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Abstract. This paper is concerned with the homogenization of a cap-
illary equation for liquid drops lying on an inhomogeneous solid plane.
We show in particular that the homogenization of the Young-Laplace
law leads to a contact angle condition of the form cos γ ∈ [β1, β2], which
justifies the so-called contact angle hysteresis phenomenon.

1. Introduction

A liquid drop is resting on a plane Π. We introduce a coordinate system
such that Π is the (x, y)-plane. The energy of a drop described by the set
E is given by (up to a multiplicative constant)

J (E) =
∫∫

z>0
|DϕE | −

∫
z=0

β(x, y)ϕE(x, y, 0)dx dy +
1
σ

∫
z>0

ΓρϕEdx dy dz,

where ϕE is the characteristic function of E, σ denotes the surface tension,
β is the relative adhesion coefficient between the fluid and the solid, Γ de-
notes the gravitational potential and ρ is the local density of the fluid. The
Euler-Lagrange equation for the minimization with volume constrain is the
following equation

(1.1) 2H =
Γρ

σ
− λ

where H denotes the mean-curvature of the free surface ∂E, and a contact
angle condition, known as Young-Laplace’s law, which reads:

(1.2) cos γ = β(x, y),

where γ denotes the angle between the free surface ∂E and the support
plane {z = 0} along the contact line ∂(E ∩ {z = 0}) (measured within the
fluid). The coefficient β is determined experimentally, and depends on the
properties of the materials (solid and liquid). It is often assumed to be
constant, but it is very sensitive to small perturbations in the properties of
the solid plane (chemical contamination or roughness). A real solid surface
is extremely hard to clean and is never ideal; it always has a small roughness
or small spatial inhomogeneities.

These inhomogeneities are responsible for many interesting phenomena,
the most spectacular being the contact angle hysteresis (see [JG], [LJ]): In
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the experiments, one almost never measures the equilibrium contact angle
given by Young-Laplace’s law. Instead, the measured static angle depends
on the way in which the drop was formed on the solid. If the equilibrium was
reached by advancing the liquid (for example by spreading or condensation),
the contact angle has value γa larger than the equilibrium value. If on the
contrary, the liquid interface was obtained by receding the liquid (evapora-
tion or aspiration of a drop for example), then the contact angle has value γr,
smaller than the equilibrium value (see L. Hocking [H1], [H2]). In extreme
situations (typically when the liquid is not a simple liquid, but a solution),
differences of the order of 100 degrees between γr and γa have been observed
(see [LJ]). In [HM], C. Huh and S. G. Mason solve the Young-Laplace equa-
tion for some particular type of periodic roughness and explicitly compute
the contact angle hysteresis in that case.

Contact angle hysteresis also explains some simple phenomena observed
in everyday life, such as the sticking drop on an inclined plane:

If the support plane Π is inclined at angle θ to the horizontal in the
y-direction, the potential Γ can be written

(1.3) Γ = g(z cos θ + y sin θ)

When β is constant and g, θ > 0, no minimizer to (2.4) can exist since any
translation in the y < 0 direction will strictly decrease the total energy.
It can also be shown (see [F2]) that (1.1-1.2) has no solutions when β is
constant and κ, θ 6= 0. This means that on a perfect surface, the drop
should always slide down the plane, no matter how small the inclination.
However, a water drop resting on a plane that we slowly inclined will first
change shape without sliding, and will only start sliding when the inclination
angle reaches a critical value: in the lower parts of the drop, the liquid has
a tendency to advance and the contact angle increases until it reaches the
advancing contact angle, in the upper parts of the drop, the liquid has
a tendency to recede and the contact angle decreases until it reaches the
receding contact angle (see [DC]).

In this paper, we address those two issues (contact angle hysteresis and
sticking drops) in the case of periodic inhomogeneities, that is when the
relative adhesion coefficient reads

β = β(x/ε, y/ε),

with (x, y) 7→ β(x, y) Z2-periodic. Naturally, we will need a condition on β
to ensure that β is not too close to being a constant in the y direction.

In a previous paper (see [CM]), we investigated the properties of capillary
drop for vanishing gravity (Γ = 0). We showed the existence of global
minimizers for ε > 0 and proved that when ε goes to zero, those minimizers
converge uniformly to minimizers corresponding to the averaged relative
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adhesion coefficient
〈β〉 =

∫
[0,1]2

β(x, y) dx dy.

Those minimizers are the intersection of a ball Bρo(zo) in R3 with the upper
half-plane {z > 0}. This result is recalled in detail in the next section since
it will be used throughout the present paper.

As a consequence of this result, there exist viscosity solutions of the free
boundary problem (1.1)-(1.2) the limit of which (when ε → 0) satisfies the
following homogenized Young-Laplace law:

cos γ = 〈β〉.
This behavior was expected from global minimizers, and it seems to exclude
contact angle hysteresis phenomenon. However, in the present paper, we
will look for local minimizers of the energy functional. Those minimizers
will provide viscosity solutions of the free boundary problem (1.1)-(1.2) for
which the homogenized free boundary condition reads

cos γ ∈ [γ1, γ2]

(with non trivial interval).

