Generalized lteration Method for First-Kind
Integral Equations

By Dionisios Margetis and Jaehyuk Choi

An iteration method is described to solve one-dimensional, first-kind integral
equations with finite integration limits and difference kernel, K(x — x’), that
decays exponentially. The method relies on deriving via the Wiener—Hopf
factorization and solving by suitable iterations in the Fourier complex plane
a pair of integral relations, where each iteration accounts for all end point
singularities in x of the exact solution. For even and odd kernels, this pair reduces
to decoupled, 2nd-kind Fredholm equations, and the iteration yields Neumann
series subject to known convergence criteria. This formulation is applied to
a classic problem of steady advection-diffusion in the two-dimensional (2D)
potential flow of concentrated fluid. The remarkable overlap of recently derived
asymptotic expansions for the flux in this case is shown to be intimately related
to the analyticity of the kernel Fourier transform.

1. Introduction

A class of mixed boundary-value problems (BVPs) in two space dimensions
(2D) with Dirichlet conditions on a finite strip can be cast via Green’s function
[1] to the first-kind integral equation [2—4]

b
/dx’K(x—x/)u(x/)=f(x), a<x<b, (1)

a
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where the difference kernel, K(x), is integrable in (¢ — b,b — a) and may
be singular at x = 0, and the source function, f(x), is continuous in (a, b).
In particular, (1) with exponentially decaying K(x) as |x| — oo,! where x
is extended to (—oo, a — b) U (b — a, +00), arises in physical situations
such as continuous growth by advection-diffusion [5—7], and solidification and
freezing from a flowing melt [8—12].

There is no general theory for solving (1) explicitly [13, 14]. Closed-form
solutions can be obtained when a and b are finite for certain algebraic and
logarithmic kernels [15], and when a = —o0 or b = 400 for admissible K(x)
and f(x) by use of the Fourier transform [2, 3]. Numerical methods for (1)
include Latta’s method [16], which relies on the ordinary differential equation
(ODE) satisfied by K(x), improvements over Latta’s method by conversion
of (1) for scattering problems to ODEs satisfied by Painlevé transcendents
[17], series expansions in appropriate eigenfunctions [18], and the collocation
method [10, 19].

Noteworthy are approximation methods [3, 14] in the x- (physical) or
Fourier space. One method [3, 20] involves conversion of (1) with oscillatory,
even kernel K(x) to two Fredholm-type integral equations of the 2nd kind in
the Fourier domain. The resulting equations are solved approximately via a
specialized asymptotic technique [20], which is based on local expansions
in the complex plane, appropriate only for calculating diffracted (far) fields
in scattering problems. Another method [13, 14] is based on splitting the
integral in (1) and solving successively Wiener—Hopf equations of the first
kind [2]. Both of these methods [3, 14] are applicable to kernels K(x) that are
logarithmically singular at x = 0.

Recently [7] an iterative, fast convergent series in the spirit of Refs. [13, 14]
was invented to solve (1) when we ™ K(x) = Ko(|x|), the modified Bessel
function of the third kind [21], f(x) is a constant, and b = —a = P,
where P is sufficiently large. The Green function for the corresponding BVP
obeys an advection-diffusion partial differential equation in 2D and decays
exponentially with distance. In this case (1) describes, for example, the flux
normal to the boundary of a finite absorber in the steady 2D potential flow of
concentrated fluid [5—7] where P is the Péclet number, which measures the
relative importance of advection compared to diffusion. A remarkable finding
in [7] is the significant overlap of leading order, disparate expansions for
sufficiently “high” and “low” P, mainly due to the rapid convergence of the
former expansion even for small values of P, P > O(107%). This success of
asymptotic analysis has been puzzling until now.

TA function g(x) defined in (—oo, 4+00) is exponentially decaying if g(x) = 0(|x|""i epi") as x —
+00 where p~ > 0, pt < 0 and a® are real. For our purposes, this definition includes the case where
either p* or p~ equals § with § — 0; see Equations (21) and (57) below.
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In this article, we formulate a theory with the following features: (i)
Approximate treatment of (1) for the sufficiently broad class of kernels K(x)
that have algebraic Fourier transforms, relaxing requirements for the behavior
of these kernels at x = 0 yet requiring their exponential decay as |x| —
oo; and (ii) explanation of the remarkable properties of past, high-Péclet
number expansions for solutions to advection-diffusion problems [6, 7]. Our
formulation unifies the methods of [3, 14] and places the treatment of (1) on
the firm grounds of the theory for 2nd-kind Fredholm equations when the
Fourier transform of K(x) is defined to be analytic and invertible in a finite
strip of the Fourier domain.

Our starting point is the formulation of [3] for oscillatory kernels, which
we review here for completeness and extend to other kernels to solve (1)
systematically. Equation (1) is converted via the Wiener—Hopf factorization
[2, 3, 22] to a pair of coupled integral relations in the Fourier domain, and then
to decoupled, 2nd-kind Fredholm equations by imposition of kernel symmetry.
We propose a general, iterative treatment of the coupled equation pair by
applying regular perturbation in the Fourier domain; the iterations are enabled
by a coupling constant of this pair that decreases exponentially with the physical
strip length, (b — a). For odd- and even-symmetric kernels, our iterations
yield convergent Neumann series [2, 23] if the complex kernel, K(k, k'), of
the corresponding Fredholm equations has finite, appropriate integral measure
(norm), to be defined in Section 2.3.2. The iteration method preserves the
desirable feature of the methods in [13, 14] of yielding at each iteration all
singularities of the unknown function at the strip end points, x = a and b.

