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ow-frequency currents induced in adjacent spherical
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The currents induced inside cells by external electric fields in the frequency range
50–60 Hz are studied analytically by accounting for thin cell membranes with
transverse conductivity that is small compared to the conductivity of the saline
fluid. A general perturbation scheme is formulated and applied to two adjacent
spherical cells of equal radii by using a reflection principle and solving a nonlinear
difference equation. The presence of the second cell is found to cause a no more
than 10% increase to the current induced in an isolated spherical cell. © 2006
American Institute of Physics. �DOI: 10.1063/1.2190333�

. INTRODUCTION

Concerns about the possible health effects of electromagnetic fields generated by power lines
ave stimulated theoretical studies of the currents induced in the human body when this is exposed
o external, extremely-low-frequency fields, in the frequency range 50–60 Hz.1–11 Over a decade
go Adair2 asserted that the current induced inside an isolated cell is negligible, because the
esistive cell membrane appears to shield the cell interior from incident low-frequency fields.

More recently, King and Wu4 pointed out that Adair’s conclusion, although correct for spheri-
al cells, may not be valid for elongated, cylindrical cells. In the latter case the induced current
epends on the length of the cell and the polarization of the incident electric field, so that shielding
ffects can be significantly reduced as the cell length increases or the incident field becomes
arallel to the cell axis. For a typical spherical cell with radius 1 �m, membrane thickness �
5 nm, membrane conductivity �m�10−6 S/m, and protoplasm �saline-fluid� conductivity �0

0.5S/m, King and Wu4 calculated the electric field to be reduced by a factor 10−4 inside the cell.
y contrast, the electric field inside the elongated, myelinated cell was calculated4 to be almost
qual to the incident field if the length of the cell roughly exceeds 5 mm and the external field is
long the cell axis.

The purpose of the present study is to extend previous works2,4 to more realistic cases where
he current induced inside a cell is affected by the presence of neighboring cells. As a starting
oint, we treat the geometry with two spherical cells by an analytical technique which is directly
pplicable, although increasingly cumbersome, to many-cell geometries. Our formulation consid-
rs disconnected cells and therefore differs from that of Ref. 5 where cells are connected through
uitable gap junctions.

The main assumptions underlying our analysis are that the cell membrane thickness is small
ompared to �i� the cell radius of curvature, and �ii� the length over which the cell curvature varies.
o, elongated cells with sharp ends may not be included in the analysis. In addition, the cell
urvature is assumed to be a sufficiently smooth and slowly varying function of the surface
oordinates. Following Ref. 4 we also assume that the cell membrane is homogeneous and iso-
ropic, with a scalar conductivity �m in the range 10−5–10−6 S/m. This assumption may pose a
imitation on our model, especially because membranes of actual cells have ion channels12 and
hus act as anisotropic media. To avoid complications due to anisotropies and yet preserve the
ssential physical features of thin membranes we replace the membrane by an “effective” bound-

ry condition that accounts for its thickness and conductivity in the direction transverse to the cell
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urface;4 cf. Eq. �9� below. Similarly, the cell interior is considered as homogeneous and isotropic
ith conductivity �0, typically in the range 0.5–0.8 S/m, which is taken to be equal to the

onductivity of the surrounding saline fluid.
One can argue that the reduction of the electric field in the interior of a cell of reasonably

rbitrary shape can be estimated by dimensional analysis. More precisely, the fraction of the
enetrating field is expected to be proportional to the small factor �̃= �r̄c /����m /�0�, where r̄c is
he cell mean radius of curvature, typically in the range 1–10 �m, and � is the membrane
hickness, �=2–5 nm; cf. Fig. 1. This observation motivates the perturbation analysis of this
aper because it indicates the dependence of the induced current on the small dimensionless
arameter �̃. A similar technique is described in Ref. 13 for the cell response to a delta-function
xcitation. The application of perturbation theory, as described below, transcends dimensional
nalysis because it provides �i� a general mathematical framework to treat systematically problems
f low-frequency scattering by cells; and �ii� a closed-form formula for the geometry-dependent
refactor for the field reduction inside a cell for the practically appealing case with two spherical
ells of equal radii.

The paper is organized as follows. In Sec. II we describe the general formulation based on
erturbation theory to determine currents induced inside cells exposed to uniform electric fields. In
ec. III we apply this formulation to the case with two neighboring spherical cells and derive
imple, closed-form formulas for the electric field in the interior of each of the cells. In Sec. IV we
iscuss other cell geometries where the present framework may serve as a basis of detailed studies.
he e−i�t time dependence is suppressed throughout the analysis.