Finally, we point out that when the surface of the drop is a graph z =
u(x, y), (1.1)-(1.2) can be rewritten as

(1.4)

 div
(

Du√
1+|Du|2

)
= −λ in {u > 0}

Du√
1+|Du|2

· ν = β(x/ε, y/ε) on ∂{u > 0}.

In this case, our result provides viscosity solutions uε of (1.4) such that uε

converges, when ε → 0, to a solution of

div

(
Du√

1 + |Du|2

)
= −λ in {u > 0},

satisfying
Du√

1 + |Du|2
· ν ≤ 〈β〉 on ∂{u > 0}

with strict inequality on part of the free boundary. This result has to be
compared with that of [CLM] in which we constructed particular solutions
of the elliptic free boundary problem

(1.5)
{

∆u = 0 in {u > 0}
|Du|2 = f(x/ε, y/ε) on ∂{u > 0},

and proved that the homogenized free boundary condition in that case read

|Du|2 ∈ [γmin, γmax].

We stress out the fact, however, that solutions of (1.5) were constructed by
studying a singular nonlinear equation rather than by minimizing a func-
tional.
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The article is organized as follows: In Section 2, we precise our framework,
which is that of sets with finite perimeter (or Caccioppoli sets) and recall
some results concerning the gravity-free capillary surface. We then state
our main results in Section 3. Section 4 is devoted to the construction of
constrained minimizers.

In Section 5, we adress the question of the sticking drops and show the
existence of local minimizers on an inclined plane for small gravity and small
ε (or given gravity and small volume).

Finally, in Section 6, we justify the contact angle hysteresis phenomenon
in the gravity-free case.

2. Notation

2.1. Sets of finite perimeter. We recall here the main facts about sets of
finite perimeter and BV functions. The standard reference for BV theory is
Giusti [Gi]. Let Ω be an open subset of Rn+1; BV (Ω) denotes the set of all
functions in L1(Ω) with bounded variation:

BV (Ω) =
{

f ∈ L1(Ω) :
∫

Ω
|Df | < +∞

}
,

where ∫
Ω
|Df | = sup

{∫
Ω

f(x)div g(x)dx : g ∈ [C1
0 (Ω)]n+1, |g| ≤ 1

}
.

If E is a Borel set, and Ω is an open set in Rn+1, we recall that the perimeter
of E in Ω is defined by

P (E,Ω) =
∫

Ω
|DϕE |.

A Caccioppoli set is a Borel set E that has locally finite perimeter (i.e.
P (E,B) < ∞ for every bounded open subset B of Ω).

Note that sets of finite perimeter are defined only up to sets of measure
0. We shall henceforth normalize E (as in [Gi]) so that

0 < |E ∩B(x, ρ)| < |B(x, ρ)| for all x ∈ ∂E and all ρ > 0.

Furthermore, we recall that if the boundary ∂Ω of Ω is locally Lipschitz,
then each function f ∈ BV (Ω) has a trace f+ in L1(∂Ω) (see Giusti [Gi]).

From now on, we denote by Ω the upper half space in R3:

Ω = R2 × (0,+∞),

and we denote by E (V ) the class of closed Caccioppoli sets in Ω with total
volume V > 0:

E (V ) =
{

E ⊂ Ω :
∫

Ω
|DϕE | < +∞, |E| = V

}
,
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where |E| =
∫
Ω ϕE dx dy dz. Since Caccioppoli sets have a trace on ∂Ω =

R2×{z = 0}, we can define the following functional for every set E ∈ E (V ):

Jε,κ(E) =
∫ ∫

z>0
|DϕE | −

∫
z=0

β(x/ε, y/ε)ϕE(x, y, 0)dx dy

+κ

∫
(z cos θ + y sin θ)ϕEdx dy dz

where β(x, y) is a continuous function satisfying:

−1 < β(x, y) < 1, for all x, y,

and

(x, y) 7→ β(x, y) [0, 1]2-periodic.

We denote by 〈β〉 the average of β:

〈β〉 =
∫

[0,1]2
β(x, y) dx dy.

The crucial assumption concerning β is the following:

(2.1) min
y

max
x

β(x, y) < 〈β〉.

This condition says that there exists a horizontal line (y = yo) along which
β is always strictly less than its average. It is trivially satisfied, for example
if β is a function of y only (and β non constant).

In this framework, equilibrium liquid drops are solutions of the minimiza-
tion problem:

(2.2) Jε,κ(E) = inf
F∈E (V )

Jε,κ(F ) E ∈ E (V ).

2.2. Gravity-free minimizers. If we neglect gravity effects, the energy
functional becomes:

(2.3) Jε(E) =
∫ ∫

z>0
|DϕE | −

∫
z=0

β(x/ε, y/ε)ϕE(x, 0)dx.

We also denote by

(2.4) Jo(E) =
∫ ∫

z>0
|DϕE | −

∫
z=0

〈β〉ϕE(x, 0)dx,

the energy functional associated with the average value of the relative ad-
hesion coefficient.
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2.2.1. Constant adhesion coefficient. The Schwartz symmetrization of E,
defined by

(2.5)
Es = {(x, y, z) ∈ Ω ; |(x, y)| < ρ(z)},

ρ(z) =
(

π−1

∫
ϕE(x, y, z) dx dy

) 1
2

is a Caccioppoli set with volume V satisfying

Jo(Es) ≤ Jo(E)

with equality if and only if E was already axially symmetric. This shows
that the minimizer must be axially symmetric and that the wetting surface
E ∩ {z = 0} is a disk.

