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Phase-field model for reconstructed stepped surface
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We formulate a phase-field, or diffuse-interface, model for the evolution of stepped surfaces under surface
diffusion in the presence of distinct material parameters across nanoscale terraces. In the sharp-interface limit, our
model reduces to a Burton-Cabrera-Frank (BCF)-type theory for the motion of noninteracting steps separating
inhomogeneous terraces. This setting aims to capture features of reconstructed semiconductor, e.g., Si surfaces
below the roughening transition. Our work forms an extension of the phase-field construction by Hu et al.
[Physica D 241, 77 (2012)].
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I. INTRODUCTION

Surface reconstruction (SR) amounts to the presence of
distinct structural phases on certain crystal surfaces, especially
those of semiconductors; such phases depend on temperature
and misorientation angle [1,2]. For example, many disparate
phases on Si surfaces have been observed [3]. A well-known
type of SR on Si(100) is manifested by the formation of
dimer rows in directions parallel and perpendicular to line
defects (steps) below the roughening transition [4–6]. Kinetic
rates, e.g., diffusivities and other material parameters then may
vary dramatically across neighboring terraces (regions sepa-
rating steps) whose properties reflect the distinct phases. The
mesoscale and macroscale behavior of the surface emerging
from such inhomogeneities needs to be explored.

Below the roughening transition, the crystal surface mor-
phological evolution is driven by the motion of steps of atomic
height a, according to the Burton-Cabrera-Frank (BCF) model
[7,8]. Linking step kinetics to the meso- and large-scale surface
behavior can contribute to understanding how microscale
parameters can be engineered to achieve appealing surface
morphologies. This connection is largely unexplored. A partial
differential equation (PDE) for the relaxation of the large-scale
height profile was formally derived for reconstructed surfaces
in one spatial dimension (1D) [9]. However, a systematic,
general macroscopic theory is still elusive.

In this Brief Report, we present the formulation of a
phase-field model aiming to capture salient features of a
reconstructed surface with noninteracting steps in two spatial
dimensions (2D). The diffusion of adsorbed atoms (adatoms)
and attachment/detachment of atoms at steps, which are key
processes of the BCF theory [7], have kinetic rates that vary
across terraces. Ehrlich-Schwoebel (ES) barriers [10], step
edge diffusion, desorption, and material deposition from above
are included. Our work was inspired by and forms a nontrivial
extension of [11]; see also [12–14].

Our motivation is twofold. First, it is broadly known that
phase-field models, which replace each step edge by a diffuse
boundary layer, are computationally appealing [15]; their use
circumvents the need for explicitly tracking steps, which are
sharp boundaries in the BCF theory.

Second, the phase-field model provides a natural linkage of
microscale (step) motion to the mesoscale and macroscale

properties of the surface. The mesoscale comprises the
collective behavior of a few atomic steps, at length scales
roughly in the range 10–100 nm. This approach should capture
heterogeneities not seen by the fully macroscopic description.

The full macroscale theory of reconstructed surfaces should
incorporate some notion of averaging over distinct material
parameters [9]. Determining such averages in 2D is an open
problem. We do not address this issue here, but expect that the
phase field model can be explored computationally for further
insights in this direction. Numerical computations lie beyond
our scope.

The phase field gives rise to a continuum theory since
step edges are smoothed out. At the same time, the boundary
layer width ε controls the influence of boundary conditions at
steps. Recovering the sharp-interface limit (BCF-type model)
requires ε → 0.

Our model has limitations. As in [11], step interactions
are neglected; the incorporation of force monopole-dipole
and other interactions is the subject of work in progress.
Furthermore, we neglect anisotropy in terrace diffusion.

The remainder of this Brief Report is organized as follows.
Section II revisits elements of the BCF theory and outlines
equations of motion for steps. In Sec. III, we formulate the
phase-field model, extending related ideas of [11]. In Sec. IV,
we argue that the phase-field model yields the BCF-type
theory. Lastly, Sec. V summarizes our results and discusses
possible implications.

II. ELEMENTS OF BCF-TYPE THEORY

We start with elements of step motion [7]. The kinetic
processes are: (i) diffusion of adatoms on terraces and step
edges; (ii) attachment and detachment of atoms at steps;
(iii) desorption; and (iv) material deposition from above. Our
model uses distinct diffusivities (on terraces and step edges)
and sticking rates for atoms at steps.

