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Abstract

In this paper, we investigate the homogenization of a nonlinear
kinetic equation modeling electron transport in semiconductors. We
compute effective scattering coefficients for medium with periodic in-
homogeneities.
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1 Introduction

This paper is devoted to the homogenization of a kinetic equation modeling
electron transport in semiconductor devices. We recall that the purpose of
homogenization is to understand how perturbations arising at a small (mi-
croscopic) scale in the properties of the medium (due to inhomogeneities)
will affect the particles behavior at a large (macroscopic) scale. Mathemat-
ically, it amounts to study the asymptotic behavior of the solutions of an
equation involving fastly oscillating coefficients.

There is a large body literature dealing with the periodic homogenization
of partial differential equations. The cases of elliptic and parabolic equations
(linear, quasi linear or fully nonlinear) and that of Hamilton-Jacobi equa-
tions, in particular, have been extensively investigated, and it is beyond the
scope of this paper to review those results. Homogenization of transport
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phenomena has also received some interests before. In the context of neu-
tron transport theory, many results have been obtained by G. Allaire and
G. Bal ([AB97], [AB99]) and G. Allaire et al. ([AC00], [ABS02]). The mod-
els in consideration in those paper are some spectral problems for diffusion
equations.

In the present paper, we consider a kinetic equation with scattering terms
modeling the collisions of particles with the background medium. Inhomo-
geneities arising in the medium are taken into account via fast oscillations
with respect to the space variables in the scattering coefficients.

Several authors have considered the homogenization of such equations
in their diffusion regimes: When the mean free path of the particles is of the
same order as the characteristic length of the inhomogeneities, homogeniza-
tion and diffusion limit arise at the same scale. In that case, the oscillations
are affecting the particles at the microscopic level (in the transport equa-
tion), but their effects are being investigated at the macroscopic level (in
a diffusive regime) (see T. Goudon, F. Poupaud [GP01], [GP05] and T.
Goudon, A. Mellet [GM01], [GM03]).

To our knowledge, the only result concerning the homogenization of ki-
netic equations at the microscopic level is due to L. Dumas and F. Golse
(see [DG00]) and is restricted to the case of a linear transport equation.
Their proof relies on velocity averaging results for transport equations (see
[GLPS88]), which provide some compactness of some integrated quantities
(such as the density) and allow for a compensated compactness type method.
They derive effective scattering coefficients for particles transport in periodic
or random media.

In this paper, we will be dealing with scattering terms modeling the
collisions of a population of electrons with the semiconductor lattice. In
nondegenerate situation, the Pauli exclusion principle has to be taken into
account, leading to a nonlinear collision operator. Because of the quadradic
terms, the method of Dumas-Golse can no longer be used. Our approach is
very different and can be summarized as follows: Let fε and g be solutions
of

Lfε = Qε(fε) , Lg = Q(g)

where L is a transport operator and Qε and Q are two integral operators.
We write

L(fε − g) =
[
Qε(fε)−Qε(g)

]
+

[
Qε(g)−Q(g)

]
, (1)

Using the usual Lp estimates for transport operators and a Gronwall argu-
ment, (1) will give the strong convergence of fε to g if we can prove
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1. that the Qε is continous in Lp,

2. that Qε(g) converges to Q(g) in Lp,

3. that the initial datum converges in Lp strong.

In particular, we only have to consider the convergence of Qε when it is
evaluated against a fixed function g, so the nonlinearity of the operator
does not matter anymore. However, even with g smooth, there is no hope
of getting the strong convergence of Qε = Q(x/ε) with spatialy oscillating
coefficients.

The idea is thus to integrate (1) along the characteristic curves. In the
force-free case, when the characteristic curves are straight lines, we are led
to prove that ∫ t

0
Q(

x + vs

ε
)(g̃)−Q(g̃) ds

goes to zero in Lp as ε → 0. In particular, the oscillations with respect to
the space variable are now oscillations with respect to the time variable and
are being integrated. Note that the effective coefficients will be obtained
by averaging Q(x/ε) along the path followed by the particles. It turns out
that for almost all direction v, the average along the characteristic lines is
nothing but the standard average of the coefficients (this is a consequence
of standard ergodic theorems).

We stress out the fact that this method works with linear as well as
nonlinear collision operators. In particular, it provides a new proof of the
result of [DG00] that does not use averaging lemmas. However, it relies on
the fact that the characteristic curves are straight lines, and could not be
easily generalized to a model with electric field. Also, the method require
more hypotheses on the initial datum. Finally, we point out that it is not
clear what would happen in the case of a random inhomogeneous medium
with this approach.