Considering Bρ(z) with ρ and z such that

|Bρ(z) ∩ {z > 0}| = |E| , Bρ ∩ {z = 0} = E ∩ {z = 0},

and comparing the perimeter of Bρ with that of E ∪ (Bρ ∩ {z < 0}), the
isoperimetric inequality immediately implies that the unique minimizer for
Jo in E (V ) is a spherical cap

B+
ρo

(zo) = Bρo(0, zo) ∩ {z > 0}.

Morever, a simple computation (see [CM]) shows that among the spherical
cap, the minimum of Jo is achieved when Young-Laplace’s law is satisfied:
ρo and zo are such that:

(2.6)
zo

ρo
= β,

∫ ρo

−zo

π(ρ2
o − r2)dr = V

2.2.2. Periodic adhesion coefficient. When β depends on (x, y) the method
fails, since the rearrangement (2.5) could increase the wetting energy∫

β(x/ε, y/ε)ϕE(x, y, 0) dx dy.

In [CM] we proved:

Theorem 2.1. For any volume V > 0 and for all ε > 0, there exists a
minimizer of Jε in E (V ).

Moreover, for all η > 0, there exists εo such that if ε ≤ εo, then any
minimizer Eε satisfies:

B+
(1−η)ρo

(zo) ⊂ Eε ⊂ B+
(1+η)ρo

(zo).

where B+
ρo

(zo) = Bρo(zo) ∩ Ω is a spherical cap with volume V and contact
angle cos−1〈β〉.
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In particular, when ε is small, the apparent contact angle for the equilib-
rium drop resting on a inhomogeneous surface satisfies Young-Laplace’s law
with 〈β〉.

We recall that in the proof of Theorem 2.1 a crucial step is to prove that

Jo(Eε) ≤ Jε(Eε) + Cε ≤ Jo(B+
ρo

) + Cε.

The result then follows from the stability result (see [CM] for details):

Theorem 2.2. Let E be such that

E ∈ E (V ), E lies in a bounded subset BR of Ω,(2.7)
∃δ > 0 s.t. Jo(E) ≤ Jo(F ) + δ ∀F ∈ E (V ).(2.8)

Then there exists a universal α > 0 and a constant C (depending on R)
such that

|E∆B+
ρo
| ≤ Cδα.

3. Main Results

3.1. Contact angle hysteresis. Our first result concerns the contact an-
gle hysteresis. We restrict ourself to the gravity-free case. In view of Theo-
rem 2.1, it is clear that the apparent contact angle of global minimizers of
Jε satisfies Young-Laplace’s law with 〈β〉. However, we will show that the
oscillations of β(x, y) allows for local minimizers with larger contact angle
in some directions.

To that purpose, we recall that the wetting surface corresponding to the
asymptotic minimizer B+

ρo
has radius

Ro = ρo

√
1− 〈β〉2.

So we introduce

Σt = {(x, y) ∈ R2 ; 0 ≤ y ≤ 2Ro − t},
and look for minimizers of Jε whose wetting area stays within the region
Σt. Clearly, for t > 0, Eε (or B+

ρo
) is not a candidate anymore. We prove

the following:

Theorem 3.1. Assume that the relative adhesion coefficient β(x, y) satisfies

(3.1) min
y

max
x

β(x, y) < 〈β〉.

Then, for all V , there exists εo and to such that if ε < εo and t < to, then
Jε has a local minimizer Ẽε whose wetting area Ẽε ∩ {z = 0} lies in Σt.

When ε goes to zero, Ẽε converges to some set Ẽ ∈ E (V ). The free
surface ∂Ẽ satisfies

2H = −λ
cos γ ≤ 〈β〉,
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and the contact angle of Ẽ is strickly greater than cos−1〈β〉 on parts of the
contact line.

Note that ∂Ẽε is a viscocity solution of

2H = −λ
cos γ = β(x/ε, y/ε).

The last part of Theorem 3.1 says that the apparent contact angle (or homog-
enized contact angle) is indeed larger than cos−1〈β〉 in some directions. Note
that if condition (3.1) is satisfied in other directions, we will observe hys-
teresis phenomenon in those directions as well. One can actually construct
functions β such that (2.1) is satisfied for any finite number of directions. To
get infinitely many directions, one would probably have to consider random
inhomogeneities.

The so-constructed solution plays the role of barrier during the formation
of a liquid drop by slow spreading or condensation. This explains the so-
called stick-jump phenomenon: As the volume of the drop increases, the
contact line remains unchanged at first, while the contact angle increases.
Only when the contact angle reaches a critical value does the contact line
jump to the next equilibrium position (see [HM]).

3.2. Sticking drop on an inclined plane. Nest, we wish to justify the
existence of equilibrium liquid drops on an inclined plane. As we pointed out
in the introduction, (2.2) has no global minimizer when κ, θ > 0. However,
we can look for local minimizers in the following sense:

E b Γ

and
Jε,κ(E) ≤ Jε,κ(F ) for any F ∈ E (V ) with F ⊂ Γ

where Γ is an open subset of Ω. We prove the following result:

Theorem 3.2. Assume that the relative adhesion coefficient β(x, y) satisfies
(2.1). Then, for all V > 0, there exists an open subset Γ of Ω and two
constants κo and εo such that if ε < εo and κ < κo the minimizer of Jε,κ in
{E ∈ E (V ) ; E ⊂ Γ} is a local minimizer for Jε,κ.