First, we outline the step geometry. Consider N monolayers
(or ordered steps); see Fig. 1. Let Ui and �i denote the ith
terrace and step edge, respectively, where each �i is smooth
and non-self-intersecting; for steps, i = 1, . . . ,N , N � 1,
and �0 lies far away from �N .

Adatom diffusion is characterized by the (positive) diffu-
sivity Di in each region Ui ; in addition, atoms attach/detach
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FIG. 1. Top and side views of steps and terraces in 2D. Ui denotes
the ith terrace (i = 0, . . . ,N ), and �i denotes the ith step edge
(i = 1, . . . ,N ). The parameters σi , k

±
i , and νi/a denote step stiffness,

attachment/detachment rates, and step-edge diffusivity on �i ; and Di

is the adatom diffusivity on Ui . The step height is a constant, a.

with kinetic rates k±
i at �i from the upper (+) or lower (−)

terrace; see Eqs. (1) below. An example of a system with such
terrace-dependent diffusivities is the reconstructed Si(111)
which exhibits two phases simultaneously, with two values
of Di periodically alternating from one terrace to the next [3].

Now define Ci = Ci(x,y,t) and Ji = −Di∇Ci as the
adatom density and flux on the ith terrace of the (x,y)-plane
(basal plane). The adatom concentration satisfies ∂tCi +
∇ · Ji = F − τ−1Ci in Ui , where F is the deposition flux
and τ is the desorption time. We employ the quasisteady
approximation, ∂tCi � 0 for small enough F , by which
∇ · Ji � F − τ−1Ci . Further, we apply linear kinetics for
atom attachment/detachment at steps:

Ji · ni = k+
i

(
Ci − C

eq
i

)
on �i, (1a)

−Ji−1 · ni = k−
i

(
Ci − C

eq
i

)
on �i, (1b)

where ni is the in-plane unit vector normal to �i pointing
outward from Ui , and k+

i (k−
i ) is the adatom attachment-

detachment rate from the upper (lower) terrace at the ith step
edge; for a positive ES barrier [10], we assume k+

i < k−
i . If

steps do not interact, the equilibrium concentration C
eq
i is given

by [8]

C
eq
i � C∗ (1 + σiκi) , (2)

where C∗ and σi are constants and κi is the (local) curvature
of �i ; σi = ςi/(kBT ), ςi is the ith step stiffness, and kBT is
the Boltzmann energy (absolute temperature).

A few remarks on the omitted step-step interactions
are in order. It is known that surface reconstruction can
generate internal stresses, because of which steps can exhibit
force monopole-dipole interactions [6,16]. These interactions

modify Eq. (2) to C
eq
i � C∗(1 + σiκi + ei), where the interac-

tion term ei may have tractable forms in relatively simple, e.g.,
radial step geometries in 2D. Thus far, we have been unable to
formulate a phase-field model with a nonzero ei .

The diffusion equation for Ci along with Eqs. (1) and (2)
are complemented with the step velocity law, vi = (
/a)(Ji −
Ji−1) · ni + a∂si

(νi∂si
κi) on �i , where vi is the normal velocity

of the ith step edge, 
 � a3 is the atomic volume, and ∂si
is

the partial derivative with respect to the step-edge arc length
si . The last term in the equation for the step velocity describes
step-edge diffusion with coefficient νia

−1; by this effect, atoms
are most inclined to attach to points with a relatively high rate
of change in curvature [17]. We assume that �0 ≡ �∞ is a
large circle of radius R∞, a typical macroscopic length. By
a uniform-far-field condition [11], we require that 1

2π

∫
�∞

J0 ·
n0 dS = J∞, and set J∞ = 0 for later algebraic convenience.

Next, we nondimensionalize time and spatial variables
by introducing t∗ = R2

∞/D and �∗ = R∞; D is a reference
value for the diffusivities, say, D = D0. Set t̃ = t/t∗ and
(x̃, ỹ) = (x/�∗, y/�∗), ã = a/�∗. Define the nondimensional
concentration and flux: 
i = �2

∗(Ci − C∗) and J i = −Di∇̃
i ,
where Di = Di/D and ∇̃ = (∂x̃,∂ỹ). The adatom diffusion
equation and step velocity law read

∇̃ · J i = � − ς2(
i + 
∗) in Ui , (3)

ṽi ã
−2 = (J i − J i−1) · ni + ã−1∂̃si

(
βi∂̃si

κ̃i

)
on �i, (4)

where the tildes express the scaled-coordinate system. The
kinetic boundary conditions at step edges read

ξ+
i Ji · ni = 
i − 
∗δi κ̃i on �i, (5a)

−ξ−
i Ji−1 · ni = 
i−1 − 
∗δi κ̃i on �i. (5b)

In Eqs. (3)–(5), ṽi = (�∗/D)vi , � = F�4
∗/D, ς = �∗/

√
Dτ ,

ξ±
i = D/(k±

i �∗), δi = σi/�∗, κ̃i = �∗κi , 
∗ = C∗�2
∗, and βi =

νi/(�∗D). For ease of notation, we henceforth drop the
tildes.

