 

3. Record the intersection points Pi and Pj between the 
great arc PiPj and AC. Search points i and j in the simplified 
edge lists and record the number p，q (no more than two) 
between i and j in Ek-1. If p，q do not exist, then C is not in the 
given spherical polygon. Whereas, search continuously in the 
convex polygon PiPpPqPj or PiPpPj, and determine the ubiety 
between C and the spherical convex polygon by simplified 
determination rule. If C belongs to one of the convex polygon, 
then C is in the given polygon, otherwise, k=k-1 and go to step 
3. When k<0, terminate the whole process. 
 
Figure 4 shows the searching process of point C, and the 
searching process is accomplished in 4 regions. The searching 
regions decrease gradually by applying spherical polygon 
partition algorithm once. From the second time, the 
determination is completed in the spherical convex polygon 
whose edges are no more than 4. Therefore, the algorithm 
designed above can not only ensure correct subordination 
relationships, but also greatly save the searching time and 
provide a necessary basis for the generation of dense, precise 
partial geo-gird globally. 
 
 

3. REGION CUTTING AND PARTIAL GRID 
GENERATION ALGORITHM 

The above spherical polygon problems are all considered on 
one of icosahedrons’ planes. Although the determination of 
point’s ascription and the simplification of spherical polygon 
can be applied globally, but the segmentation algorithm of 
spherical polygon includes Snyder projection computation and 
has to be conducted in one plane. We unwrap spherical 
icosahedrons by the method shown in figure 1, so, the problem 
of determining whether a point falls in the spherical polygon 
should be transformed and processed in different planes of 
icosahedrons. Therefore, two problems have to be considered: 1. 
Surface-striding cutting of spherical polygon region; 2. Rapid 
generation of partial grids. 
 
3.1 Surface-striding Cutting of Spherical Polygon Region 

Since the grid data is generated in the unwrapped surface of 
spherical icosahedrons, the cutting of partial high-precision grid 
edges involves unavoidably the problem of surface-striding. 
The basic operation process of surface-striding is given as 
follows. 
 

1. Compute the serial number Si of triangular plane 
which containing all the spherical points by Snyder projection 
(Snyder, 1992). Select one point as the start point. What should 
be satisfied is that the start point and its right points are not in 
the same triangle plane. Number anticlockwise these edge 
points Pi of spherical polygon into i∈[1,N], and build edge list 
array Ek in different triangle planes. Add Pi into E1 ,and let 
i=1，k=S1. 
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2. If i<N, let i=i+1. And if Si=Si-1, add Pi into Ek, go to 
step 2, while if Si≠Si-1, compute the intersecting point Pk 

between the great arc
1i iP P
∩

−
 and the spherical triangles Si-1 and 

Si , add Pk into Ek ,go to step 3; when i≥N, go to step 4. 
 

3. k=Si , add Pk-1 and Si into list Ek , then go to step 2. 
 

4. Check the entire edge list Ek. If the triangle plane 
which contains the previous point of the second point Ek,2 has 
the same serial number as the triangle plane which contains the 
next point of Ek,end-1 (the point before the last point), the 
spherical polygon on the triangle planes are closed. Otherwise, 
add all the vertexes of icosahedrons which encircled by triangle 
planes whose number is Si into chain Ek, and spherical polygons 
of this triangle plane are closed. 
 
The paper above gives a surface-striding cutting algorithm for 
spherical polygon regions. This algorithm divides a spherical 
polygon region into several polygon regions which are in 
different spherical triangle surface. In order to guarantee the 
efficiency of the algorithm, the segmentation step can be put 
after step 1 of the ubiety exterminating algorithm between 
spherical points and spherical random polygons to cut the 
simplified region directly (chapter 2.2). Since the ascription 
property for spherical edge points have been determined by 
Snyder projection, the relationship between points and spherical 
polygons can be determined on a single spherical triangle plane, 
and therefore, the amount of computation is massively reduced. 
In the following section, we put forward the algorithm of the 
partial high-precision grid in detail, before which, the edge 
ascription property has to be determined. 
 
3.2 Generating of the Partial Grid Data 

There are mainly two questions to be discussed here. 1. 
Determining the approximate region of the generated partial 
geo-grid; 2. Generation algorithms for hierarchical and high-
precision partial geo-grid. 
 