Note that such a minimizer gives a viscosity solution of Euler-Lagrange’s
equation:

2H = −λ + κ(z cos θ + y sin θ)
cos γ = β(x/ε, y/ε).

We recall that R. Finn, [F], proved that this equation has no solutions when
β is constant.
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4. Constrained minimizer

4.1. Barrier. The proof of both Theorem 3.1 and 3.2 relies on the existence
of constrained minimizers that turn out to be unconstrained local minimiz-
ers for J . This section is devoted to the existence of those constrained
minimizers.

First, we need to construct an appropriate barrier. Since we later want
to prove that the minimizer stays away from the barrier, it should be a
supersolution for (1.1), (1.2), at least near the contact line.

Assume that the minimum value in (2.1) is achieved for y = 0, and let

α := max
x

β(x, 0).

We have

(1 + 2η)α < 〈β〉,

for some small η. Let γ1 < γ2 be such that

cos γ1 = 〈β〉 , cos γ2 = (1 + 2η)α.

We construct a barrier S as follows:

• For z < λ, S is a portion of cylinder with mean curvature −1 + 8η

ρo
(radius ρo

2(1+8η)) which intersects the plane {z = 0} along the contact
line y = 0 with an angle γ2.

• For z ≥ λ, S is a plane forming an angle of γ1 with the plane {z = 0}.
This leads to an equation y = S(z) with

S(z) =


ρo

2(1+8η)

(
sin γ2 −

√
1− (2(1 + 8η)z/ρo + cos γ2)

2

)
z ≤ λ

(cotanγ1)z + ρo

2(1+8η)

[
sin γ2 − sin γ1 − cos2 γ1

sin γ1
+ cos γ1 cos γ2

sin γ1

]
z ≥ λ

where λ = ρo

2(1+8η)(cos γ1 − cos γ2).

Inclined plane: On the inclined plane, we want to use the barrier S to
prevent the drop from sliding down the slope (see figure (4.1)). This leads
to the domain

Γ = {(x, y, z) ∈ R3 ; z > 0 , y ≥ S(z)}.

Since Γ is not bounded in the x and z direction, we will first prove the
existence of a minimizer in

(4.1) ΓR,T = {(x, y, z) ∈ R3 ; z ∈ [0, T ], x ∈ [−R,R], S(z) ≤ y ≤ R+S(z)}.
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1
γ

θ

γ
1

y

z=λ

Eo

γ
2

y=S(z)

y=0

y=R

Figure 1. Barrier for the inclined plane

Contact angle hysteresis: We want to construct a local minimizer of Jε

whose wetting surface stays within

Σt = {(x, y) ; 0 ≤ y ≤ 2Ro − t},
where Ro = ρo

√
1− 〈β〉2 is the radius of the wetting region B+

ρo
∩ {z = 0}.

To that purpose, we consider the domain (see figure (4.1)):

Γt = {(x, y, z) ∈ R3 ; z > 0 , S(z) ≤ y ≤ 2Ro − S(z)− t}.
Since we want β(x, y) to be greater than cos γ2 along the contact line y =
2Ro − S(z), we need to request that t be such that there exists n ∈ N such
that

t = 2Ro − nε.

Since we aim at describing the behavior of the minimizers when ε → 0, this
condition is not very restrictive and we shall not dwell on it any further.
Again, in order to get a bounded domain, we introduce
(4.2)
ΓR,T = {(x, y, z) ∈ R3 ; z ∈ [0, T ], x ∈ [−R,R], S(z) ≤ y ≤ 2Ro − S(z)− t}.

4.2. Existence of constrained minimizers. We conclude this section by
recalling the main steps of the construction of a constrain minimizer. Here,
the bounded domain ΓR,T could be either (4.1) or (4.2) and we work with
Jε,κ. The gravity-free functional Jε is nothing but a particular case.

Let
ER,T (V ) = {E ∈ E (V ) ; E ⊂ ΓR,T }.

Then we have:
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y=2R −t−S(z)

γ
2

γ
1

z=λ oE

t

y=S(z)

o

Figure 2. Barrier for the contact angle hysteresis

Proposition 4.1. If R and T are such that there exists a ball B̃ with volume
V in ΓR,T , then there exists Eε,κ ∈ EΓR,T

(V ) satisfying

(4.3) Jε,κ(Eε,κ) = min
F∈EΓ(V )

Jε,κ(F )

Moreover, we have

(4.4) P (Eε,κ) ≤ CV
n

n+1 and H n(Eε,κ ∩ {z = 0}) ≤ CV
n

n+1 .

Proof: After rescaling, we may prove the result when |E| = V = 1. First,
we recall the following result for function with bounded variation (see [Gi]):

Lemma 4.2. Let Ω ⊂ Rn be an open set, and (fj) a sequence of functions
in BV (Ω) which converges in L1

loc(Ω) to a function f . Then∫
Ω
|Df | ≤ lim inf

j→∞

∫
|Dfj |.