III. PHASE-FIELD MODEL

We now focus on the phase-field variable (order parameter)
φε(x,y,t), a smooth approximation for the (discrete) height of
the step configuration [11]; φε = ia on the ith terrace. Our goal
is to replace the BCF-type model of Eqs. (3)–(5) by evolution
laws involving φε . These laws account for: (i) the rapid change
of φε across boundary layers (narrow regions near steps), and
(ii) the condition that φε approaches its appropriate constant
value on each terrace away from steps. These two distinct
behaviors are matched to produce a solution everywhere.

Our model contains the step-number-dependent material
parameters ξ±

i ,Di ,δi , and βi ; in contrast, in [11] each of
these parameters is constant. This feature is reflected into the
respective evolution laws for φε , Eqs. (6) and (7).

Equation (3) is replaced by the evolution law

a−2[a−1∂tφ
ε − ∇s · (β∇sκ)|∇φε |]

= ∇ · [M(φε ; ε)∇
ε] + � − ς2(
ε + 
∗), (6)

where 
ε(x,y,t) is a field variable that smoothly approximates
the adatom density, 
i ; κ = ∇ · nε and nε = −∇φε/|∇φε |
define the local curvature of and unit vector normal to level
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sets of φε , i.e., (x,y)-curves on which φε = const., respectively
[18]. Also, ∇s = (I − nεnε)∇ (I: unit tensor) is the gradient
along φε-level sets. Step velocity law (4) and conditions (5)
are replaced by

αa−2ε2[a−1∂tφ
ε − ∇s · (β∇sκ)|∇φε |]

= ε2�φε − G′(φε) + εϑ


∗

ε, (7)

where the prime denotes differentiation with respect to the
argument. The coefficients of Eqs. (6) and (7) are defined
below. These equations are supplemented with the boundary
conditions that the normal derivatives of φε and 
ε vanish at
�∞. Unlike the description in [13], Eqs. (6) and (7) do not
contain a time derivative of 
ε because of the quasisteady
approach. In the limit ε → 0, Eq. (6) reduces to Eq. (3) on
each terrace, and both Eqs. (6) and (7) contribute to Eqs. (4)
and (5) at steps.

We further comment on Eqs. (6) and (7). The continuous
mobility M accounts for inhomogeneities due to ξ±

i and
Di : M(φ; ε) = M(φ)[1 + ε−1ζ (φ)]−1. Here, M is a smooth
function for terrace (i)-dependent diffusivities,

M(φ) = ηa/4(φ) ∗
∑

i

Diχ[(i−1/2)a,(i+1/2)a)(φ),

where ηa/4(φ) = 4
a
η( 4φ

a
) is a mollifier with, e.g., η(x) =

C exp[1/(|x|2 − 1)] if |x| < 1 and 0 if |x| � 1 so that∫ ∞
−∞ η(x)dx = 1; the ∗ operation denotes convolution; and

χS (φ) = 1 if φ lies in set S and 0 otherwise. Step-dependent
sticking rates are included in ζ (φ) = γi[φ − (i − 1)a]pi (ia −
φ)qi G(φ) for φ ∈ [(i − 1)a,ia) [19], where γi , pi , and qi

satisfy

α = 1


∗δ

∫ a

0

ζ (φ + (i − 1)a)

M(φ + (i − 1)a)
√

2G(φ)
φ(a − φ) dφ, (8)

ξ−
i =

∫ a

0

ζ (φ + (i − 1)a)

M(φ + (i − 1)a)
√

2G(φ)
(a − φ) dφ, (9)

ξ+
i =

∫ a

0

ζ (φ + (i − 1)a)

M(φ + (i − 1)a)
√

2G(φ)
φ dφ. (10)