We validate our method by studying the integral equation for the steady
advection-diffusion problem studied in [7]. We derive the high-P expansion of
[7] by our new iterative means, thus justifying the method invented heuristically
in [7], and analyze the convergence of this expansion by relating a lower
bound of P required for convergence to analytic properties of the complex
kernel, IC. Hence, our approach reveals an intimate connection of the iteration
convergence for (1) with the analyticity of the kernel Fourier transform.

The article is organized as follows. In Section 2.1, we convert (1) to a
pair of coupled integral relations satisfied by suitable Fourier transforms. In
Section 2.2, we describe a systematic iteration procedure to solve this equation
pair, transcending limitations of approximations made in [3]. In Section 2.3,
we focus on odd and even kernels and reduce the equation pair to 2nd-kind
Fredholm equations in the complex domain; we discuss conditions for existence
and uniqueness of solution, and solve these equations via suitable Neumann
series. In Section 3, we illustrate our method for K(x) = (1/7)e* Ko(]x|) and
f(x) = 1, studied via different methods in [7—12]: In Section 3.1, we obtain
a “high-Péclet” series expansion for the solution of (1); in Section 3.2, we
provide the analytical reason for the remarkable convergence of this expansion
for small Péclet numbers; and in Section 3.3, we compare the iteration series
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with the exact, numerically evaluated solution of the corresponding BVP. In
Section 4, we conclude our analysis with a summary and discussion.

2. Wiener—Hopf technique and iteration method

In this section, we start with the application of the Wiener—Hopf method of
factorization [2] to (1), assuming that a unique integrable solution, u(x), exists;
in Section 2.3, we discuss conditions sufficient for uniqueness by imposing
kernel symmetry. We start by following [3] to derive a pair of integral relations
for suitably defined Fourier transforms related to u(x). Next, we transcend [3]
describing procedures of solving these equations iteratively to arbitrary order
under general considerations.

First, we give a few definitions and clarify notation. The kernel K(x), defined
for x € (—oo, +00), has Fourier transform

0
K (k) = f dx K (x)e ™™, )
—00

Similarly, the Fourier transform, H(k), of any other admissible function /(x)
defined in (—o0, +00) stems from replacing K(x) by A(x) in the right side of
(2). We assume that K(k) is an algebraic function, analytic and invertible
in the finite complex strip {k:a < Imk < B} where « < 0 and g > 0.
Consistent with this strip of analyticity and (2), two asymptotic limits of K(x)
are (see footnote 1)

K(x)= 0@ ") x > 400, K(x)=0(™™) x - —o0; (3)

see Section 2.2.1 for further details. Throughout this article, the + subscript
denotes functions (4 functions) analytic in the “upper half plane,” {k:Imk >
a}, and the — subscript denotes functions (— functions) analytic in the “lower
half plane,” {k:Imk < B}.

2.1. Integral relations in Fourier domain

This section focuses on the derivation of the following proposition.

ProposITION 1 [3] [Reduction of (1) to pair of integral relations]. If K (k)
is invertible and analytic inside the strip {k:a <Imk < B, <0, > 0}, (1)
reduces to the coupled integral relations

H+(k)+ / dik' e7 o= (k) 1
Ki(k)  Jo 2mi Kk k' —k

Ci={k' :Imk' =cj,a < c; <Imk}, (4a)

V., (k) +

=0,
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H_(k dk’ e* O (k') 1
s+ [ e e =0
K_(ky Je2mi K_(k') Kk —k
Cy ={k' :Imk’ = ¢, Imk < ¢; < 8}, (4b)

where H(k) are the (unknown) Fourier transforms of the functions hi(x)
defined by

b
hl(x)=/ d' K(x —xHu(x") x <a, h(x)=0 x>a, (5a)

b
hi(x) :/ dd' K(x —xHu(x') x>b, h(x)=0 x <b, (5b)

K (k) are defined to be free of zeros in the upper (+) and lower (—) half
planes with

dk’ In K (k") } ©

Ko(k) = exp{ +
+(k) eXp{ /C 2k —k
2

Vi (k) and S_(k) are related to the source function f(x) by
dk’ e*“F(k'y 1 dk’ e*PF(k’y 1
= [ S sw=- [ S
o 2mi Ky(k') k' —k o 2mi K_(k') k'—k

(7)
and F(k) is the Fourier transform of f(x) by setting f(x) = 0 outside [a, b],

b
F(k) = / dx f(x)e ™, (8)

Proof:  First, we routinely set u(x) = 0 and f(x) = 0 forx < aand x > b in
(1) and thus obtain the equivalent relation

/+00 dx'K(x — xu(x") = f(x)+ h(x) + h(x), —o0o<x<oo, (9)

o0

where Ay and A, are defined by (5). Application of the Fourier transform to (9)
yields

R(k)U(k) = F(k) + e ™ H, (k) + e ™ H_(k), (10)

where

b
U(k) = / dx u(x)e™ ™, (11)

0 ) +00 )
H+(k)=f_ dx hy(x +a) e, H_(k)zfo dxh(x +b) e, (12)

o0
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and F(k) is given by (8). Because h(x) = O(e™®*) as x — —oo and
ho(x) = O(e %) as x — 400 in (5), H(k) is indeed analytic for Imk > «
and H_(k) is analytic for Imk < 8.