I. PERTURBATION THEORY

. General formulation

We consider a uniform electric field Einc parallel to the z axis, Einc=E0ez, and incident upon
cells of reasonably arbitrary shape, where ez is the z-directed unit vector of the Cartesian

oordinate system, and we take E0=1 without loss of generality; cf. Fig. 1. The cells are immersed
n saline fluid, an isotropic and homogeneous medium with conductivity �0. The interior R j of the
jth cell14 is also assumed to be isotropic and homogeneous with a conductivity �0, equal to that of

IG. 1. Schematic of the geometry of arbitrarily shaped cells. The jth cell has radius of curvature rcj and membrane
hickness � j. The conductivities of the saline fluid and cell membrane are �0 and �m, respectively. The incident electric field
s polarized along the z axis.
he ambient medium. The membrane is sufficiently thin and in principle anisotropic; we take the
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embrane conductivity in the direction normal to the boundary to be �m, which is small compared
o �0, �m��0. At sufficiently low frequencies the effective dielectric constant, �eff, in each me-
ium is dominated by the corresponding conductivity �,

�eff �
i�

�
, �1�

here � is the radial frequency of the incident field.
The electric field inside each cell depends on the relative effective dielectric constant of the

embrane because the requisite boundary conditions for the field on the cell surfaces, through
hich the conductivities enter, are homogeneous; see Appendix A where the problem of a single

pherical cell is revisited. Therefore, for later notational convenience we introduce the dimension-
ess parameter � by

� =
�m

�0
, �2�

here � is a small positive number, 0���1.
The local radius of curvature, rcj, of the jth cell is assumed to be a positive, sufficiently

mooth function of the surface coordinates, and large compared to the membrane thickness � j,
15

r̃ =
rcj

� j
� 1. �3�

ffective boundary conditions at the boundaries of cells with thin membranes involve the param-
ter r̃�.4 In many cell configurations of interest this parameter is small,

r̃� � 1. �4�

ondition �4� is enforced throughout the paper, and enables the application of regular perturbation
heory as described below; see also Appendix A where, by virtue of �4�, a simplified formula is
erived for the current in the interior of an isolated spherical cell.

When the frequency of the incident electromagnetic field is sufficiently low, for instance in the
ange 50–60 Hz, a mathematically convenient quantity to use is the scalar potential, 	�r�, which
atisfies to a good approximation the Laplace equation,

�2	�r� = 0. �5�

he electric field E�r� is approximately decoupled from the magnetic field, and is described by

E = − �	 . �6�

or the incident field Einc=ez the condition for 	�r� at infinity reads

	�r� � − z, r = �r� → 
 . �7�

Despite the simple form of �5� and �6�, mathematical complications may arise because of the
pecial boundary conditions at the membrane separating the cell interior from the saline fluid.
ollowing Ref. 4 we replace the membrane by an effective boundary condition that stems from

reating the membrane thickness, � j, as properly small compared to the membrane radius of
urvature. Next, we rederive briefly and interpret the related result of Ref. 4 by relaxing math-
matical elaboration. By integration of �6� across the membrane, the restriction 	+ of 	 on the cell
oundary from outside the cell and the corresponding restriction 	− from inside the cell should
atisfy 	+−	−=−Em,�� j; Em,� is an appropriate value of the electric field normal to the boundary
nside the membrane and 	± are boundary values of 	 outside the membrane. For suitably thin

+ −
embrane, Em,� satisfies �mEm,�=�0E�=�0E� by Gauss’s law in the absence of surface charge,
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here E�
± denote the boundary values of the transverse electric field outside the membrane. The

elations of this paragraph yield

�	+

��
=

�	−

��
� 	 �	

��
	

�Rj

, �8�

	 �	

��
	

�Rj

=
1

� j
�	+�r� − 	−�r�� , �9�

here �R j is the boundary of region R j, �	 /��=e� ·�	 and e� is the unit vector normal to the
oundary �R j pointing outward; 	+�r� and �	+ /�� are the values of 	 and �	 /�� as r ap-
roaches �R j from outside the cell �r→�R j

+�, and 	−�r� and �	− /�� are the corresponding
alues as r approaches �R j from inside the cell �r→�R j

−�. The parameter � j has dimensions of
ength and is defined by

� j =
� j

�
. �10�

ondition �4� ensures that the � j entering boundary condition �9� is large compared to the radius
f cell curvature, rcj,

rcj � � j . �11�

Next, we describe a perturbation scheme for calculating 	. The starting point is the
xpansion16

	 = 	0 + 	1 + ¯ + 	n + ¯ , n = 0,1, . . . , �12�

here the subscript, n, denotes the perturbation order17 and the ratio of two successive terms is
ssumed to be18

	n

	n−1
= O
 rc1

�1
, . . . ,

rcN

�N
� . �13�

ach term 	n in expansion �12� is determined iteratively as described below.