It follows (see [CM] for details) that:

Lemma 4.3. The functional J is lower continuous with respect to the L1

topology: If (Ej) is a sequence of Caccioppoli sets such that Ej −→ E in L1

then
Jε,κ(E) ≤ lim inf

j→∞
Jε,κ(Ej)

Next, we recall the following compactness result for functions of bounded
variations:

Lemma 4.4. Let Ω be a bounded open set in Rn with Lipschitz boundary.
Then sets of functions uniformly bounded in BV -norm are relatively compact
in L1(Ω).

Finally, the existence of a constrained minimizer is a consequence of the
following a priori estimates:
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Lemma 4.5. If −1 < β < 1, then

Jε,κ(E) ≥ 1− βmax

2

∫
z>0

|DϕE |+
1− βmax

2

∫
z=0

ϕEdx dy

+κ

∫
(z cos θ + y sin θ)ϕE dx dy dz

for all E ∈ E (V ). In particular

Jε,κ(E) ≥ 1− βmax

2
P (E, R3)

for all E ∈ EΓ(V ).

Proof of Lemma 4.5: If g(x) is a non-negative function, then∫
z>0

g(x)|DϕE | ≥
∫

z=0
g(x)ϕEdx.

Hence ∫
z>0

1 + β(x)
2

|DϕE | ≥
∫

z=0

1 + β(x)
2

ϕEdx

and therefore∫
z>0

(
1− 1− β(x)

2

)
|DϕE | ≥

∫
z=0

(
1− β(x)

2
+ β(x)

)
ϕEdx

It follows that∫
|DϕE | −

∫
z=0

β(
x

ε
,
y

ε
)ϕ(x, y, 0) ≥

∫
z>0

1− β

2
|DϕE |+

∫
z=0

1− β

2
ϕEdx

which gives the first inequality in Lemma 4.5. It remains to notice that the
gravitational energy is positive for E ∈ EΓ(V ) to get the second inequality.

�

Lemma 4.3, 4.4 and 4.5, together with the fact that EΓ(V ) 6= ∅ gives
Proposition 4.1. �

5. Sticking drop on an inclined plane

This section is devoted to the proof of Theorem 3.2. We recall that

ΓR,T = {(x, y, z) ∈ R3 ; z ∈ [0, T ], x ∈ [−R,R], S(z) ≤ y ≤ R + S(z)},
and throughout this section, Eε,κ denotes a minimizer of Jε,κ in ΓR,T , as
constructed in Section 4. To prove Theorem 3.2, we only need to check that
Eε,κ b Γ when ε and κ are small enough.

The proof is organized in three steps:
Step 1: We show that Eε,κ converges uniformly to B+

ρo
when ε and κ go

to zero. This implies that Eε,κ stays away from x = ±R, z = T , y = R+S(y)
and from the linear part of the barrier S. We will also deduce that the mean
curvature of the unconstrained part of ∂Eε,κ converges to 1/ρo.
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Step 2: Next, we show that ∂Eε,κ stays away from the curved part of
the barrier S, using the fact that the mean-curvature is smaller than that
of Eε,κ. This is the object of Proposition 5.6.

Step 3: Finally, Proposition 5.8 shows that the contact line of Eε,κ cannot
touch y = 0 thanks to the condition on β(x, y) and the choice of the contact
angle of the barrier.

Note that Step 2 & 3 rely on the fact that the barrier S is a supersolution
for the Euler-Lagrange equation, and make use of a cutting argument first
introduced in [CC]. Alltogether, those three steps yield Theorem 3.2.

5.1. Step1: Stability. The first step is a consequence of the following
result:

Proposition 5.1. The minimizer Eε,κ of Jε,κ in EΓR,T
(V ) satisfies

(5.1) Jo(Eε,κ) ≤ Jo(F ) + Cε + Cκ

for all F ∈ E (V )
In particular, Theorem 2.2 yields:

|Eε,κ ∩B+
ρo
| ≤ (Cε + Cκ)α.

Proof. We recall that Eε denotes the minimizer of Jε. Then we have

Jε(Eε,κ) ≤ Jε,κ(Eε,κ) ≤ Jε,κ(Eε)

and since Eε is uniformly bounded, we also have

Jε,κ(Eε) ≤ Jε(Eε) + Cκ.

It follows that
Jε(Eε,κ) ≤ Jε(Eε) + Cκ.

Since we already know (see [CM]) that

Jε(Eε) ≤ Jo(Eε) + Cε,

and
Jo(Eε) ≤ Jo(F ) + Cε

for all F ∈ E (V ), we will prove Proposition 5.1 if we can prove that

(5.2) Jo(Eε,κ) ≤ Jε(Eε,κ) + Cε

This amounts to showing that∫
ϕEε,κ(x, 0)|β(x/ε, y/ε)− 〈β〉| dx dy ≤ Cε.

Noticing that this integrale is zero over every cell of R2/Z2 that is fully
contains in Eε,κ or Ec

ε,κ, this inequality will be satisfied if we can prove that
the number of cells (of size ε) intersecting the contact line (∂(Eε,κ∩{z = 0})
is of order ε−1. This amounts to showing
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Proposition 5.2. The contact line has finite 1-dimensional hausdorff mea-
sure in R2:

H 1(∂E ∩ {z = 0}) < +∞.

