
HIGH-RESOLUTION NONOSCILLATORY CENTRAL SCHEMES
WITH NONSTAGGERED GRIDS FOR HYPERBOLIC

CONSERVATION LAWS∗

G.-S. JIANG† , D. LEVY§ , C.-T. LIN‡ , S. OSHER‡ , AND E. TADMOR‡¶

SIAM J. NUMER. ANAL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 35, No. 6, pp. 2147–2168, December 1998 003

Dedicated to our friend and colleague Ami Harten, notre Ami

Abstract. We present a general procedure to convert schemes which are based on staggered
spatial grids into nonstaggered schemes. This procedure is then used to construct a new family of
nonstaggered, central schemes for hyperbolic conservation laws by converting the family of staggered
central schemes recently introduced in [H. Nessyahu and E. Tadmor, J. Comput. Phys., 87 (1990),
pp. 408–463; X. D. Liu and E. Tadmor, Numer. Math., 79 (1998), pp. 397–425; G. S. Jiang and
E. Tadmor, SIAM J. Sci. Comput., 19 (1998), pp. 1892–1917]. These new nonstaggered central
schemes retain the desirable properties of simplicity and high resolution, and in particular, they
yield Riemann-solver-free recipes which avoid dimensional splitting. Most important, the new central
schemes avoid staggered grids and hence are simpler to implement in frameworks which involve
complex geometries and boundary conditions.
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1. Introduction. We introduce new nonoscillatory central schemes for the ap-
proximate solution of nonlinear systems of hyperbolic conservation laws. The new
feature of our schemes is the use of regular, nonstaggered spatial grids. Consequently,
by avoiding staggered grids, which are often encountered in central recipes, our new
central schemes offer further simplicity without sacrificing high resolution. Here is a
brief overview.

Many of the modern high-resolution approximations for nonlinear conservation
laws (and related equations) employ the Godunov approach. To this end, the ap-
proximate solution is realized by a piecewise polynomial which is reconstructed from
the evolving cell-averages. In this context, we may distinguish between the two main
classes of Godunov methods: upwind and central schemes.

Godunov’s original scheme [3] is the forerunner of all upwind schemes. Its higher-
order and multidimensional generalizations were constructed, analyzed, and imple-
mented with great success during the 1970s and 1980s; consult [15, 4] and the ref-
erences therein. Upwind schemes evaluate their cell-averages over the same spatial
cells at all time steps. This in turn requires characteristic information along the dis-
continuous interfaces of these spatial cells. It is the need to trace the characteristic
fans—using approximate Riemann solvers, dimensional splitting, etc.—that greatly
complicates the upwind algorithms.
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The Lax–Friedrichs (LxF) scheme [2] is the other canonical first-order scheme,
which is the forerunner of all central schemes. Like the Godunov scheme, it is based
on piecewise-constant approximate solution; its Riemann-solver-free recipe, however,
is considerably simpler. Unfortunately, the excessive numerical viscosity in the LxF
scheme yields a relatively poor resolution, which seems to have delayed the devel-
opment of a high-resolution central scheme, parallel to the earlier developments of
high-resolution upwind schemes.

A second-order sequel to the LxF scheme was introduced by Nessyahu and Tadmor
in [22]. (Another approach to second-order central differencing based on characteris-
tics tracing was introduced by Sanders and Wieser in [25]). The Nessyahu–Tadmor
(NT) scheme retains the advantage of a simple, Riemann-solver-free recipe, and at the
same time it enjoys high resolution comparable to the upwind results. In a recent se-
ries of works, the NT scheme was extended to higher orders [21, 7] and several space
dimensions [1, 9, 30], as well as incompressible flows and more general geometries
[17, 11, 10].

The common feature of all of these NT central schemes is the evolution of cell-
averages over staggered cells, that is, cells which alternate every other time step.
The importance of staggering is due to the fact that cell interfaces are secured in
neighborhoods around the smooth midcells of the previous time step. The main
advantage is simplicity : the costly Riemann characteristic decompositions from the
upwind framework are now replaced by straightforward componentwise quadratures;
dimensional splitting errors are avoided. At the same time, the use of high-order
nonoscillatory piecewise polynomials (which are reconstructed from the staggered cell-
averages) retain high resolution comparable with the upwind results.