Second, we simplify (10) by formally factorizing K (k),

K (k) = K+(k)K_(k), (13)

where K. (k) are found through the Cauchy integral formula [2, 22] and are
described by (6); we define K. (k) to be free of zeros in their half planes of
analyticity. Thus, (10) reads

ika M Fm)- | Hel) | [ TOH (0]
BT ="w "ot e

or, alternatively,

it _[eMFR). | Ho(b) | [e"TH(B)]L
K (K)[e®™Uk)]y = 0 +K_(k)+ X ® . (14b)

Third, we find a relation between H and H_ via further decomposing the
right-hand sides of (14) into + and — functions,

[e—ik(b—a)H7 (k)] -

o = W (k) + W_(k), (15)
[eikwl(a)_l({;)(k)L R+ BB, (16)
% = Vo(k)+ V_(k), (17)
[eigi((g] = 8. (k) + S_(k). (18)

Furthermore, H. /K. in (14) is analytic in the upper (4, upper sign) and
lower (—, lower sign) half plane, since by (6) none of K. (k) vanishes in their
respective half plane of analyticity. Thus, by means of analytic continuation
we reduce (14) to the relations [2]

AL S Y W R R S (19)
+ K+ + =Y - K_ - — Y
where each term in (19) is assumed to vanish as |k| — oo in the upper
(left equation) or lower (right equation) half plane. Relations (4), along with
(7), follow from (19) by expressing W, R_, V., and S_ as contour integrals
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of the left sides in (15), (16), (17), and (18) using the Cauchy integral formula
[2, 22]. This statement concludes the proof. [ |

The reader is referred to Section 2.2.1 for details on the singularities
ascribed to K (k). We now state the following corollary.

COROLLARY 1.  Once H (k) are determined by solving (4), u(x) is obtained
via the inversion formula

[ dk i [ dk F(k)+e ™ H, (k) + e ®™H_(k) ;.
u(x)_/rg U(k)e _/rg 0 e™, (20)

where T is the infinite, parallel to the real axis, path that lies in the strip {k : o <
Imk < B}, provided that the integral (20) converges.

2.2. Iteration method for kernel K(x) without odd or even symmetry

In this section, we prescribe more precisely the kernels entering (1) and apply
an iteration method to solve (4) by treating the integrals involving H as small
in some sense.

2.2.1. Prescriptions for kernel Fourier transform. We introduce the following
interrelated prescriptions.

(i) K(k) is analytic and invertible in the strip {k:—2£¢ < Imk < 0}.
Consistent with this complex strip,

Kx)=0x™ x— 400, K(x)=O0(x|%e*) x > —o0, (21)

where 1 and ¢ are positive for all practical purposes.

(i) K_(k)has poles or branch points at k =k}, (in the upper half plane) where
p=0,1,...,Im k;‘ll > Imk), , and Imk," = 0. The requisite branch cuts
lie in the upper half plane. By (21), K (k) = O((k — k)" as k — kgp.

(iii)) K, (k) has poles or branch points at k = kl[;’ (in the lower half plane)
where Im k;’ v < Im klzf and Imkl® = —2&( < 0. The requisite branch

cuts lie in the lower half plane.? By (21), K(k) = O((k — ki°)*™").

By our prescriptions, the kernel K(x) is not odd nor even, although odd and
even kernels may be suitably transformed to meet (i)—(iii) (see footnote 2).
Evidently, 8 = 0 and, thus, the lower half plane is the region {k:Imk < 0},
and @ = —2§& and the upper half plane is the region {k:Imk > —2&,}.

2The prescribed locations of singularities may be obtained for any kernel having K (k) analytic and
invertible in a strip of the k-plane with finite width, 2&. It suffices to multiply K(x), u(x), and f(x) in
(1) by suitable, simple exponential functions. Hence, kernels such as K(x) = e** Ho(|x|), where Ho(z)
is the modified Hankel function [21], are excluded from our analysis.
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2.2.2. Iterations in Fourier domain. To indicate that (4) are amenable to
iterations, we next indicate that these equations have a natural coupling constant
when K (k) is analytic and invertible in a finite strip. Further justification of
iterations is given in Section 2.3.2 by invoking an appropriate kernel norm
within the theory for 2nd-kind Fredholm equations. With the change of the
integration variable by k' = k' — i2&, in the integral of (4a), (4) read

H, (k) / dk’ e~ F o= [ (k' — i2¢&)) 1
Vi (k =0, (22
Ot o T i Koo =ik k=i —k (222)
H_(k) / dik’ e C-afg (k) 1
S_(k)+ ——~ — =0, (22b
"+ K_(ky Je 2mi  K_(k) K —k (22b)

where C = {k":Imk’ = ¢y = const.; 0 < ¢y < Imk + 2§}, C_ = C; and

€ = e 250b=a) ¢ o, (23)
For algebraic kernels that satisfy criteria (i)—(iii) of Section 2.2.1, we deform
each integration path in (22) in the lower, for (22a), or upper, for (22b), half
k’-plane by wrapping the contour around branch cuts and evaluating residues
at poles. Evidently, the integrals are O(1) as € — 0. So, the solution to (22) is

now formulated as a problem of regular perturbation.
The main proposition of this section is stated as follows.

ProposITION 2 [Regular perturbation and dominant-balance equations for

(4)]. Replacing Hi(k) = Hi(k; €), Vi = Vi(k; €), and S_ = S_(k; €) in
(22) by the power-series expansions

N
Hi~Y € Hy, Hyx=0(1), (24)
n=0

N1 N2
Vi~ ZOE" Vs 8-~ ZOGHS”*’ Vit Sue = O(1) € = 0%, (25)
n= n=»

and taking K. (k) as independent of €, H,1 are determined recursively by

e K= pg, 1 (k' — i2&)
K. (k' —i2&)

1
Hyi (k) = =K (k) |:Vn+(k)+ ﬁfc dk'

1

|, H_y =0, 2
% k’—izéo—k} D (262)

eik’(b—a)HnJr(k/) 1
K (k) k—k|

n=0,1,2,....  (26b)

1
H,_(k) = —K(k)[Sn(k)— = /C dk’
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Proof: The proof follows after some algebra by direct substitution of (24)
and (25) in (22), setting equal coefficients of same powers of €. The details are
left as an exercise. [ ]