The proof of Proposition 5.2 follows essentially the same ideas as the proof
of a similar result established in [CM] for the gravity-free drop. We outline
the main step of the proof in Appendix A. �

The non-degeneracy lemma A.2 and the L1 convergence given by Propo-
sition 5.1 implies uniform convergence:

Proposition 5.3. For all η′ > 0, there exists εo and κo such that if ε < εo

and κ < κo, then
B+

(1−η′)ρo
⊂ Eε,κ ⊂ B+

(1+η′)ρo

Clearly, Proposition 5.3 implies that if R and T are large enough, Eε,κ

stays away from z = T , and up to a translation with respect to x, it stays
also away from x = ±R and y = R + S(z).

Thus Eε,κ is a minimizer for Jε,κ in the class

EΓ(V ) = {E ∈ E (V ) ; E ⊂ Γ}.
Moreover, for an appropriate choice of η and λ, Eε,κ stays away from the

linear part of the barrier S.
The free surface ∂Eε,κ can therefore only touch S in the part {0 ≤ z < λ},

that is in the region where S has mean curvature −1+η
ρo

. To prevent this
from happening, we need to characterize the mean-curvature of the ∂E:

Lemma 5.4. If η is small enough, the mean-curvature of Eκ,ε is such that

(5.3) H ≥ −1 + η

ρo

Proof. We first notice that if xo ∈ ∂Eε,κ, xo ∈ Γ, then for a small ball
Br(xo) contained in Γ, Eε,κ minimizes the functional

F(F ) =
∫

Ω
|DϕF |+ κ

∫
(z cos θ + y sin θ)ϕF

among the Caccioppoli sets which coincide with Eε,κ on ∂Br(xo) and satisfy
|F | = |Eε,κ∩Br|. Hence, by E. Gonzalez et al. [GMT], ∂E is analytic in Br

(recall that n = 3 ≤ 7), and we have the following lemma:

Lemma 5.5. Away from S, the free surface is analytic, and satisfies

(5.4) 2H = κ(z cos θ + y sin θ)− λ

Next, if (5.3) does not hold at some point, (5.4) yields

H ≤ −1 + η/2
ρo
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for κ ≤ κo, so that a ball with radius
ρo

1 + η/2

is a subsolution for the free surface (i.e. it cannot touch the free surface
from below). The fact that

∂Eε,κ ⊂ B(1+η′)ρo
\B(1−η′)ρo

for small ε and κ leads to a contradiction (for a suitable choice of η′). �

5.2. Step 2: Eε,κ stays away from S. We can now prove the following
proposition:

Proposition 5.6. For ε and κ small enough, there exists δ > 0 such that

Eε,κ ⊂ {(x, y, z) ∈ Γ ; y ≥ S(z) + δz2}

Proof. Let Mo = (xo, yo, zo) be a point on S with 0 < zo < T . We
introduce a surface S ′ with curvature −2(1+7η)

ρo
in the y direction, and 2η/ρo

in the x direction. More precisely, if x, y′, z′ is a system of coordinates with
z′ normal to S at Mo and y′ tangent to S, we define the surface S ′ by

z′ = −1 + 7η

ρo
y′2 +

η

ρo
x2 − δ.

Note that in the neighborhood of Mo, S ′ has mean curvature close to −1+6η
ρo

.
Following [CC], we introduce d the distance function, from above to S ′. Then
one has the formula:

∆d(x) = −
2∑

j=1

κj

1− κjd(x)

where κj is the j th-curvature of the surface at the point where x realizes
its distance. We deduce:

Lemma 5.7. Let U denotes the region enclosed by S and S ′. If δ ≤ δo for
some critical δo, then d is smooth in U and satisfies

∆d ≥ 1 + 4η

ρo
in U .

Together with Green’s formula, this lemma yields
1 + 4η

ρo
|Eε,κ ∩ U| ≤

∫
U∩Eε,κ

∆d =
∫

∂(U∩Eε,κ)
∇d · ν,

where this inequality must be considered in the perimeter sense.
Since ∇d · ν = −1 on (∂U) ∩ Eε,κ = S ′ ∩ Eε,κ, and 0 ≤ ∇d · ν ≤ 1 on

U ∩ ∂Eε,κ, we get∫
U∩Eε,κ

∆d ≤ −H (∂U ∩ Eε,κ) + P (Eε,κ,U).
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Therefore, the set
F = Eε,κ \ U

satisfies

J (F ) = J (Eε,κ)− P (Eε,κ,U) + H (∂U ∩ Eε,κ)

−κ

∫
U∩Eε,κ

y sin θ + z cos θ dx dy dz

≤ J (Eε,κ)− 1 + 4η

ρo
|U ∩ Eε,κ|

We use a similar method to increase the volume of F away from S by
the same quantity |Eε,κ ∩ U|: Let M be a point on ∂F away from S and
{z = 0}. Let x′, y′, z′ be a system of local coordinate such that x′ and y′ are
the principale curvature direction (with principale curvature respectively αx

and αy) and z′ is the outward normal to ∂F . Since Eε,κ (and therefore F )
has mean curvature less than (1 + η)/ρo (in absolute value) away from S,
we have

1
2
(αx + αy) ≥ −1 + η

ρo

Let S ′′ be the surface defined by the quadradic polynomial

z′ =
1
2
(αx −

η

ρo
)x′2 +

1
2
(αy −

η

ρo
)y′2 + δ.