. Zeroth-order approximation, n=0

In the zeroth-order approximation the right-hand side of �9� is set equal to zero. With 	�r�
	0�r�, 	0 satisfies Laplace’s equation and the Neumann boundary condition on the cell bound-

ries, �R j. The boundary-value problem for the cell exterior thus reads

�2	0�r� = 0, r � 
, 	 �	0

��
	

�Rj
+

= 0, j = 1,2, . . . ,N , �14�

long with condition �7�, where 
=R3−� jR j −� j�R j is the exterior of all cells �R j� with exclu-
ion of every �R j; R3 is the Euclidean space. This problem admits a unique solution for 	0�r�.19

he corresponding problem for the cell interior R j has solution

	0�r� = �0j, r � R j , �15�

here �0j �j=1,2 , . . . ,N� are constants to be determined below. Each of these constants enters the
oundary conditions for 	1�r� �in the first-order approximation� and is evaluated as an appropriate

urface integral of 	0�r�; cf. �19� below.
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. First-order approximation, n=1

In this approximation the right-hand side of �9� is replaced by �	0
+−	0

−� /� j, and 	�r�
	0�r�+	1�r� where 	0�r� is known from �14� above. The boundary-value problem for the cell

nterior is described by

�2	1�r� = 0, r � R j, 	 �	1

��
	

r��Rj
−

=
1

� j
�	0

+ − �0j� , �16�

long with the condition that 	1�r� be finite in R j. The Laplace equation with the same boundary
onditions on �R j also apply to the exterior problem. The requisite condition for 	1 at infinity
ecomes

	1�r� → 0, r → 
 . �17�

Because the constant �0j enters the Neumann condition �16�, its value must be consistent with
he Laplace equation.19 By integrating �2	1=0 over R j we obtain

�
�Rj

−
dr

�	1

��
= 0. �18�

y virtue of condition �16�,

�0j =
1


�R j

�

�Rj

dr 	0
+�r� , �19�

here 
�R j
 denotes the area of the closed surface �R j.

. nth-order approximation, n=1,2, . . .

It is reasonably straightforward to generalize the first-order approximation in order to carry
ut the calculations to the next orders in rcj /� j. With 	�r���i=0

n 	i�r� and n�1 the boundary-
alue problem for 	n�r� follows from the preceding discussions of the zeroth- and first-order
pproximations via the replacements 0→n−1 and 1→n in the subscripts for 	. In the cell
nterior, 	n satisfies the boundary-value problem

�2	n�r� = 0, r � R j, 	 �	n

��
	

�Rj
−

=
1

� j
�	n−1

+ − 	n−1
− � , �20�

here 	n�r� must be bounded everywhere for n�1. The same differential equation and conditions
n �R j hold for the exterior problem. The condition at infinity reads

	n�r� → 0, r → 
, n � 1. �21�

n the following we restrict the analysis to the zeroth- and first-order approximations for 	.

. Example: Single spherical cell

Next, for comparison and validation purposes we apply the general perturbation scheme of
ec. II A to a single spherical cell with radius a exposed to a uniform field Einc=ez. This proto-

ypical case was studied in Refs. 2 and 4. Here, we derive the same result as in Ref. 4 for the
lectric field inside the cell within the framework of our Sec. II A. For the sake of completeness,
he derivation of Ref. 4 for a single cell is revisited in our Appendix A, via the full set of boundary
onditions by which the cell membrane is taken to have a finite thickness.

. Zeroth-order approximation
The potential 	0 of the exterior problem satisfies

3 Apr 2006 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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�2	0�r� = 0, r � a , �22�

nd

�	0

�r
= 0 at r = a, 	0�r,�� � − z, r → 
 . �23�

he solution to �22� and �23� is obtained via a reflection principle in Appendix B. The result is

	0�r,�� = − 
r +
a3

2r2�cos �, r � a . �24�

n particular, for r→a+,

	0�a+,�� = 	0
+ = −

3a

2
cos � . �25�

t follows from �15� and �19� that the potential 	0 vanishes for r�a,

	0�r � a,�� � �0 = 0. �26�

. First-order approximation

In the next order the interior problem is described by

�2	1�r� = 0, r � a , �27�

�	1

�r
=

1

�
	0

+ = −
1

�

3a

2
cos � at r = a, 	1�0,��: finite. �28�

ecall that the parameter � is defined by �10�. Because of rotational symmetry, we apply separa-
ion of variables and write 	1�r ,��=g�r�cos � where, by �27� and �28�, g�r� satisfies

r2d2g

dr2 + 2r
dg

dr
− 2g = 0 for r � a, g�0�: finite, g�a� = −

3a

2�
, �29�

ith solution g�r�=−�3a /2��r. Hence,

	1�r,�� = −
3a

2�
r cos �, r � a , �30�

n agreement with �A9� of Appendix A. The electric field E inside the sphere follows by
=−�	,

E�r,�� =
3a

2�
ez, r � a . �31�

his formula shows that the incident field is reduced by the factor 3a /2� inside the cell.2,4

II. PAIR OF SPHERICAL CELLS

In this section we apply the perturbation scheme introduced in Sec. II to two spherical cells,
enoted A and B, with equal radii; cf. Fig. 2 for the geometry of the problem. The radius of each
phere is a and the distance between their centers, O1 and O2, is 2d. The z axis passes through

1�0,0 ,−d� and O2�0,0 ,d�. The extension of our treatment to two spherical cells with different
adii, or to three or more spherical cells, is straightforward yet increasingly cumbersome and lies

eyond the scope of this paper.
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. Zeroth-order approximation

The zeroth-order potential 	0 satisfies the Neumann boundary condition

�	0

��
= 0, r � �RA � �RB, �32�

here �RA and �RB are the boundaries of spheres RA and RB. In addition, 	0�−r cos � as r

. We apply the reflection principle of Appendix B to the boundary-value problem for 	0 in the

xterior of the cells by replacing the incident electric field by two electric dipoles �sources� of unit
oment, p=ez, located symmetrically with respect to O, at positions �0,0 ,−h� and �0,0 ,h�; cf
ig. 2. The uniform incident field of unit amplitude, Einc=ez, is reproduced by taking the limit
→
 after multiplying each �unit� dipole moment by �h3; cf. �B10� of Appendix B. For finite h,

he source dipoles generate an infinite number of image dipoles, all lying in the z axis, that are
eeded to sustain condition �32� on each spherical surface.