A few remarks on Proposition 2 are in order. (i) Proposition 2 does not
address the existence and uniqueness of solution to (4), nor does it provide
conditions for the validity of regular perturbation and its possible convergence
to a solution; these matters are discussed in Section 2.3 for even and odd
kernels, which arise in most physical situations. (ii) The convergence of the
iteration series relies both on the magnitude of € and on properties of the
kernels entering (4); the reasons become clear in Section 2.3 via the theory of
2nd-kind Fredholm equations. (iii) V,, S,— and corresponding integrals in
(26) may depend on a, b, or &, thus implicitly depending on €. The present
perturbation approach views € as a parameter properly independent of a, b, or
&o. (iv) In view of the initialization condition in (26a),

Hoy (k) = =K1 (k) Voy(k), (27)

the zeroth-order iteration, » = 0, yields a right-end point correction to the
problem of the semi-infinite strip. More generally, because approximations for
both Hy(k) are included at each iteration step (n = 0,1,2,...), (26) yield
both end point singularities of u(x) at every iteration, n; see the example of
Section 3.1.

In view of Corollary 1, we state the following.

COROLLARY 2. Once H,y are determined, U = U(k; €) and u = u(x; €)
follow from

N N
Uk;€) ~ Up(k) + Y €"Up(k),  ulx;€) ~up(x) + Y _ €"un(x),  (28a)
n=1

n=1
where, if F(k) is independent of ¢,

F(k) + e~ Hy , (k) + e~ Hy_ (k)

Un(k) = 0 , (28b)
e ™ H, (k) + e H, (k)
UnZl(k) - K(k) ) (280)
dk .
() = /F = Uwe (284)

and T lies in {k: —2&) <Imk < 0}, provided that the integrals (28d) converge.



10 D. Margetis and J. Choi

2.3. Even or odd kernel: Conversion to and solution
of Fredholm equations

In this section, we formulate and solve simplified integral equations for the
H (k) introduced in (4) of Proposition 1 via imposing kernel symmetry. We
extend the formulation of [3] to odd kernels and point out connections to
2nd-kind Fredholm equations, which were unnoticed in [3, 13, 14].

First, we take b = —a > 0 and impose Vx € (—o0, +00)

K(—x) = K(x) (even symmetry), or K(—x) = —K(x) (odd symmetry).
(29)
Applying kernel symmetrization consistent with prescriptions (i)—(iii) of
Section 2.2.1, K(k) is analytic and invertible inside the symmetric strip
D = {k:=§) = a < Imk < B = &} with either K(—k)= K(k) or
K(—k) = —K(k) Yk € D, where 60 £ i& (0y: real) are singularities of K (k)
closest to the real axis. Without loss of generality, we take

Ki(=k)=iK_(k) Vke D ={k:Imk < &), (30a)

K_(=k) = FiK (k) Vke Dy = {k:Imk > —&), (30b)

where the upper or lower sign holds for an even or odd kernel, respectively,
and D = D, N Dy.

Second, we note in particular that, for u(x) and kernels that satisfy the
conditions of the Hilbert—Schmidt theorem [23], (1) has a unique solution if
the kernel eigenfunctions form a complete set [2, 23]. A sufficient condition
for completeness is that K(x) stems from the Green function of a proper
Sturm—Liouville system [2, 23]. This observation applies to square integrable
u(x) and f(x), and is thus restricted to its applicability: for example, it cannot
account for solutions u(x) = (b*> — x?)~'/? w(x), where w(x) is continuous in
[—b, b], which stem from kernels K(x) logarithmically singular at x = 0 [13].
In Section 2.3.2, we discuss the solvability of (1) on the basis of 2nd-kind
Fredholm equations in the Fourier domain.

2.3.1. Conversion to 2nd-kind Fredholm equations. Without further ado, we
state the following proposition.

ProrosITION 3 [3] [Formulation of (1) in terms of 2nd-kind Fredholm
equations]. For even kernel K(x), K(—x) = K(x)Vx € (—o00, +o0), (4) are
recast to the decoupled Fredholm equations

YE(k) + / dk’ Ke(k, K)Y=(k') = S (k), (31)
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where k is real, the integration path T'° lies in the real axis and is indented
below —k, the unknown (—) functions are defined by’

YE(k) = Hy(—k) + H_(K), (32)
the source (—) function is

SE(k) = [—iVi(—k) F S_(k)]K_(k), (33)

and the complex kernel K¢ is defined by
1 —2ik'b K _(k
Kk, Ky = — ®
2n k' +k K (k')
For odd kernel K(x), K(—x) = —K(x)Vx € (—00, +00), (4) are recast to

34

ZE(k)yF | dk Kk, kK)ZZE(K') = SS.(k), (35)
FO
where k is real, the path T'° lies in the real axis and is indented above —k,
ZE(k) = Hy(k) £ H-(~h), (36)
SL(k) = [=Vi(k) FiS_(=k)]K (k) (37)

and the complex kernel K° is

1 g%k’ K+(k)
Kok, k") = — .
k) = v Tk K_(K)

(38)

Proof: We start with (4) of Proposition 1. For even kernel, we replace
the independent variable k¥ by —k in (4a) and change the integration variable
from k' to —k’ in (4). For odd kernel, we apply the same operations to these
equations with the equation order reversed.

For even kernel (4) become

H.(—k /% —2ik’b H (k'
iVi(—hy 4 R [dRe ®) _o, (309)
K e 2m b kKt
H_ k dk/ —2ik’b H _k/
s (o + =0 ¢ ) (39b)

K_(k) ' Jee2mk +k Ko(k)

where £ is now taken to be real. By adding and subtracting these equations, we
derive (31)—(34), which concludes the proof for even kernel.