The function G(φ) is the periodic multiwell free energy
G(φ) = [efi (φ) − 1][efi+1(φ) − 1] for φ ∈ [ia,(i + 1)a) [11,
13]; fi(φ) = c1(ia − φ)2 + c2(ia − φ)4 where c1 and c2 are
constants chosen conveniently for applications; for example,
take c1 = 4.5 and c2 = 0.9 in [11]. Note that G changes
rapidly away from step edges and indicates the position
of terraces as a function of the height profile. For each i,
the function ϑ(φ) is defined on [(i − 1)a,ia] by ϑ(φ) =
Ki[� (φ)

∫ φ

(i−1/2)a G(w)−1 dw]−1 for φ �= (i − 1)a, ia and 0
for φ = (i − 1)a, ia, where � (φ) = −1 if φ < (i − 1/2)a
and 1 otherwise, and the constant Ki is chosen so that
δi = ∫ ia

(i−1)a ϑ(φ)−1√2G(φ) dφ.
In Eqs. (6) and (7) we invoke the continuous function

β(φ; ε) = ∑
i(βi − βi−1){1 + e

− [φ−(i−1)a]
εl }−1 which accounts

for step edge diffusion, with β0 ≡ 0. The constant l is positive
and determines how fast β converges (as ε → 0) to the
discontinuous function

∑N
i=1 βiχ[(i−1)a,ia)(φ); for all practical

purposes, set l = 1.

Our definition of the mobility function M(φ; ε) differs from
the corresponding formulation in [11] where M(φ) is unity
and the coefficients of ζ (φ) do not depend on i. In particular,
our M(φ; ε) is nonperiodic so that it can accommodate
distinct diffusivities (whereas M is periodic in [11]). Note
that M(φ) ≡ Di if φ lies in [(i − 1

4 )a,(i + 1
4 )a]. In Sec. IV,

we indicate how this M leads to the terrace-dependent Eq. (3).
Also, we introduce i-dependent parameters pi , γi , and qi in
ζ (φ) to compensate for the i dependence of ξ±

i and the lack of
periodicity of M(φ). Physically, this ζ yields the asymmetry
of the ES barrier.

In view of the above, the BCF-type limit is described via φε .
By defining �i(t ; ε) so that φε(x,y,t) = (i − 1/2)a for (x,y) in
�i(t ; ε), the sharp interface stems from the limit �i(t ; 0) ≡ �i

of �i(t ; ε) as ε → 0. In this limit, nε → n|ε=0, which is the
unit vector normal to step edges in the (x,y)-plane [18].

IV. DISCUSSION: ASYMPTOTIC MATCHING

Following [11], we briefly discuss how our phase-field
model yields the BCF-type model. The idea is to separate
the spatial coordinate normal to each step into fast (zi) and
slow (ri) variables. In the inner regions (boundary layers), the
variation of φε over zi prevails; and in the outer regions the
slow variable is important. A global solution for φε is obtained
by appropriate matching.

To describe φε near the ith step, consider the orthogo-
nal curvilinear coordinate system (ri,si) near �i(t ; ε); ri =
rε
i (x,y,t) is the signed distance of (x,y) from �i(t ; ε) where

ri > 0 in the direction of Ui−1, and si = sε
i (x,y,t) is the arc

length along �i(t ; ε) [11]. By zi = ri/ε, define �(zi,si,t ; ε) =
φε(x,y,t) and P (zi,si,t ; ε) = 
̂ε(ri,si ,t) = 
ε(x,y,t) in the
inner region. We make explicit the dependence on ε of
each relevant variable (Q) by expanding Q = Q(0) + εQ(1) +
ε2Q(2) + · · · (e.g., Q = �) [11].

Our model uses continuous functions such as M(φ) to
reconcile the distinct microscale parameters, e.g., Di with the
smooth transition of the phase field φε from each boundary
layer to the outer region. Across the boundary layer, the
terrace diffusion function M, a constant in [11], varies from
one diffusivity to another. Since M is independent of ε, this
transition is smooth even in the limit ε → 0 and does not affect
the resulting diffusion equation on terraces. The edge diffusion
function β(φ) remains a constant (βi) in the ith boundary
layer and varies smoothly from βi to βi+1 on the ith terrace.
However, this behavior does not alter Eq. (3) because β is
multiplied by |∇φε | which vanishes on terraces to leading
order in ε. The smooth function ζ (φ) is properly integrated
over the boundary layer to yield the distinct sticking rates ξ±

i .
Note that ζ has no effect on any terrace because ζ (ia) = 0 for
all i. Also, ϑ(φ) does not appear in the leading outer expansion;
the magnitude of ϑ (determined by Ki) accommodates an
i-dependent stiffness.