Next, we describe the location of image dipoles and their corresponding moments needed to
atisfy the Neumann condition on the surface of each sphere, applying the results of Appendix B.
ecause each time an image dipole is placed inside a sphere the Neumann condition on the other

phere no longer holds, the procedure of placing image dipoles must be repeated ad infinitum
eading to appropriate sequences of image dipoles inside each sphere. The source dipole at
0 ,0 ,−h� induces image dipoles inside sphere A at positions �0,0 ,−d−b�, �0,0 ,−d
a2� , . . . , �0,0 ,−d+a2j�, and at �0,0 ,−d+b2� , . . . , �0,0 ,−d+b2j�, and inside sphere B at positions

0 ,0 ,d−a1� , . . . , �0,0 ,d−a2j−1� and at �0,0 ,b1� , . . . , �0,0 ,d−b2j−1�, where j here is a positive
nteger and j→
. By symmetry, the dipole at �0,0 ,h� induces images of equal corresponding

oments inside sphere B at �0,0 ,d+b�, �0,0 ,d−a2� , . . . , �0,0 ,d−a2j� and at �0,0 ,d
b2� , . . . , �0,0 ,d−b2j�, and inside sphere A at �0,0 ,−d+a1� , . . . , �0,0 ,−d+a2j+1� and at �0,0 ,
d+b1� , . . . , �0,0 ,−d+b2j+1�. According to �B5� of Appendix B, the distance b is defined by

b =
a2

h − d
. �33�

he distances am and bm, where a0=d−h and b0=−b, separately satisfy the recursion relation

�m =
a2

2d − �m−1
, m = 1,2, . . . , �34�

here �0=a0 or �0=b0=−b. It follows from �B7� of Appendix B that the moments of the image

IG. 2. The geometry of two spherical cells with equal radii, a. The incident, uniform electric field is polarized along the
axis. Two dipoles of moment p=ez are placed symmetrically with respect to the origin O in order to produce the incident
eld in the limit h→
.
ipoles located at distances am from O1 or O2 are

3 Apr 2006 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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pm = �− 1�m��
i=1

m

ai

am �
3

, m = 1,2, . . . . �35�

he dipole moments corresponding to distances bm from O1 or O2 are

qm = �− 1�m+1�b�
i=1

m

bi

am+1 �
3

, m = 1,2, . . . ; q0 = − �b/a�3. �36�

The difference equation �34� is solved in Appendix C to yield

�m = a
sinh�m� − ���0��

sinh��m + 1�� − ���0��
, �37�

here

� = ln �, � =
d + �d2 − a2

a
, �38�

���� =
1

2
ln� 1 − �a−1�

1 − ��a�−1�
� . �39�

t follows from Eqs. �35� and �36� that the strengths of the image dipoles are given explicitly by

pm = �− 1�m� sinh�� − ��a0��
sinh��m + 1�� − ��a0���3

, m = 1,2, . . . , �40�

qm = �− 1�m+1� sinh ��b0�
sinh��m + 1�� − ��b0���3

, m = 0,1,2, . . . . �41�

Thus, the zeroth-order potential in the exterior of the cells is furnished by20

4�	d�r;h� =
ez · �hez + r�

�hez + r�3
+

ez · �− hez + r�
�− hez + r�3

−
b3

a3

ez · ��d + b�ez + r�
��d + b�ez + r�3

−
b3

a3

ez · �− �d + b�ez + r�
�− �d + b�ez + r�3

+ �
m=1




pm� �d − am� + ez · r

��d − am�ez + r�3
+

− �d − am� + ez · r

�− �d − am�ez + r�3� + �
m=1




qm� �d − bm� + ez · r

��d − bm�ez + r�3

+
− �d − bm� + ez · r

�− �d − bm�ez + r�3� = �
m=0




�− 1�m� sinh�� − ��a0��
sinh��m + 1�� − ��a0���3 � �d − am� + ez · r

��d − am�ez + r�3

+
− �d − am� + ez · r

�− �d − am�ez + r�3� + �
m=0




�− 1�m+1� sinh ��b0�
sinh��m + 1�� − ��b0���3 � �d − bm� + ez · r

��d − bm�ez + r�3

+
− �d − bm� + ez · r

�− �d − bm�ez + r�3� , �42�

here a0=d−h and b0=−b. Recall that b is defined by �33�.