3The superscripts & here and in the remainder of the article are self-explanatory and should not be
confused with the same symbols as subscripts, which denote analyticity in the upper or lower half plane.
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For odd kernel (4) become

H. (k) dk' % H_(—k')

Vo(k - | = — =,
+0)+ Ki(k) Jro2m k' +k K_(K')

(40a)

H (—k dk’ 2ik’b H. (k'
iS_(—k) + # — @ e (k) =0, (40b)

K. (k) ro 2 k' +k K_(k')
where k is again taken to be real. By properly adding and subtracting these
equations, we deduce (35)—(38), which completes the proof for odd kernel. B

Clearly, the definitions of complex kernels for (31) and (35) are not unique.
Another choice is

1 e—Zik'b K,(k/)
Kk, k)= — , 41
kK = vk Kok @1

1 e2ik’b K+(k/)
Kk, k') = — - 42
k) = vk Kok (42)

Formulas (41) and (42) are used for mathematical convenience in Lemma 1
below and in Section 3.2 in connection to an advection-diffusion problem. The
corresponding functions entering (31) and (35) in place of (32), (33), (36), and
(37) are

Ho(—k) + H_(k)

Y(k) = TR 43)
SE(k) = —iV (k) F S_(k). (44)
ZE(k) = HAk)é (Hk)(_k), (45)
S1(k) = —Vi(k) F iS_(—k). (46)

2.3.2. Complex kernel norm and iteration series in Fourier domain. Next,
we outline the steps for solving (31) and (35) for algebraic K (k) by invoking
theory of 2nd-kind Fredholm equations [2, 23], which in turn relies on the
definition of a norm for the complex kernels K%°. Here, we discuss the case
with a square integrable complex kernel [2] (finite “L,-norm™). By allowing &
to move freely in the lower or upper half plane, the integration path in (31) or
(35) can be deformed in the lower or upper half k’-plane, respectively, to a
contour ' or I'.. wrapped around appropriate branch cuts assigned to K (k).
Along these deformed contours, the kernels K%°(k, k') decay exponentially
with &’; see Section 3.2 for implementation of this idea to a symmetric kernel
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for advection-diffusion. Defining a trajectory s(¢) for £ and &£’ lying in T'_ or
I'., so that £ = s(¢) and k' = s(¢') taking —oo < f, t < oo for definiteness,
(31) and (35) are recast to

+o0

U(k(t)) £ / dt’ s(t )K= (s(2), s(t') U(s(t')) = S(s(2)), (47)
where s(¢) = ds(t)/dt and K° = O(e 2ms(DIb) a5 k' — oo.
We now state the following lemma, needed for Propositions 4 and 5 below:

LEMMA 1. For algebraic Fourier transform K (k), analytic and invertible
in the finite strip D = {k: =&y < Imk < &y}, the Ly-norm, ||K*°||, defined by

“+00 +00
1K = / dr’ / SO K60, sEP. (48)
is finite ||K%°|| < oo.

Proof: The proof follows from (47) by use of alternative formulas (41)
and (42) for the complex kernels. We partly symmetrize the complex kernel
by the prescription of [2] and apply the definition of a norm for square
integrable kernels [2, 23] so as to obtain (48). Integration in ¢ is performed
first: Choosing the trajectory s(¢) so that s(¢) = O(|¢t|) as |t| — oo and noting
that, for algebraic kernels considered here,

K_(k)
Ky (k')
the integral in ¢ is absolutely convergent. The remaining integral in ¢’ is also

convergent because of the exponential decay of the integrand noted below
(47). |

—1 kK — o0, Kk =s(t), (49)

Invoking the theory of Fredholm equations [2, 23] we can routinely state
conditions for solutions to (31) and (35), especially the Fredholm alternative
[2] for square integrable complex kernels. In operator notation, (31) and (35)
are recast to

U+ KU =S8, (50)

whered =Y_or Z,, K = K°or K°, and S = S¢ or SY is the source function.
The solution to (50) is obtained iteratively via the Neumann sum

M
U=>y (F1)"K"Ss. (51

m=0

which amounts to expansion (28) for U(k). The operators K™ here are
represented by the iterated kernels defined by [2]
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Kk, k') = / dk" Ky 1(k, KNVC(K" K, Ki=K, m=2,3,..., (52)
r
so that IS is represented by the function
(K"S)(k) = / dk’ K (k, kK"S(k"), (53)
r

where the path I coincides with I'® or I'° specified in Proposition 3.
In particular, we state without proof the following propositions regarding
47).

PROPOSITION 4 [2, 23]. Iteration series (28) for U(k), or alternatively (51)
as M — oo, converges in the complex Fourier domain uniformly with k inside
the strip {k:—&) < Imk < &o} if |AM| > 1, where Ay = Ai(€) is the
eigenvalue of the (partly symmetrized) kernel \/s(t")s(t)K(s(¢), s(t)) that has
the smallest magnitude, and K is defined by (34) or (38); alternatively, K can
be defined by (41) or (42).

PropoSITION 5 [2, 23] [Sufficient condition for existence of solution and
convergence of iteration series in Fourier domain]. If

1K < 1, (54)

the iteration series (28) for U(k), or alternatively (51) as M — oo, converges
in the complex Fourier domain uniformly with k inside the strip {k:—&, <
Imk < &y}

Because A; is not known a priori, Proposition 4 becomes useful for
applications if suitable lower bounds are obtained for |A;| [2, 23]. For example,
the practically appealing Proposition 5 can result from the inequality [2]
|A1] = |IK||~". Improved lower bounds for |1 involve iterated kernels [2].

Assuming &, is independent of the physical strip length, 25, ||]| is a
monotonically decreasing function of 2b and, thus, (54) is satisfied for b
> B, or € < e ?8% where B is a lower bound of b. Hence, the question
arises whether B&( can be very small, or € be quite close to unity for rapid
convergence. Evidently, the answer depends on the behavior of |||| near b =
0; see Section 3.2.