In this paper we present a general procedure to convert general central schemes
based on staggered grids over regular, nonstaggered grids. To convert into a nonstag-
gered formulation, we reaverage the reconstructed values of the underlying staggered
scheme. In this manner, we recover the cell-averages of the central scheme over the
original, nonstaggered grid cells. The whole procedure can be written in a two-step
predictor-corrector method which totally avoids staggering.

When implemented in the context of the staggered NT schemes mentioned above,
our procedure yields a new family of nonoscillatory, high-resolution central schemes
based on nonstaggered spatial grids. Here we retain the original high resolution with-
out giving up simplicity. Indeed, as before, the recipe of our new nonstaggered central
schemes is free of (approximate) Riemann solvers, dimensional splitting, etc. The
main new feature, however, is the further simplicity offered by a nonstaggered recipe,
since one avoids the need to alternate between two staggered grids, which is particu-
larly cumbersome near the boundaries.

The paper is organized as follows: In section 2 we motivate our procedure in the
context of the first-order LxF scheme, resulting in the so called modified Lax–Fried-
richs scheme. In section 3 we proceed with the second- and third-order NT schemes
[22, 21], and in section 4 we deal with the multidimensional NT central scheme [9, 1].

In section 5 we present numerical simulations in which we implemented the meth-
ods of sections 3 and 4 on several nontrivial one- and two-dimensional problems. These
simulations show that the results obtained with our new nonstaggered versions of the
central schemes are comparable with previous results obtained using the staggered
versions. It is remarkable that by using such simple, Riemann-solver-free algorithms,
one is able to obtain the approximate solution of complex one- and two-dimensional
problems with such high resolution. In this respect, the central schemes reported in
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this paper offer a versatile computational procedure for a large variety of nonlinear
convective problems. Conclusions are in section 6.

Finally, we would like to refer to the recent work of Liu and Osher [20] as an-
other alternative recipe of the Riemann-solver-free central scheme. Here one employs
a modified version of the pointwise essentially nonoscillatory (ENO) reconstruction
introduced in [26], combined with the weighted ENO scheme devised in [8], and the
Shu–Osher Runge–Kutta integration [26]. In the second-order case, the modified
reconstruction resembles the second-order NT scheme. The result is a simple and
uniformly high-order central scheme which, like the nonstaggered schemes reported
in this paper, does not require field-by-field decomposition, staggered grids, etc.

2. Motivation: The first-order LxF scheme. In this section we present our
general mechanism for transforming staggered schemes into nonstaggered schemes.
We focus on numerical methods for hyperbolic conservation laws but in no way
limit ourselves to this framework. First, we demonstrate these ideas for the one-
dimensional, first-order LxF scheme. We then apply in sections 3 and 4 the same
principles to high-order schemes and to higher dimensions.

We approximate solutions to the one-dimensional hyperbolic system of conserva-
tion laws

ut + f(u)x = 0,(2.1)

subject to the prescribed initial data, u(x, t = 0) = u0(x). For simplicity, we assume
an equally spaced grid, ∆x = xj+1 − xj , and abbreviate by w̄nj the approximate cell-

average at time t = tn, associated with the cell Ij := {|x−xj | ≤ ∆x
2 }. We also denote

by χj(x) the characteristic function of the cell Ij , i.e., χj(x) := 1Ij .
The staggered LxF approximation to (2.1) can be derived, e.g., by constructing a

piecewise-constant interpolant through the given cell-averages, w(x, tn) =
∑
j w̄

n
j χj(x).