In the limit h→
 we obtain a0→−
 and b0→0, and in view of �37� and �39� we find

3 Apr 2006 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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��a0� � � −
a

h
sinh �, ��b0� �

a

h
sinh � , �43�

nd

am+1 � a
sinh�m��

sinh��m + 1���
� �m, bm � �m. �44�

fter some rearrangement of terms in �42�, the potential for h→
 reduces to

4�	d�r;h� � −
4

h3z − 2
a3

h3 �sinh ��3�
m=0



�− 1�m

�sinh�m + 1���3� d − �m + z

��d − �m�2 + r2 + 2�d − �m�z�3/2

+
− �d − �m� + z

��d − �m�2 + r2 − 2�d − �m�z�3/2� . �45�

The zeroth-order potential 	0�r� is obtained via multiplying 	d above by �h3 so that the
otential at infinity becomes −z:

	0�r� = lim
h→


��h3	d� = − z −
a3

2
�sinh ��3�

m=0



�− 1�m

�sinh�m + 1���3� d − �m + z

��d − �m�2 + r2 + 2�d − �m�z�3/2

+
− �d − �m� + z

��d − �m�2 + r2 − 2�d − �m�z�3/2� . �46�

or nontouching spheres �d�a� the terms of the preceding series approach zero exponentially fast
s m→
.

Equation �46� is simplified considerably when the spheres touch �d→a�. With

� � �2
1 −
a

d
�1/2

→ 0 as d → a , �47�

44� furnishes

�m = a
m

m + 1
. �48�

ccordingly, �46� entails

	0�r� = − z −
a3

2 �
m=0


 � z +
a

m + 1

�r2 +
a2

�m + 1�2 +
2az

m + 1
�3/2 +

z −
a

m + 1

�r2 +
a2

�m + 1�2 −
2az

m + 1
�3/2� �− 1�m

�m + 1�3 .

�49�

t is worthwhile noting that as m→
 terms of this series behave as O�m−3�, ensuring fast, absolute
onvergence.

. First-order approximation

. Formulas for nontouching spheres, d>a
With 	�	0+	1 everywhere the boundary condition for 	1 on each spherical surface reads
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	 �	1

�r�
	

r�=a
=

1

�
��	0 − �0��r�=a, �50�

here �r� ,�� ,��� is the coordinate system with origin at the center of each sphere and �0 is given
y �19�. By expanding 	0 in spherical harmonics according to �D1� and �D2� of Appendix D,
ondition �50� reads

	 �	1

�r�
	

r�=a
=

1

�
�− a cos �� −

a

2�
l=1




DlPl�cos ��� , �51�

here

Dl = Dl
A = �sinh ��3l�

m=0



�− 1�m

�sinh�m + 1���3 �
�m

a
�l−1

+ 
1 +
1

l
�
2d − �m

a
�−l−2� �52�

or sphere A, and

Dl = Dl
B = �sinh ��3�− 1�l−1l�

m=0



�− 1�m

�sinh�m + 1���3 �
�m

a
�l−1

− 
1 +
1

l
�
2d − �m

a
�−l−2� �53�

or sphere B.
Therefore, 	1 is expanded inside each sphere as

	1 = −
a

�
r� cos �� −

a2

2�
�
l=1



Dl

l

 r�

a
�l

Pl�cos ��� + C , �54�

here C is an immaterial constant which is henceforth set to zero, C=0. In view of �52� and �53�
long with �D1�–�D3� of Appendix D, carrying out the summation over l gives

	1 = −
a

�
z� −

a2

2�
�
m=0




�− 1�m �sinh ��3

�sinh�m + 1���3 � r�

a
Tm
��m

r�

a
,��� ± �m

3 r�

a
Tm
��m

r�

a
,���

+ �m
2 Sm
��m

r�

a
,���� , �55�

here the upper �lower� sign corresponds to cell A �B�,

�m =
sinh�m��

sinh��m + 1���
, �m = 
2d − �m

a
�−1

, �56�

Tm�s,��� =
2 cos �� + s

�1 + 2s cos �� + s2

1

1 + �1 + 2s cos �� + s2
, �57�

Sm�s,��� = ln	 2

sin2 ��

1

s
	 + ln	 s + cos �� − cos ���1 + 2s cos �� + s2

1 + �1 + 2s cos �� + s2 	 , �58�

nd �m is defined by �44�.
The electric field, which is proportional to the current, inside each cell is