Although this paper has discussed the ubiety between points 
and spherical random polygons, in generating the partial high-
precision grids with boundaries, judging whether the points, or 
more importantly, the hexagonal grid units are in the region or 
not is the actual question that needs to be solved. Figure 5 
illustrates some ubiety between the edge and the hexagonal grid 
unit, we prescribe that when instance of (a)(b)(c) is met, the 
hexagonal grid unit belongs to the selected region, while the 
instance of (d)(e) do not belong to the selected region, and 
judging the ascription relationships of hexagonal grid units 
equals to judging the ascription relationships of the hexagonal 
grid’s center. There are no doubt about the ascription of (a)(b), 
since the unit’s area in the selected region is larger than that 
outside of the selected region, and so does (d)(e). However, the 
instance of (c) needs to be explained, because the multi-
resolution hexagonal grids are symmetric to their center, which 
means the low-resolution unit’s center is the center of a higher 
grid level. Although, on a given grid layer, the unit’s area in the 
selected region is smaller than the area outside the selected 
region, the center-symmetric units on higher grid layers may 
not meet this condition (Figure 5(c)). 
 
Since partial grids have more data volume and higher accuracy 
compared with global grids, the grid-cluster generating 
algorithm designed in literature (Ben, 2006) can not meet the 

requirements of high efficiency and massive data. We have 
designed an algorithm for generating hierarchical partial grids. 
 

(a)               (b)                 (c)               (d)                 (e) 
 

Figure 5.  The ubiety between the edge and 
the hexagonal grid unit 

 
 The algorithm makes the recalculation of redundant data 
unnecessary and improves efficiency. This generating idea also 
demonstrates the instance of Figure 5(c): if the unit on a given 
layer isn’t recorded in the region, then the unit on the next layer 
can’t be calculated. According to our analysis, when the 
partition layer goes to infinite, the preserving style of figure 5(c) 
can ensure the edge of the grid infinitely goes closely to any 
specified boundary (illustrated in Figure 6). 
 
Now we will give the principle of determining the approximate 
region of the generated partial grids. Because we have used 
range partitioning to store the hexagonal grid data (Tong, 2006), 
and for the convenience of computer processing, the 
approximate region generated by partial grids is determined 
similarly. The process is as follows: project the spherical 
polygon’s boundary points to the Snyder plane, record the 
triangular plane they belong to, give the initial partition layer N0, 
acquire the discrete grid coordinates of these points according 
to literature (Ben, 2006), calculate the maximum and minimum 
coordinate Imin，Imax，Jmin，Jmax in both direction I and J and 
the same parallelogram plane. Then, in this parallelogram, the 
approximate region of the generated local grids is I∈[Imin，

Imax]，J∈[Jmin，Jmax], as shown in Figure 7. 
 
 

    
 

Figure 6                                      Figure 7 
 

Figure 6.  The ultimate situation of plotting  
an initial unit illimitably 

Figure 7.  The rough area of generating partial grid(dashed) 
 

In this region, use the type I grid-cluster generation algorithm 
proposed in literature (Ben, 2006) to generate the desired grids 
of N0 layers, and then estimate the ascription of units’ centers 
by the algorithm proposed in section 2. If a unit belongs to the 
spherical polygon, preserve it; otherwise, delete it. 
 
There are two ideas to generate high-resolution grid: one is to 
generate grid units on a single layer, which does not use grid 
data of adjacent layers; another one is generating hierarchical 
grids, and if the Nth layer grids are to be generated, grid data of 
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the (N-1)th or the (N+1)th layer has to be used. The former idea 
requires small computation amount in the generating of single 
layer grid data and is easy to be applied, while the latter 
outshines in the generating of multiple-layer grid data as well as 
partial high-precision grid data. In the following, the generating 
methods for hierarchical grids are discussed in detail. There are 
two instances in generating hierarchical grid, one is generating 
the Nth layer grids by the (N-1)th layer grids, and another one is 
generating the Nth layer grids by the (N+1)th layer grids 
(shown in Figure 8). 
 
 

 
 

Figure 8.  Two direction of generating hierarchical grids 
 

First of all, we consider the first instance. As the unit data is 
stored by discrete grid coordinates in terms of the row order 
(order I), the newly generated units are stored in the same way. 
Suppose the discrete grid coordinates of unit data in the initial 
layer is (i0，j0) (note: the initial units may not be continuous 
arranged), the coordinates(planar coordinates) of the hexagonal 

units are expressed by 0 0 0 0, ,
( , )M M

i j i j
x y , where M=0,1,2,3,4,5,6 

and represents the centers’ coordinates of the newly generated 
seven units. The order of the units are allocated according to 
Figure 8(a), where M= O, A,B,C,D,E,F means the coordinates 
of the units’ centers and angular points. The angular points’ 
orders are allocated according to Figure 8(b), then the formula 
that fits the first situation for calculating the central points of 
the newly generated grid units is: 
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(1) 
 
Units’ boundary can be obtained by applying and zooming 
formula (1) presented in literature (Ben, 2006). The zoom 
parameter is 1/2N, and the new generated units’ coordinates on 
the Nth discrete grid coordinate system layer can also be 
obtained. 
 