If δ is small enought, then S ′′ and ∂F enclose a bounded subset V, and

∆d ≤ 1 + 2η

ρo
in V.

Hence
1 + η

ρo
|V| ≥ P (E,V)−H (∂V \ E),

and we can always choose δ such that |V| = |Eε,κ ∩ U|. The resulting set
Ẽ = F ∪ V therefore satisfies

J (Ẽ) ≤ J (Eε,κ)− 2η

ρo
|U ∩ Eε,κ|+ κ

∫
Eε,κ∩U

(y sin θ + z cos θ) dx dy dz

≤ J (Eε,κ)− 2η

ρo
|U ∩ Eε,κ|+ Cκ|Eε,κ ∩ U|

and |Ẽ| = |Eε,κ| = V . The minimality of Eε,κ yields

|U ∩ Eε,κ| = 0,

if κ is small enough. Proposition 5.6 follows. �
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5.3. Step 3: The contact line stays away from y = 0. Finally, using
similar arguments (taking into account the wetting energy), we prove:

Proposition 5.8. For ε and κ small enough, there exists τ > 0 such that

Eε,κ ⊂ {(x, y, z) ∈ Γ ; y ≥ τε + (cos γ)z}

Proof. We recall that S intersects {z = 0} with an angle γ2 satisfying

cos γ2 > (1 + 2η)α ≥ (1 + 2η)β(x, 0)

for all x ∈ R. Moreover, the continuity of β implies the existence of a τ such
that

cos γ2 > (1 + η)β(x, y) for all x ∈ R and y ∈ [0, τ ],

so there exists γ such that

γ > γ2 and cos γ > β(x, y) for all x ∈ R and y ∈ [0, τ ].

For any xo ∈ R, let Mo = (xo, τ, 0) and consider a system of local coor-
dinates (x′, y′, z′) such that x′ = x − xo and the x′, y′−plane is inclined at
angle γ with respect to the support plane Π. The surface S ′ defined by

z′ = −1 + 7η

ρo
y′2 +

η

ρo
x′2,

has mean curvature close to −1+6η
ρo

in a neigborhood of Mo, and intersect
Π with an angle γ. Since γ > γ2, for τ small enough, S, S ′ and Π enclose
a small region U , in a neighborhhod of Mo. Proceeding as in the previous
section, we have:

1 + 4η

ρo
|Eε,κ ∩ U| ≤

∫
U∩Eε,κ

∆d =
∫

∂(U∩Eε,κ)
∇d · ν.

We notice that ∇d · ν = −1 on ∂U ∩Eε,κ = S ′ ∩Eε,κ, and 0 ≤ ∇d · ν ≤ 1
on U ∩ ∂Eε,κ. Moreover, it is easy to check that d ∼ (x′ sin γ + y′ cos γ) in
the neighborhood of Mo, and so

∇d · ν ∼ − cos γ

along {z = 0} ∩ (U ∩ Eε,κ). We deduce∫
U∩Eε,κ

∆d ≤ −H (S ′ ∩ Eε,κ) + P (Eε,κ,U)− cos γH (∂Eε,κ ∩Π ∩ U).

Therefore, the set
F = Eε,κ \ U

satisfies

J (F ) = J (Eε,κ)− P (Eε,κ,U) + H (∂U ∩ Eε,κ) +
∫
U∩{z=0}

βϕEε,κ dx dy

≤ J (Eε,κ)− 1 + 4η

ρo
|U ∩ Eε,κ|+

∫
U∩{z=0}

(β − cos γ)ϕEε,κ dx dy
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Since cos γ > β(x, y) in U , we deduce

J (F ) ≤ J (Eε,κ)− 1 + 4η

ρo
|U ∩ Eε,κ|

The rest of the proof is similar to that of the previous section, adding a
piece with volume |Eε,κ ∩ U| to Eε,κ in a region where the mean curvature
is known. We deduce that

|Eε,κ ∩ U| = 0,

and the proof is complete. �

6. Contact angle hysteresis

We now turn to the proof of Theorem 3.1. Throughout this section, we
have

Γt = {(x, y, z) ∈ R3 ; z > 0 , S(z) ≤ y ≤ 2ρo

√
1− 〈β〉2 − S(z)− t},

and we denote by Eε,t the constrained minimizer for the gravity-free func-
tional Jε, as constructed in section 4.

The proof of Theorem 3.1 follows the same steps as the proof of Theo-
rem 3.2. The main difference is in Proposition 5.1, which becomes

Proposition 6.1. The minimizer Eε,t of Jε in EΓR,T
(V ) satisfies

(6.1) Jo(Eε,t) ≤ Jo(F ) + Cε + Ct

for all F ∈ E (V )
Therefore, Theorem 2.2 yields:

|Eε,t ∩B+
ρo
| ≤ (Cε + Ct)α.

This proposition allows us to prove, following the same three steps as in
the previous section, that Eε,t is indeed a local minimizer of Jε, that is

Eε,t b Γt

if t < to and ε < εo.