2 Model and results.

In the framework of semiconductors, the distribution function depends on
the position x ∈ RN , the wave vector k ∈ RN and the time t. The wave
vector k varies in the reciprocal lattice of the crystal. We denote by B the
reduced zone of that lattice (B is a n-torus, called the first Brillouin zone). A
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particle with wave vector k has an energy E (k), where E is a given (smooth)
function defined on B. The velocity of the particle is then given by

v(k) = ∇kE (k).

The evolution of f(x, k, t) is described by the following Boltzmann equa-
tion:

∂tf + v(k) · ∇xf = Q(x)(f), (2)

where the operator Q(x) takes into account the interactions between the
electrons and the semiconductor crystal. Those interactions involve several
phenomena: Collisions with impurities, interactions with phonons... The
general form of this operator is

Q(f) =
∫

B
σ(x, k′, k)f(k′)(1− f(k))− σ(x, k, k′)f(k)(1− f(k′)) dk′,

where σ(x, k, k′) is a non negative function defined on RN ×B×B (periodic
with respect to k and k′). It represents the probability for a particle to
change its wave vector k into another k′ during an interaction at position
x. The terms (1− f) take into account the Pauli exclusion principle. Note
that with this operator, Equation (2) satisfies a natural maximum principle
that guarantees that

0 ≤ f(x, k, t) ≤ 1.

The dependence on the position variable x of Q takes into account the fact
that the repartition of the scattering sources is not in general homogeneous.

The cross section σ usually satisfies the following symmetry property
(the so-called detailed balance principle):

σ(x, k, k′)e−E (k)/kBT = σ(x, k′, k)e−E (k′)/kBT .

However such an assumption is not necessary to our purpose.
We recall the following existence result due to F. Poupaud [Pou90]:

Proposition 2.1 Under the following hypothesis:

0 ≤ σ(x, k, k′) ≤ C (3)
0 ≤ fo(x, k) ≤ 1 fo ∈ W 1,1(RN ×B), (4)

equation (2) has a unique smooth solution f(x, k, t) such that

0 ≤ f(x, k, t) ≤ 1 (5)
f ∈ W 1,1 ∩W 1,∞([0, T ]×RN ×B). (6)
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and satisfying the initial condition

f(x, k, 0) = fo(x, k).

Next, we assume that the medium presents some inhomogeneities of
length l, in a periodic manner. This is taken into account by assuming that
the cross-section σ takes the form

σ(
x

l
, k, k′),

where
y 7→ σ(y, k, k′)

is [0, 1]N -periodic. Equivalently, we’ll assume that σ is defined on TN×B×B
where TN denotes the torus RN/ZN . We make the following assumption:

σ ∈ C0(TN , L∞(B ×B)) (H1)

(in particular (3) is satisfied). We could also take into account the depen-
dence of σ on the macroscopic variable x, and work with σ(x, y, k, k′) defined
on Ω× TN ×B ×B. However, for the sake of clarity, we shall assume that
σ is independent on x.

Introducing the small parameter ε = l/L, where L denotes the charac-
teristic macroscopic length, we are led to consider the following equation:

∂tfε + v(k) · ∇xfε = Qε(fε) (7)
fε(x, k, 0) = fo(x, k). (8)

with

Qε(f) =
∫

B
σ(x/ε, k′, k)f(k′)(1−f(k))−σ(x/ε, k, k′)f(k)(1−f(k′)) dk′. (9)

Proposition 2.1 gives the existence of a solution fε provided that fo

satisfies (4).
Finally, we need to make the following technical assumption:

µ({k \ v(k) ∈ ∪a∈S,z∈R(az, z)}) = 0, (H2)

where µ denotes the Lebesgue measure on B and S is the set of vectors
(a1 · · · aN−1) ∈ RN−1 whose coordinates are rationally dependent of 1. That
is S is the set of vectors such that there exists (m0, · · · ,mN−1) ∈ ZN−1

satisfying

m0 + m1a1 + · · ·+ mN−1aN−1 = 0, (m0, · · · ,mN−1) 6= (0, · · · , 0)
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Note that the set ∪a∈S,z∈R(az, z) is of measure 0 in RN , so this hypothesis is
satisfied, for example, if we have det(D2E (k)) 6= 0 for all k ∈ B. Hypothesis
H2 will be essential in the use of ergodic theorem; It says that almost all
characteristic curves have nice averaging properties.

Our main result reads as follows

Theorem 2.1 If hypothesis H1 and H2 hold, then, as ε goes to zero, the
solution fε(x, k, t) of Equation (7) converges in L∞([0, T ], L1(Ω × B)) to
g(x, k, t), solution of:

∂tg + v(k) · ∇xg = Q(g) (10)
g(x, k, 0) = fo(x, k). (11)

where the asymptotic collision operator is given by

Q(g) =
∫

σ(k′, k)g(k′)(1− g(k))− σ(k, k′)g(k)(1− g(k′)) dk′,

with an effective scattering coefficient satisfying

σ(k, k′) =
∫

TN

σ(y, k, k′) dy.