E1 = − er�
�	1

�r�
− e��

1

r�

�	1

���
, �59�
here
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−
�	1

�r�
=

a

�
cos �� +

a

2�
�
m=0




�− 1�m �sinh ��3

�sinh�m + 1���3

� �Vm
��m
r�

a
,��� ± �m

3 Vm
��m
r�

a
,��� ± �m

3 Tm
��m
r�

a
,���� , �60�

nd

1

r�

�	1

���
=

a

�
sin �� +

a

2�
sin �� �

m=0




�− 1�m �sinh ��3

�sinh�m + 1���3

� �Um
��m
r�

a
,��� ± �m

3 Um
��m
r�

a
,��� ± �m

3 Wm
��m
r�

a
,���� . �61�

n the above,

Um�s,��� =
1

�1 + 2s cos �� + s2�3/2 , �62�

Vm�s,��� =
cos �� + s

�1 + 2s cos �� + s2�3/2 , �63�

Wm�s,��� =
1

�1 + 2s cos �� + s2

2 cos �� + s

cos ���1 + �1 + 2s cos �� + s2� + s
. �64�

In Fig. 3 we show contour plots for the magnitude of E1, normalized by the field 3a /2� inside
n isolated spherical cell of equal radius �cf. Appendix A�, inside cells A and B for a fixed value
f d /a. In Fig. 4 we show plots for the maximum normalized magnitudes as functions of d /a. Two
omments are in order: �i� As expected by close inspection of �59�–�64�, for any d�a the maxi-
um �E1� is attained for ��=0 for both spheres. �ii� This maximum value increases with d in

IG. 3. Contour plots of the magnitude of the normalized electric field, �3a /2��−1�E1�, inside each cell. Maximum
agnitudes are attained at ��=0; �x ,y ,z� is the usual Cartesian coordinate system.
phere A and decreases with d in sphere B; cf. Fig. 4.
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. Touching spheres, d\a

As mentioned above, a close examination of Eqs. �60� and �61� reveals that for fixed distance
the field magnitude attains its maximum at ��=0 inside sphere A �as r� approaches a from left,

�→a−�. A similar situation arises in fluid mechanics.21 This maximum increases as d approaches
when the spheres tend to touch. In this case, d→a, approximation �47� yields

	1 = −
a

�
z� −

a

2�
�
m=0



�− 1�m

�m + 1�3� r�

a
Tm
�

m

m + 1

r�

a
,��� ±

�m + 1�3

�m + 2�3

r�

a
Tm
�

m + 1

m + 2

r�

a
,���

+
�m + 1�2

�m + 2�2 Sm
�
m + 1

m + 2

r�

a
,���� . �65�

The corresponding electric field is derived by invoking

−
�	1

�r�
=

a

�
cos �� +

a

2�
�
m=0



�− 1�m

�m + 1�3�Vm
�
m

m + 1

r�

a
,��� ±

�m + 1�3

�m + 2�3Vm
�
m + 1

m + 2

r�

a
,���

±
�m + 1�3

�m + 2�3 Tm
�
m + 1

m + 2

r�

a
,���� , �66�

nd

1

r�

�	1

���
=

a

�
sin �� +

a

2�
sin ���

m=0



�− 1�m

�m + 1�3�Um
�
m

m + 1

r�

a
,��� ±

�m + 1�3

�m + 2�3 Um
�
m + 1

m + 2

r�

a
,���

±
�m + 1�3

�m + 2�3 Wm
�
m + 1

m + 2

r�

a
,���� . �67�

It follows that for d→a the electric field in sphere A along the z axis becomes E

IG. 4. Plots of the maximum magnitudes of the normalized electric fields inside cells A and B as functions of their
ormalized distance, d /a; 3a /2� is the electric field inside an isolated spherical cell of equal radius.
�a /��E1�z��ez, where E1 is the positive quantity
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E1�z�� = 1 +
1

2 �
m=0



�− 1�m

�m + 1�3
1 −
�z��
a

m

m + 1
�−2

+
1

2 �
m=0



�− 1�m

�m + 2�3
1 −
�z��
a

m + 1

m + 2
�−2

+
1

2 �
m=0



�− 1�m

�m + 2�3
1 −
�z��
a

m + 1

m + 2
�−1

. �68�

ence, E1 attains its maximum for z�=a,

E1,max = 1 +
1

2 �
m=0




�− 1�m
 1

m + 1
+

1

m + 2
+

1

�m + 2�2� = 2 −
�2

24
� 1.5888, �69�

hich is 6% higher than the corresponding value inside the isolated spherical cell of equal radius;
ompare with �31� of Sec. II.

V. CONCLUSION

By use of perturbation theory we studied analytically a mathematical model for the scattering
f extremely low frequency, uniform electric fields from cells of arbitrary shapes. Two main
ssumptions in our derivations were that the cell radius of curvature is a slowly varying function
f surface coordinates and the cell interior is an isotropic and homogeneous medium. Our results
or two spherical cells suggest that the presence of a neighboring cell causes only a small increase
o the electric field inside a single cell of reasonably arbitrary shape.