The second instance is generating grids on the Nth layer by 
grids on the N+1th layer. Actually, this case equals to sub-

sampling, which means generating low-resolution grid units by 
high-resolution grid units. In fact, the grids’ centers and 
boundaries are hidden in high-resolution grids, and what we 
have to do is connecting the gird units’ order and number as 
shown formula 2. However, the sub-sampling is based on the 
premise that the central units’ neighboring units must exist, 
otherwise, only the coordinates of the central units on the Nth 
layer can be obtained and the units’ boundaries should be 
calculated by applying and zooming the formula (1) in literature 
(Ben, 2006) as well. 
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Figure 9.  A sample of generating partial grids 
 

In this paper, partial grid generation algorithms are investigated 
only, and they equal to the first hierachical grid generation 
instance. When operated practically, the subordination 
relationship of the six new gird units (apart form the central 
units) on the Nth layer are determined to estimate the spherical 
polygon the new units belong to. If it belongs to the spherical 
polygon, the unit is preserved and used for grid generation of 
higher layers, or delete the unit. The process doesn’t stop until 
the desired partition layer is reached and Figure 9 is such an 
example (with the increasing of partition layers, grids’ edge 
approximate gradually to the given region’s edge). Finally, the 
units are projected to spheres by inverse Snyder equal-area 
projection (Snyder, 1992). 
 
 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

Based on the partial geo-grid generation algorithm mentioned 
above, we make applications which can generate and display 
partial grids. Some constants can be declared as follow: sphere 
radius was arranged as the equal-area radius of WGS-84 
reference ellipsoid, 6371007.22347R m≈ , and accordingly, the 
side length of an icosahedron is 7674457.99928L m≈  (Ben, 
2005). The experiment applies two kinds of data:  
 

Data1. The vector boundaries of Chinese Mainland (588 
discrete points altogether). 

 
Data2. The vector boundaries in Taiwan Island (55 discrete 

points altogether). 
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As to data 1, the partition layer of partial grid is chosen as 
N=5,6,7,8, and final result shows in Figure 10. Figure 11 shows 
process of generation algorithm using partial grid data of 
Taiwan, from N=8 to N=10. Figure 12 illustrates the result of 
applying local grid data to the whole earth (Global Geo-Grid, 
partition layer N=7; the data of China, partition stage N=9; the 
data of Taiwan, partition stage N=14). Figure 13 shows 
hierarchical structure of the partial grids. 
 
 

 
（a）N=5                                      （b）N=6 

 
（c）N=7                                    （d）N=8 
 

Figure 10.  The different hierarchical partial grid  
of Chinese ground 

 
The following experiments compare the efficiency of 
homogeneous hexagonal grid data generated by both 
hierarchical and unhierarchial algorithm. In these experiments, 
the boundary data of Chinese mainland is used, and the 
partition layer is N=5,6,7,8,9. Detailed computation efficiency 
of the experiments is listed in Table 1, and the initial value of 
N0 (the number of partition layer) is 5. Figure 14 shows the 
efficiency curve of the two algorithms. Since the hierarchical 
algorithm is used here, only the newly generated units’ centers 
have to be computed. In the process of multi-resolution grid 
data generation, grids on the previous N0→N layer have been 
generated. As can be seen from the boxed time in Table 1, the 
computation amount is decreased magnificently. The 
configuration of computers used in the experiments is 1.8GHZ 
CPU, 1024MB memory and Win2000+SP4 operating system. 
 
 

  
 

Figure 11.  The course of generating partial grids 
 

 

   
 

Figure 12.  The demo of partial grids being in global grids 
 

 

 
 

Figure 13.  The hierarchical structure of partial grids 
 

 

 
 

Figure 14.  The efficiency curves of hierarchical and 
unhierarchical algorithm 

 
 

Partition Layer N 5 6 7 8 9 SUM
The Number of Units 247 875 3277 12617 49016 66032
Unhierarchical 
Algorithm（Sec） 0.845 3.228 12.102 46.596 181.026 243.797

Hierarchical algorithm
（Sec） 0.845 1.228 2.613 7.800 28.335 28.335

 
Table 1 Efficiency compare  

 
 

5. CONCLUTION 

The combination of Global Geo-Grid Systems and massive geo-
information management is a fresh and evolving researching 
content. In this paper, the complex boundary problems of 
partial grids are analyzed in detail, the boundary simplification 
algorithms for spherical random polygons as well as the 
determination algorithms for the ubiety between points and 
spherical random polygons are also proposed. Additionally, the 
grid region cutting and the hierarchical generating algorithm for 
grid data are also proposed after considering the surface-
striding problem. However, more research contents, including 
the construction of multi-resolution global geo-gird index 
system, the construction of girds’ digital space and the 
application of geo-grids, remain to be investigated in the future. 
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