3 Proof of Theorem 2.1

1- An integral formulation for (2).
Integrating the transport equation (2) along characteristic lines, we obtain:

fε(t, x + v(k)t, k) = f0(x, k) + Tε(fε) (12)

where Tε(fε) is equal to:∫ t

0

∫
σ

(
x + v(k)s

ε
, k′, k

)
fε(x + v(k)s, k′)(1− fε(x + v(k)s, k))

−σ

(
x + v(k)s

ε
, k, k′

)
fε(x + v(k)s, k)(1− fε(x + v(k)s, k′))dk′ds.

Similarly, we can write:

g(t, x + v(k)t, k) = f0(x, k) + T (g), (13)
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with

T (g) =
∫ t

0

∫
σ

(
k′, k

)
g(x + v(k)s, k′)(1− g(x + v(k)s, k))

−σ
(
k, k′

)
g(x + v(k)s, k)(1− g(x + v(k)s, k′)) dk′ ds.

Finally, equations (12) and (13) yield∫ ∫
|(fε − g)(t, x + v(k)t, k)| dx dk

≤
∫ ∫

|Tε(fε)− Tε(g)| dx dk +
∫ ∫ ∣∣Tε(g)− T (g)

∣∣ dx dk.(14)

This equality is the corner stone of the proof. To show the convergence of
fε to g, we will show that the first term is controlled by the L1 norm of
|fε− g| and that the second term goes to zero as ε goes to zero. A Gronwall
argument will then give the result. Note that the convergence of Tε to the
homogenized operator T is only needed when Tε is evaluated at the function
g. Since g is a given function independent on ε we do not have to take a
limit in nonlinear terms.

2- Continuity of the collision operator.
The first part is a straightforward computation: Thanks to Hypothesis (H1),
we have ∫

RN

∫
B
|Tε(fε)− Tε(g)| dk dx

≤ C

∫
RN

∫
B

∫ t

0

∫
B
|fε(s, x + v(k)s, k′)− g(s, x + v(k)s, k′)| dk′ ds dk dx

+C

∫ t

0

∫
RN×B×B

fε(s, x + v(k)s, k′)|fε(s, x + v(k)s, k)− g(s, x + v(k)s, k)|

+C

∫ t

0

∫
RN×B×B

g(s, x + v(k)s, k)|fε(s, x + v(k)s, k′)− g(s, x + v(k)s, k′)|.

Using the fact that fε ≤ 1, we deduce∫
RN

∫
B
|Tε(fε)− Tε(g)| dk dx

≤ C|B|
∫ t

0

∫
B

∫
RN

|fε(s, x, k)− g(s, x, k)| dx dk ds.

(15)
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3- Homogenization along the characteristic lines.
It remains to prove that Tε(g) converges to T (g) as ε goes to zero. It will
be a consequence of the following lemma:

Lemma 3.1 Assume that (H2) holds. Then, for every test function φ de-
pending on t, k, k′, the quantity:∫ t

0

∫
B

σ

(
x + v(k)s

ε
, k′, k

)
φ(t, k, k′) dk′ ds

converges for almost every x and k to:∫ t

0

∫
B

σ(k, k′)
(
k′, k

)
φ(t, k, k′) dk′ ds.

First, we check that the Lemma indeed completes the proof of Theorem 2.1:
Applying Lemma 3.1 with φ(t, k, k′) = g(x + v(k)s, k′)(1− g(x + v(k)s, k)),
shows that the gain term in Tε(g)∫ t

0

∫
σ

(
x + v(k)s

ε
, k′, k

)
g(x + v(k)s, k′)(1− g(x + v(k)s, k)) dk′ ds

converges for almost every x and k to∫ t

0

∫
σ(k, k′)g(x + v(k)s, k′)(1− g(x + v(k)s, k)) dk′ ds.

We proceed similarly with the loss term and deduce that

Tε(g) −→ T (g)

as ε goes zero for almost every x and k. By Lebesgue’s dominated conver-
gence theorem, we deduce that the convergence holds in L1.