Our analysis, based on suitable application of regular perturbations along with a reflection
rinciple and exact solution of a nonlinear difference equation, can be extended to geometries of
any cells but becomes increasingly cumbersome with the number of cells. In this case the

olution for the electrostatic potential is obtained by solving a system of tractable difference
quations. It is expected, however, that the presence of additional cells will cause only a minor
ncrease in the induced electric field, being sufficiently bounded in the number of cells. This
roblem is subject of work in progress.
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PPENDIX A: REVISITING THE SINGLE SPHERICAL CELL

In this appendix we review the case with a uniform electric field incident on a single spherical
ell, which is also studied in Refs. 2 and 4. The cell interior consists of two concentric spheres of
adii a and b, where b�a. The effective dielectric constant in the regions 0�r�a and r�b is
aken to be 1 without loss of generality; the region a�r�b corresponds to the cell membrane and
as dielectric constant equal to the � defined by �2�. The real parameter � expresses the relative
ielectric constant for the two media, membrane and protoplasm, and is equal to the ratio of their
onductivities, which enter the equations only through the homogeneous boundary conditions
iven in Eqs. �A5� and �A6� below. For an incident field Einc=ez the scalar potential 	 at infinity
s

	�r,�� � − r cos �, r → 
 , �A1�

here �r ,� ,�� are the usual spherical coordinates. The boundary conditions at r=a ,b dictate
ontinuity of 	 and ���	 /�r� across the spherical boundaries. The scalar potential 	 is thus
ndependent of the azimuthal angle, �, while it satisfies Laplace’s equation in free space. With

	�r,�� = f�r�cos � , �A2�
e obtain the equation

3 Apr 2006 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



w

w
a

T

w
a

A

w
k
p
e

p
d
P

a

042902-14 D. Margetis and N. Savva J. Math. Phys. 47, 042902 �2006�

Downloaded 2

 d2

dr2 +
2

r

d

dr
−

2

r2� f�r� = 0, �A3�

ith general solution f�r�=Ar+Br−2. More precisely,

f�r� =�
A1r , r � a ,

A2r +
B2

r2 , a � r � b ,

− r +
B3

r2 , r � b , � �A4�

here the boundary condition �A1� has been used. In order to determine the constants A1, A2, B2,
nd B3 we apply the boundary conditions at r=a and r=b, and thus obtain the equations

A1a = A2a +
B2

a2 , A1 = �
A2 −
2B2

a3 � , �A5�

A2b +
B2

b2 = − b +
B3

b2 , �
A2 −
2B2

b3 � = − 1 −
2B3

b3 . �A6�

he electric field inside the cell is −A1ez, where

− A1 =
9�

�1 + 2���2 + �� − 2�1 − ��2�a/b�3 . �A7�

Specifically, if � is small and a=b−�, ��a, then

− A1 �
1

1 +
2

3

�

a�

=
1

1 +
2�

3a

, �A8�

here �=� /�. The right-hand side of the above equation is small if ��a, and can be expanded as
�convergent� geometric series for 3a / �2���1. Specifically,

− A1 �
3a

2�
,

a

�
� 1. �A9�

PPENDIX B: REFLECTION PRINCIPLE WITH NEUMANN CONDITION

In this appendix �i� we derive a reflection principle, involving image dipoles, for the problem
ith a source dipole in the presence of a sphere with Neumann boundary conditions, extending the
nown analysis with a source charge and Dirichlet boundary conditions;20 and �ii� we apply this
rinciple to determine the potential 	 for the case with an insulating sphere and incident uniform
lectric field �cf. Appendix A�.

We consider a z-directed electric dipole of moment p= pez located at r0= �0,0 ,h� in the
resence of a sphere with radius a centered at O. In units where �eff=1, where �eff is the effective
ielectric constant of the infinite medium, the ensuing scalar potential 	�r ;r0 �p� satisfies the
oisson equation

�2	 = p
�

�z
��r − r0�, r � a , �B1�
long with the prescribed Neumann boundary condition
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	 �	

�r
	

r=a
= 0, �B2�

nd 	�r ;r0 �p�→0 as r→
. The potential 	 is thus determined uniquely in the region r�a.
ecall that the potential generated by a dipole of moment p located at the origin is p ·r /4�r3. We
ext express 	 for r�a as a superposition of the �primary� potential 	pr generated by the source
ipole at r0 in the absence of the sphere and the �scattered� potential 	sc of an image dipole with
oment p�=�pez at r1= �0,0 ,h�� where h��a; � and h� are to be determined.

Because of condition �B2� it is advantageous to work directly with the electric field
=−�	. For r�a and �r−r0 � �0,

E�r� = Epr�r� + Esc�r� =
3�p · �r − r0���r − r0� − �r − r0�2p

4��r − r0�5
+ �

3�p� · ��r − r1���r − r1� − �r − r1�2p�

4��r − r1�5

= p
3�r cos � − h��rer − hez� − �r2 + h2 − 2rh cos ��ez

4��r2 + h2 − 2rh cos ��5/2

+ �p
3�r cos � − h���rer − h�ez� − �r2 + h�2 − 2rh� cos ��ez

4��r2 + h�2 − 2rh� cos ��5/2 . �B3�

ence,

− 	 �	�r�
�r

	
r=a

= p
2�a2 + h2�cos � − ah�3 + cos2 ��

4��a2 + h2 − 2ah cos ��5/2 + �p
2�a2 + h�2�cos � − ah��3 + cos2 ��

4��a2 + h�2 − 2ah� cos ��5/2 .