Proof of Proposition 6.1. Let B+
ρ be the spherical cap with volume V

and wetting area of radius Ro − t. It is readily seen that B+
ρ ⊂ ΓR,T and

|ρ− ρo| ≤ Ct. So
Jo(B+

ρ ) ≤ Jo(B+
ρo

) + Ct,

which implies

min
F∈EΓR,T

Jε(F ) ≤ Jε(B+
ρ ) ≤ Jo(B+

ρo
) + Cε + Ct.

It remains to prove that

Jo(Eε,t) ≤ Jε(Eε,t) + Cε,
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but this is again a consequence of the following proposition, the proof of
which is similar to that of Proposition 5.2:

Proposition 6.2. The contact line has finite 1-dimensional hausdorff mea-
sure in R2:

H 1(∂(Eε,t ∩ {z = 0}) < +∞

6.1. Apparent contact angle. It remains to show the last part of Theo-
rem 3.1, that is we have to prove that the apparent contact angle is indeed
greater than that of B+

ρo
, at least on part of the contact line.

We recall that the apparent contact angle is the measured contact angle
when ε → 0. To characterize it, we first prove the following result:

Lemma 6.3. When ε goes to zero Eε,t converges in L1 and uniformly to Ẽ,
minimizer of Jo in Γt.

Proof. Note that Eε,t is bounded uniformly with respect to ε in BV -norm.
Therefore, Eε,t converges in L1 to a set Ẽ ∈ E (V ). Moreover

Jo(Ẽ) ≤ lim inf
ε→0

Jo(Eε,t)

Finally, if F is a set in E (V ) with F ⊂ Γt, then we have

Jo(Ẽ) ≤ Jε(Eε,t) + Cε ≤ Jε(F ) + Cε.

It follows that

Jo(Ẽ) ≤ lim inf
ε→0

(Jε(F ) + Cε) = Jo(F )

for all F ⊂ Γt, which prove that Ẽ is indeed the minimizer of Jo in Γt. Non-
degeneracy inequalities for Eε,t then yields the uniform convergence. �

We deduce:

Lemma 6.4. The free surface ∂Ẽ satisfies

2H = −λ
cos γ ≤ 〈β〉

Moreover, there exists at least one point along the contact line at which the
contact angle is strictly greater than cos−1〈β〉.

Proof. First of all, the previous lemma implies

Jo(Ẽ) ≤ Jo(F ) + Ct

for all F ∈ E (V ). In particular, Theorem 2.2 gives

|Ẽ∆B+
ρo
| ≤ Ctα

and following Step 1 and 2 of Section 5, we can prove that Ẽ does not touch
the barrier ∂Γt, except maybe along the contact line. We also deduce that
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∂Ẽ has constant mean-curvature. Moreover, an argument similar to that of
Step 3 yields cos γ ≤ 〈β〉 along the contact line.

Next, if cos γ = 〈β〉 everywhere along the contact line, then H. Wente [W]
proved that there is a vertical line about which Ẽ is axially symmetric. In
particular, the wetting surface is a disk, and proceeding as in section 2.2.1,
we easily prove that Ẽ is a spherical cap. However, since the volume is the
same as B+

ρo
but with a smaller wetting area, the contact angle must be

larger, which contradicts cos γ = 〈β〉. The lemma follows. �

Appendix A. Proof of Proposition 5.2

In this appendix, we give the main steps of the proof of Proposition 5.2.
Details can be found in [CM] where similar results are proved for the gravity-
free case.

The key results are the following non-degeneracy lemmas:

Lemma A.1. Let Γr(xo, yo) denote the cylinder

Γr(xo, yo) = B2
r (xo)× R = {(x, y, z) ∈ Rn+1 ; |(x, y)− (xo, yo)| < r}.

Then there exists c1, co > 0 such that for any minimizer E of J in ER(V ),
if xo, yo lies in the projection of E onto {z = 0} (i.e. there exists zo such
that (xo, yo, zo) ∈ E) then

|E ∩ Γr(xo)| > cor
3,

for all r such that |E ∩ Γr(xo, yo)| ≤ c1|E|.
and

Lemma A.2. Let (xo, zo) ∈ ∂E with zo > 0. There exists c, universal
constant, such that for all r ≤ zo we have

|Br(xo, zo) ∩ E| ≥ cr3

|Br(xo, zo) \ E| ≥ cr3

Lemma A.2 allows us to deduce uniform convergence from L1 convergence
for any sequence of minimizers.

Lemma A.1 gives the non-degeneracy of the minimizers on the contact
line. It allows us to control the perimeter of E in the neighborhood of the
contact line:

Corollary A.3. If (xo, 0) ∈ ∂E, then for every r,

P (E,B+
r (xo, 0)) ≥ r2

Finally, by a cutting argument, we prove

Lemma A.4. There exists a constant C such that

P (E, {0 < z < t}) ≤ C(V + V
1
3 )t
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Proposition 5.2 now follws: Let ∪jBδ(xj) be a covering of ∂{E∩{z = 0}}
with finite overlapping. Then by Corollary A.3, we have

P (E,Bδ(xj)) ≥ δ2.

But thanks to the finite overlapping property,∑
P (E,Bδ(xj)) ≤ CP (E, {0 < z < δ}) ≤ CV

1
3 δ,

and therefore the number of balls is less than CV
1
3 δ, hence the result. �
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