By skipping details, we now indicate the sharp-interface
limit. In the outer region, Eq. (7) yields G′(φ(0)) = 0 to leading
order in ε; thus, φ(0) = (i − 1)a, ia. This implies that as
ε → 0, �i(t ; 0) ≡ �i lies between two terraces of heights
(i − 1)a and ia. Thus, we find ζ (φ(0)) = 0 and M(φ(0); ε) = Di

on the ith terrace. Hence, Eq. (6) produces Eq. (3) to leading
order.
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In the overlap region near each terrace, every φε-dependent
quantity from the outer region must coincide with the limit of
the respective variable from the inner region. For example, as
(x,y) approaches �i , φ(0) from the outer region tends to the
limit of �(0)(zi,si,t) as zi → ±∞; thus, the matching gives
limzi→−∞ �(0) = ia [11]. Such conditions are incorporated in
the inner region as boundary conditions to the appropriate
expansions in ε of Eqs. (6) and (7) to obtain Eqs. (4) and (5).

V. CONCLUSION

We presented a phase-field model for the near-equilibrium
evolution of stepped surfaces with distinct inhomogeneities
at the microscale. This work forms an extension of the
formulation in [11]. A particular feature of our model,
absent from [11], is the mobility function M(φε ; ε) that
describes sequences of disparate diffusivities Di and sticking
kinetic rates k±

i across terraces and steps. Our analysis also

accounts for arc-length-varying, terrace-dependent step-edge
diffusivities.

Our model has limitations, pointing to open questions.
We considered noninteracting steps; the incorporation of
entropic and other step-step interactions is a pending issue.
The numerical simulation of φε , although appealing for
applications, was not touched upon. Similarly, we have not
studied possible instabilities that may result in the presence
of terrace inhomogeneities; for example, we expect that
simulations of the phase-field model can reveal meandering
instabilities in the spirit of [20]. The full continuum limit,
where a → 0 and ε → 0, was not studied; a question is how
to implement a reasonable ordering of these limits or scaling
of a with ε. This task is left for near-future work.

ACKNOWLEDGMENTS

We thank Professor A. Voigt for useful discussions. This
work was supported by NSF via Grant No. DMS 08-47587.

[1] W. Mönch, Semiconductor Surfaces and Interfaces (Springer,
Berlin, 1995).

[2] J. A. Venables, Introduction to Surface and Thin Film Processes
(Cambridge University Press, Cambridge, UK, 2000).

[3] V. G. Lifshits, A. A. Saranin, and A. V. Zotov, Surface Phases
on Silicon: Preparation, Structures and Properties (Wiley, New
York, 1994).

[4] D. J. Chadi, Phys. Rev. Lett. 43, 43 (1979).
[5] O. L. Alerhand, A. N. Berker, J. D. Joannopoulos, D. Vanderbilt,

R. J. Hamers, and J. E. Demuth, Phys. Rev. Lett. 64, 2406 (1990).
[6] B. S. Swartzentruber, N. Kitamura, M. G. Lagally, and M. B.

Webb, Phys. Rev. B 47, 13432 (1993).
[7] W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans.

R. Soc. London Ser. A 243, 299 (1951).
[8] H.-C. Jeong and E. D. Williams, Surf. Sci. Rep. 34, 171 (1999).
[9] D. Margetis and K. Nakamura, Physica D 241, 1179 (2012);

D. Margetis, Phys. Rev. E 79, 052601 (2009).
[10] G. Ehrlich and F. Hudda, J. Chem. Phys. 44, 1039 (1966); R. L.

Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1966).

[11] Z. Hu, J. Lowengrub, S. Wise, and A. Voigt, Physica D 241, 77
(2012).

[12] F. Otto, O. Penzler, A. Rätz, T. Rump, and A. Voigt, Nonlinearity
17, 477 (2004).

[13] A. Rätz and A. Voigt, App. Anal. 83, 1015 (2004).
[14] T. Zhao, J. D. Weeks, and D. Kandel, Phys. Rev. B 70, 161303(R)

(2004); 71, 155326 (2005).
[15] L.-Q. Chen, Ann. Rev. Mater. Res. 32, 113 (2002); I. Steinbach,

Model. Simul. Mater. Sci. Eng. 17, 073001 (2009).
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