�B4�

he substitution

h�

a
=

a

h
�B5�

ields �r−r1�= �a /h��r−r0� and reduces �B4� to

− 	 �	�r�
�r

	
r=a

= p�1 + �
h

a
�3� 2�a2 + h2�cos � − ah�3 + cos2 ��

4��a2 + h2 − 2ah cos ��5/2 . �B6�

ondition �B2� is satisfied if

� = −
a3

h3 . �B7�

This equation concludes the derivation of the reflection principle for a source dipole and
eumann boundary condition on a neighboring sphere.

Next, we apply this principle in order to derive the electrostatic potential for the case with an
nsulating sphere immersed in a uniform electric field, Einc=E0ez; cf. Appendix A. This potential
atisfies the Laplace equation and condition �B2�, while the condition at infinity reads

	�r� � − E0r cos � as r → 
 . �B8�

The uniform incident field is now viewed as the total field of two dipoles located at �0,0 ,h�
nd �0,0 ,−h� in the limit h→
, where each dipole has moment p= pez.

22 The scalar potential due

o these dipoles in the presence of the insulating sphere and for r�a is
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	�r� =
p

4�h3� r cos � − h


1 −
2r

h
cos � +

r2

h2�3/2 −
a3

r3

r cos � −
a2

h


1 −
2a2

hr
cos � +

a4

r2h2�3/2 +
r cos � + h


1 +
2r

h
cos � +

r2

h2�3/2

−
a3

r3

r cos � +
a2

h


1 +
2a2

hr
cos � +

a4

r2h2�3/2� = −
p

�h3�r +
a3

2r2 + O
a5

r5

a2

h2��cos �

� − E0
r +
a3

2r2�cos �, h → 
 , �B9�

n view of �B8�, where

p = �h3E0, h → 
 . �B10�

PPENDIX C: SOLUTION OF NONLINEAR DIFFERENCE EQUATION

In this appendix, the difference equation

xn =
ã2

1 − xn−1
, n = 1,2, . . . , �C1�

here 0� ã�1/2 and x0�0, is solved exactly. The solution is subsequently simplified for �x0�
1.

The substitution xn= ã�yn /yn+1� recasts �C1� to

yn = ã�yn+1 + yn−1�, n = 1,2, . . . . �C2�

his equation is linear and can be solved via the replacement yn=�n. The variable � satisfies the
quation ã�2−�+ ã=0 with solutions

� = �± =
1 ± �1 − 4ã2

2ã
. �C3�

ote that �+�−=1 and �++�−=1/ ã. It is inferred that �+�1 and 0��−�1. The solution to �C2�
hus reads

yn = c1�+
n + c2�−

n , �C4�

here c1 and c2 are constants. Accordingly,

xn = ã�
c̃�2n − 1

c̃�2�n+1� − 1
, � = �+, c̃ = −

c1

c2
. �C5�

t follows that

c̃ =
ã + �−1�x0�
ã + ��x0�

, 0 � c̃ � 1. �C6�

et

c̃ = e−2�, � = e�, � � 0, � � 0. �C7�
quation �C5� then becomes
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xn = ã
sinh�n� − ��

sinh��n + 1�� − ��
, n = 0,1,2, . . . . �C8�

It remains to derive an approximation for xn when ã −1�x0��1. From �C6�,

c̃ � �1 − ã −1�−1x0��1 + ã −1�x0� � 1 + �1 − �−2�ã −1�x0, �C9�

hich in turn leads to

xn � ã
�1 − �1 − e−2��ã −1��x0��en� − e−n�

�1 − �1 − e−2��ã −1��x0��e�n+1�� − e−�n+1�� � ã
sinh n�

sinh�n + 1��
1 − en� sinh �

sinh n�
ã −1�x0��

��1 + ã −1�x0�e�n+1�� sinh �

sinh�n + 1��� � ã
sinh n�

sinh�n + 1��
− � sinh �

sinh�n + 1���2

�x0� . �C10�

his expression becomes a trivial equality for n=0. Note that the coefficient of the correction term
�x0� is bounded uniformly with n.

PPENDIX D: ELEMENTARY EXPANSION IN LEGENDRE POLYNOMIALS

It is known that23

�1 + 2�x + �2�−1/2 = �
l=0




�− 1�lPl�x���l, ��� � 1,

�−l−1, ��� � 1,
� �D1�

here x=cos � and Pl�x� are Legendre polynomials. It follows by differentiation that

x + �

�1 + 2�x + �2�3/2 = �
l=0




�− 1�lPl�x���− l��l−1,

�l + 1��−l−2,
� �D2�

or �� � �1 or �� � �1, respectively.
The term-by-term integration of �D1� yields

�
l=1



�l

l
Pl�x� = �

0

� dt

t 
 1
�1 − 2tx + t2

− 1� , �D3�

here �� � �1. This integral is elementary; by changing the variable to w according to
−x=�1−x2 sinh w we find

�
l=1



�l

l
Pl�x� = ln	 2

1 − x2

1

�

� − x + x�1 − 2�x + �2

1 + �1 − 2�x + �2 	 . �D4�

n the limit x→1− the right-hand side of this formula approaches −ln�1−��, as it should.
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