Once Y*(k) or Z f(k) of Proposition 3 are determined, the functions H 1 (k)
are obtained via (32) or (36),

Y (Fk) £ Y (Fk) or Hy(k) = ZE(Ek) £ Z (k)
2 b :l: - 2 9

by which u(x) is obtained in view of Corollary 1. The inversion integral
formula (20) is required to converge with the path I' lying inside the strip
{k:—=&p < Imk < &}.

Hy(k) =

(55)
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3. Steady advection—diffusion near absorbing strip

Next, we illustrate the analytical computations involved in and the efficiency
of our method by focusing on a steady advection-diffusion problem [7], where
the unknown function u(x) of (1) is the flux to the absorbing strip boundary,
fx)=1,b=—-a=P > 0,and

1
K(x) = ;exKo(IXI)- (36)

As shown below, this choice of source function and kernel causes fortuitous
algebraic simplifications.
In this case, the kernel K(x) behaves as
K(x)=0(x""%) as x — 400, K(x)=O(x|""%*) as x > —o0.
(57)
Thus, n = ¢ = 1/2 and £y = 1 in (21). First, we obtain K (k), K4 (k) and F(k)
by using (2), (8), and (13) [21],

~ 1 1 1
K(k) = NN T +(k) Nk K_(k) = N (58)
F(k) = 2sm(:P), (59)

where, for definiteness, the branch cut for vk coincides with the positive
imaginary axis and the branch cut for +/k + 2i is the half line {k:Rek =
0,Imk < —2}. It follows from (23) that

e =e . (60)

Second, we calculate the functions V' (k) and S_(k), which enter (22), using
(17) and (18) along with the Cauchy integral formula [2, 15]:

I L i () S
v = [ S e g = e a®, 6D

where
dk' Jk'+2i 1 vk +2i — /2
Vor = M A e : , (62)
¢, 2mi ik kK —k ik

—i2P(k'+2i) 1

dk’ e
Vig = — /T
* /Cl VT T vk

in/4

- eik APV erfo(VAP) — e Ak 2ie 2Pk erfo(y/2P(2 — iK))),
(63)
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and

(k)= So_ = = —|1 — e erfe(vi ,
T o2 ik K —k Jk

(64)
where the contours C; and C, are defined by (4) taking « = —2 and 8 = 0, and
erfc(z) = % fz “dte™" is the complementary error function. We note that, for
definiteness, —2 < ¢; < 0 in (62) and (63) since the split integrands acquire a
simple pole at £’ = 0. In inversion formula (20) and its iteration counterpart,
(28d), the contour I' must lie inside the complex strip {k: —2 < Imk < 0}.

3.1. Iteration series via integral-equation pair

In this section, we apply Proposition 2, specifically the recursive formulas
(26), to find an approximate solution to the given advection-diffusion problem.
We show that our formulation not only reproduces the high-Péclet asymptotic
expansion of [7] but also enables the derivation of useful lower bounds for
convergence via Proposition 5.

3.1.1. Zeroth-order approximation. First, we use the recursive formulas (26) for
n = 0. The zeroth-order terms for the unknowns H4 read

1 Vk+2i—2i
Hy (k) = — , : , (65a)
k4 2i ik
dkg e*P Hy (ko) 1
Hy_(k) = K_(k) | —S_(k — , 65b
=[5 [ SR e
by which, in view of (28b), we obtain
U(k) ~ Up = KK [e" Hoy + e ™ Hy_ + F]
wp N2 : dk P2k 2i
= ¢ Vi + e "k +2i f =0 ¢ . V2 . (66)
ik ¢, 27 iJkoSho +2i ko — k

Inversion of the last formula by (28d) is carried out by wrapping the contours in

the k- and ko-planes around the branch cuts of «/k + 2i and v/k¢, and changing

integration variables by i(P — x)(k + 2i) = t* and —iko = y3, respectively.
Thus, we obtain the following result.

RESULT 1. The zeroth-order solution, uy(x), for the advection-diffusion
problem is
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2 1 1 /2 1 +oo ) g2
w(Pyx) ~uog(Py) = JT_P\/T—XjLF F\/T—X - dtt’e

+00 e 2P¥; 1
X dy, ) (67)
/_oo %72 4+ P(1 - 02+ 3) 2+ 32

where x = x/P, —1 < x < 1.

The zeroth-order iteration yields both end point singularities of u(x), at x =
+1. The variable y was introduced for direct comparisons with the results in
Section 4 of [7]. The integral of (67) can be simplified [7], and u((x) becomes

[ 1 1
up(Px) = JT_P|: 1+X_ﬁ
oo 2 ZPXK P
< [ azetotan(yar e o)+ < 0]
(6%)

which is also given by equation (4.15) in [7].

3.1.2. First-order approximation. It is of interest to carry out the iteration
(26) to one more order, taking n = 1, before we describe the results for
arbitrary » in Section 3.1.3. Thus, we have

dko efi2(ko+2i)PH0_(k0) 1
Hi (k)= —K, (b)Vi+(k) — K (k —
14l = —K V14 = Kalb) | T8y

V2i dky e 2k t20P [ETL00 ]

- Vk+2i Je, 2mi N ko — k
dk i2k P 1
< / dh__ e , , (69)
G, 27‘[11\/](_1«/](14-21 ky — ko

dko P H, (ko) 1

H-(k) = K-(k) o, 2mi K (ko) ko—k’

(70)

by which U, (k) is obtained via (28c),
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1 . .
Ul(k) = W[elkPHH_ + eilkPH]_]
+ p—
ik ikP/ dko e_iz(ko—"_zi)P«/ko +2i 1 / dk1
= — ke P ~ .
C 2mi \/k_o k() —k C, 2mi
i2k1 dk i2ko P T
— ik + 2y i | ZE0E vk
z\/_, [k, + 2i kl G 2mi «/ko +2i
1 / dk, e*ﬂ(kl“l)’i/kl +2i 1 dk>
% - -
ko —k C 2mi \/k_l k] — k() C 2mi
x : (71)
iNkyky +2i ky — ki

Inversion of this formula is carried out by (28d) via deforming the integration
paths around the branch cuts in the upper or lower halves of the k- and k;-planes
(j = 0,1,2), following the integration procedure of Section 3.1.1.