Finally, (14) and (15) give∫
B

∫
RN

|fε(t, x, k)− g(t, x, k)| dx dk

≤ C|B|
∫ t

0

∫
B

∫
RN

|fε(s, x, k)− g(s, x, k)| dx dk ds

+
∫

RN

∫
B
|Tε(g)− T (g)| dk dx,
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and Gronwall’s Lemma implies∫ t

0

∫
B

∫
RN

|fε(s, x, k)− g(s, x, k)| dx dk ds

≤
∫ t

0
eC|B|(t−s)

∫
RN

∫
B
|Tε(g)− T (g)| dk dx ds.(16)

Since |Tε(g)−T (g)| converges strongly to 0 in L1([0, T ]×RN×B), we deduce
that fε converges to g in L1([0, T ]×RN ×B). In turn, (14) implies that the
convergence holds in L∞([0, T ], L1(RN × B)), so the proof of Theorem 2.1
is complete.

Proof of Lemma 3.1: It is enough to show that for almost every x, k, k′

and every α < β:∫ β

α
σ

(
x + v(k)t

ε
, k′, k

)
dt −→ σ

(
k′, k

)
(β − α).

Throughout the proof, k and k′ are given vectors in B, and we decompose
the position variable x = (x, xN ) ∈ RN , with x ∈ RN−1 and xN ∈ R.

Let’s denote γ = β − α and fix y = (y, yN ) ∈ RN ; we start by proving
that: ∫ γ

0
σ

(
y + v

t

ε
, k′, k

)
dt −→ γσ as ε → 0. (17)

To that purpose, let t0 be such that

vN (k)t0 = 1.

For ε > 0, let n be such that

γ/((n + 1)t0) ≤ ε ≤ γ/(nt0),
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then we have:∫ γ

0
σ(y + vt/ε, k′, k) dt

= ε

∫ γ/ε

0
σ(y + vt, k′, k) dt

=
γ

nt0

∫ nt0

0
σ(y + vt, k′, k) dt +O(ε)

=
γ

nt0

n−1∑
j=0

∫ (j+1)t0

jt0

σ(y + vt, k′, k) dt +O(ε)

=
γ

nt0

n−1∑
j=0

∫ t0

0
σ((y + jv(k)t0, yN + jvN t0) + v(k)t, k′, k) dt +O(ε)

=
γ

nt0

n−1∑
j=0

∫ t0

0
σ((y + jv(k)t0, yN ) + v(k)t, k′, k) dt +O(ε).

Denoting by Ta the translation y 7→ y + a on the torus RN−1/ZN−1, and
introducing

F (y, yN ) =
∫ t0

0
σ((y, yN ) + v(k)t, k′, k) dt,

we deduce∫ γ

0
σ(y + vt/ε, k′, k) dt =

γ

nt0

n−1∑
j=0

F (T j
a (y), yN ) +O(ε),

with a = v(k)
vN (k) . Thanks to our hypothesis (H2), a is rationally independent,

and thus Ta is ergodic, for almost every k in B. Birkhoff’s ergodic theorem
yields:

γ

t0n

n∑
0

F (T j
a (y), yN ) → γ

t0

∫
[0,1]N−1

∫ t0

0
σ((y, yN ) + v(k)t) dt dy.
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Moreover, using the periodicity of σ(y, k, k′) with respect to y, we have:

γ

t0

∫
[0,1]N−1

∫ t0

0
σ((y, yN ) + v(k)t) dt dy

=
γ

t0

∫
[0,1]N−1

∫ t0

0
σ(y + v(k)t, yn + t/t0) dt dy

=
γ

t0

∫ ∫
[0,1]N−1

∫ t0

0
σ(y, yn + t/t0) dt dy

= γ

∫ ∫
[0,1]N−1

∫ 1

0
σ(y, yn + t) dt dy

= γσ(k, k′),

which gives (17).

Next , we note that:∫ β

α
σ(x/ε + v(k)t/ε) dt =

∫ γ

0
σ((x + v(k)α)/ε + v(k)t/ε) dt.

We denote
Gε(y) =

∫ γ

0
σ(y + v(k)t/ε) dt,

and yε = (x + v(k)α)/ε. Since yε lies in a torus, up to a subsequence, it
converges to y0, and we can write

Gε((x + v(k)α)/ε) = (Gε(yε)−Gε(y0)) + Gε(y0).

The first part converges to 0 thanks to the equicontinuity of Gε, and by
(17) we already know that Gε(y0) converges to γσ. Finally, since the limit
is independent on the subsequence and Gε is bounded, the whole sequence
converges. The proof of Lemma 3.1 is now complete.
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[AC00] Grégoire Allaire and Yves Capdeboscq. Homogenization of a
spectral problem in neutronic multigroup diffusion. Comput.
Methods Appl. Mech. Engrg., 187(1-2):91–117, 2000.

[DG00] Laurent Dumas and François Golse. Homogenization of transport
equations. SIAM J. Appl. Math., 60(4):1447–1470 (electronic),
2000.

[GLPS88] François Golse, Pierre-Louis Lions, Benôıt Perthame, and Rémi
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