After some algebra, we obtain the following result.

REeSULT 2. The first-order solution, u(x), of the advection-diffusion problem
is
ur(Px)

D) 1 —2Py2 2
= .= —/d‘( rzefzfdyo ¢ 5 %0
VP o3 yT+x @+ P+ 0Q+55) 42

—2P}’1 \/7 5
x [ dy e 2Pa- X)/drref
/ 2+y0 +yl /2+y 7T4«/1—

o-2PY e~ 2Pt y?
x/ o - /
2+ P(1 = x)(2+ %) /2+y A2 hy g
-l<y<l (72)

/ 4 e—ZPy2 1

X Y2 = 2 )
y 2 + y 1 + 2 /2 + y%

The symbol | here and in the remainder of this article denotes integration

from —oo to 400 unless it is stated otherwise. Again, the iteration yields both
end point singularities of u(x).

3.1.3. nth-order approximation (n > 1). The iteration procedure of (26) can
be repeated to arbitrary order. For n = 0, the solution is given by (67). By
induction for n > 1, the integral formula for arbitrary # is obtained.
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REsULT 3 [nth-order coefficient of iteration series for u(x)]. The iteration
series ug(x) + uy(x) +---+ uy(x) +--- for the flux on the physical strip
boundary has the general coefficient

_2(1—x)P
n(PX)__[[ IZn(1+X)+elﬁ 12n+1(1_X):|7 n>1,
(73)

where x = x/P, —1 < x < 1,

I,(v) = /drr e /dyo 2+y0 /dyl(ROQl)/ dy,(R102) -

x /dyml(Rm_sz_l), m>2, (74)

2 —2Py?
R _ ym _ e ym
m — ’ Qm -

7 (Vi + Vms1 +2) NIESTS
Each iteration accounts for both singularities of u(x), which are the sole
singularities allowed by the present, logarithmically singular (as x — 0) kernel
K(x) [13, 24]. Equation (73) is in agreement with equations (4.21) in [7],
which were derived via iterations of (1) in the x-coordinate space.* > It has not
been possible to evaluate the integrals /,, of (74) in simple closed form for
arbitrary m, but the numerical integrations can be carried out efficiently by
using recursion [7]. In Section 3.2, we study the convergence of Y .~ U, (k)
for advection-diffusion by invoking Proposition 5 of Section 2.3.2.

(75)

3.2. Convergence by complex-kernel norm

Next, we address the issue of convergence of scheme (28), which properly
leads to the Neumann series (51) of Section 2.3.2. First, we symmetrize K(x)
fully by defining the modified kernel K o = e *K(x) = (1/7)K(]x]); thus,
K moa(k) = (k* 4+ 1)~'/2, which is a function analytic and invertible inside the
complex strip D = {k:—1 < Imk < 1}. The unknown and source functions
are transformed to #yoq(x) = e u(x) and fioq(x) = e f(x) = e™*. Hence,
by alternative formula (41) the complex kernel K¢ (k, k) is
. o 1 e—2ik’P k' + i

Kok K) = o ok Ve =i
The upper half plane is D, = {Imk > —1} and the lower half plane is D =
{Imk < 1}.

(76)

4Equation (73) agrees with the statement by equation (1.5) in [13], which results from Riesz’s theorem
for bounded linear functionals.
SWe alert the reader that our notation in (73)—(75) differs from the notation in [7].
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Second, by resorting to Proposition 3 we expose the exponential decay of
K oa(k, k") by deforming the integration path for the integral of (31) in the lower

half k’-plane, where the contour is wrapped around the branch cut for /&' + i.
Using (48) with the trajectory s(t) = —i— it*, we obtain, after some algebra,

—4Pt 2 1/2
dt| dt' |#
” mod” (2 )2 f / | | (t2 + 12 +2)2 2 +2

TE8P) — 1], (77)

where E1(z) is the exponentlal integral [25],

E\(z) = / dt % (78)

Proposition 5 combined with (77) entails the following result.

ResuLT 4 (Lower bound for P). The iteration series Ugy(k) +
Uik) +---+ Uyk) +--- for the Fourier transform of u(x), defined in the
complex strip D = {k: —1 <Imk < 1}, converges uniformly in D provided that

(1+8P)*E\(8P) — e < n?, (79)

where the left-hand side is a monotonically decreasing function of P. The
numerical solution of (79) yields [26]

P > 1.3356 x 107°. (80)

This result reveals an astonishingly small lower bound for P, which comes
from the monotonicity of || o4 || With P and the logarithmic singularity with a
small prefactor of this norm as P — 0,°

2 1 1
1K S oa NF(lnS—P—y—1>. 81)
Indeed, use of (81) in Proposition 5 yields

efnzflfy
P> — (82)

which agrees well with (80); y is Euler’s constant. An explicit calculation
using (81) shows that ||/C|| has sufficiently small values to guarantee rapid
convergence of > U,(k;€) even when P = O(107%).

We conclude that condition (54) and its product, (79), effectively explain
the remarkable overlap of the approximations used in [7] for high and low P;
see Section 4 for a discussion of this intimate relation between convergence
and behavior with b€ of ||/C|| for algebraic K (k).

®We use Ei(z) ~ —Inz — y, where |z| <« 1 and |Argz| < 7.
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Figure 1. Numerical solution for ¢()) compared with our iteration series (28): (a) P = 1073
and iteration number N = 0,1,2,3, (b) P =102 and N = 0,1,2, and (c) P =10"" and N =
0,1,2.
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Figure 2. Numerical solution and iteration series with N = 0,1,2 for ¢(x; P) at the strip
end points, x = —1 and 1, as functions of P: (a) x = —1 and (b) x = 1.

3.3. Graphical representations

Next, we provide comparisons for different values of € (i.e., P) and x =
x/P (=1 < x < 1) of the series (28) with the numerical solution of the BVP
corresponding to (1). The details of the numerical method are described
elsewhere [7]. For convenience in our comparisons, we define and use the
continuous functions

o(x)=¢(x; P) = VP = xH) u(Px), ¢alx) =Pl —x?) uy(Px).
(83)
In Figure 1, we show the numerical solution for ¢(x ; P) and the corresponding
series Z;ILO ¢, (x) as functions of y for different values of the parameter P
and iteration number N: P = 1073 and N = 0, 1,2, 3 in Figure 1(a), P = 1072
and N = 0,1,2 in Figure 1(b), and P = 107! and N = 0,1,2 in Figure
1(c), where the maximum value of N in each case is chosen for sufficient
accuracy. In Figure 2, we show the numerical solution and the iteration series
for ¢(x; P) evaluated at the strip endpoints, x = —1 [Figure 2(a)] and y =1
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[Figure 2(b)] as functions of P for different values of N. Similar comparisons
have been shown in [7] for a circular physical boundary, which can be mapped
to the finite strip via a simple conformal mapping [7].

4. Conclusions

In this article, we solved iteratively the first-kind integral equation (1) with
kernel that decays exponentially; K(x) has asymptotic limits (21) and algebraic
Fourier transform that is analytic and invertible in a finite complex strip. As a
starting point and without imposition of kernel symmetry, we considered the
case where (1) stems from a well-posed BVP and thus has a unique integrable
solution u(x). Using the Wiener—Hopf technique, we converted (1) to a pair
of coupled integral relations for Fourier transforms in the complex plane.
Accordingly, we formulated the iteration method (26) via treating as small
the coupling constant €, Equation (23), of these integral relations. By our
prescription, —Ine admits a simple interpretation: It is the product of two
strip lengths, namely, b — a, the length of the physical strip where boundary
conditions are given in the BVP, and 2&, the width of the strip of analyticity of
the kernel Fourier transform, where its inversion is carried out consistently with
the asymptotic behavior of the kernel in the physical space. Our approximations
produce all end point singularities of the actual solution at each iteration.

For difference kernels with odd or even symmetry, a unique, square
integrable solution, u(x), of (1) exists on the basis of the Hilbert—Schmidt
theorem [2] when the kernel K(x) describes a Sturm—Liouville system [2, 23].
We extend the analysis to singular, nonsquare integrable u(x) by reducing the
pair of integral relations for (1) to 2nd-kind Fredholm equations with kernels,
K(k, k'), of two complex variables. These equations are solved subject to the
finiteness of the properly defined kernel norm in the complex k, k'-space. In
particular, the iteration series for the unknown Fourier transforms are identified
with suitable Neumann series subject to established convergence criteria. By
virtue of Propositions 4 and 5, we conclude that the rapidity of convergence
of the iteration series does not depend exclusively on the magnitude of the
coupling parameter, €. A complete characterization of the iteration series
requires knowing the value of the complex-kernel norm, ||XC||, defined by (48)
in Lemma 1.

To validate the iteration method and exemplify the role of ||K|| we compared
the iteration series with the numerical solution of a classic BVP describing
steady advection-diffusion [7]. This problem involves a positive parameter, P,
the Péclet number, so that in nondimensional variables the length of the physical
strip is b — a = 2P and the coupling constant is € = ¢~*’. Our computations
showed that only 3 or 4 terms of the iteration series suffice for very good
accuracy even when P is small, P = O(1073) and € is quite close to unity. This
property is understood by noticing that ||X||, interpreted as an L,-norm along
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the appropriate path of the complex plane, is monotonically decreasing with P
and is logarithmically singular at P = ( with relatively small, constant prefactor.
A few general remarks are in order about ||K]||, defined in the L,-sense,
when K (k) is an algebraic function, even or odd, analytic and invertible in a
symmetric, finite strip of fixed width 2£ in the complex plane. With

1122113 =+1 as |k > oo, (84)
it follows from (41) or (42) that
| T2k
Kk, k") ~ :I:g T as k' — oo, (85)

where the sign in front depends on the branch of K (k) by (84) and the sign
in the exponent depends on the kernel symmetry. Consequently, by (85) the
integral (48) for ||K||, being monotonically decreasing with 26 (the length of
the physical strip), becomes logarithmically singular as 46§, — 0 apparently
regardless of the nature of singularities in x of the kernel K(x). We are tempted
to expect that a lower bound for the product 4b€ such that the iteration series
converges in the k-plane, although dependent on the precise expansion for
[IK]|| as 4b&y — 0, can in principle be small.

The analysis presented in this article unifies and generalizes the formulations
in [3, 14], and elucidates results in [7] by showing an intimate connection of
asymptotic analysis for high Péclet numbers to aspects of 2nd-kind Fredholm
equations in the Fourier domain. There are open questions left for future
work. From the viewpoint of applications, one should identify and solve by
this iteration method problems where the kernel K(x) has nonlogarithmic
singularities; this task is the subject of a work in progress. The analytical
framework developed here will hopefully become a common tool in software
for solving first-kind integral equations and associated linear, mixed BVPs.
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