This interpolant is then evolved exactly in time according to the conservation law (2.1),
and finally projected onto the staggered cell-averages at the next time level. For
∆tmaxu |f ′(u)| ≤ ∆x

2 , the exact solution of (2.1) remains smooth at the integer grid
points, xj−1, xj . Consequently, the required integrals of the fluxes are evaluated in
terms of their constant initial data, without using any (approximate) Riemann solvers.
The difference between the staggered cell-averages, w̄n+1

j+ 1
2

−w̄n
j+ 1

2

, equals the difference

between the averages of the fluxes over the staggered control-volume, and hence, the
LxF scheme amounts to

w̄n+1
j+ 1

2

=
1

2
(w̄nj + w̄nj+1)− λ [f(wnj+1)− f(wnj )

]
, wj := w(xj , t

n) = w̄j .(2.2)

To eliminate the staggering, without losing the simplicity, we can define, e.g., the
nonstaggered cell-average at time tn+1, w̄n+1

j , as the average of its two neighboring
staggered cell-averages,

w̄n+1
j :=

w̄n+1
j− 1

2

+ w̄n+1
j+ 1

2

2

=
1

4
(w̄nj−1 + 2w̄nj + w̄nj+1)− λ

2
[f(wnj+1)− f(wnj−1)], wj = w̄j .(2.3)

Analogously, this nonstaggered cell-average, w̄n+1
j , can be defined by using a

double nonstaggered control volume to formulate the scheme (see the right-hand side
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Fig. 2.1. Modified LxF scheme.

(RHS) of Figure 2.1). w̄n+1
j is then defined as half of the value obtained at time tn+1.

This procedure is equivalent to the direct averaging presented in (2.3). The main
limitation of these averaging approaches is that they are both first order and hence
cannot be extended to higher-order approximations. This leads us to a third and final
procedure.

We reconstruct a piecewise-constant reconstruction from the calculated staggered
cell-averages at time tn+1 (consult the left-hand side (LHS) of Figure 2.1),

w(x, tn+1) =
∑
j

pn+1
j+ 1

2

χj+ 1
2
, pn+1

j+ 1
2

= w̄n+1
j+ 1

2

.

This interpolant is then projected on the nonstaggered cell-averages to define

w̄n+1
j :=

1

∆x

∫ xj

x
j− 1

2

w +

∫ x
j+ 1

2

xj

w

 =
1

∆x

∫ xj

x
j− 1

2

w̄n+1
j− 1

2

+

∫ x
j+ 1

2

xj

w̄n+1
j+ 1

2

 ,
which is equivalent to (2.3). The advantage of this approach is that it can be easily ex-
tended for high-order accurate schemes. We note in passing that this modified version
of the (first-order) LxF scheme is already known in the literature (e.g., see [29]).

To summarize, in order to transform a staggered scheme into a nonstaggered
scheme, one has to reconstruct a piecewise-polynomial interpolant from the staggered
cell-averages and project it on the nonstaggered cell-averages. We are now ready to
implement this idea to construct nonstaggered versions of the high-order staggered
schemes.

3. One-dimensional extensions to higher orders.

3.1. The second-order NT scheme. We follow the prototype LxF example
in section 2 to construct a nonstaggered scheme from the staggered second-order NT
scheme in [22]. The NT scheme is based on reconstructing a piecewise-linear (MUSCL-
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type) interpolant from the known staggered cell-averages at time tn,

w(x, tn) =
∑
j

[
w̄nj + w′j

(
x− xj

∆x

)]
χj(x).(3.1)

Here and below, w′j denotes the discrete slopes. A possible computation of these
slopes, which results in an overall nonoscillatory scheme (consult [22]), is given by
the family of discrete derivatives parameterized with 1 ≤ θ ≤ 2; that is, for any grid
function {vj} we set

v′j = MMθ{vj−1, vj , vj+1} := MM

(
θ∆vj+ 1

2
,

1

2

(
∆vj− 1

2
+ ∆vj+ 1

2

)
, θ∆vj− 1

2

)
.

(3.2)
Here, ∆ denotes the centered differencing, ∆vj+1/2 = vj+1 − vj , and MM denotes
the min-mod nonlinear limiter

MM{x1, x2, . . .} =

 minj{xj} if xj > 0 ∀j,
maxj{xj} if xj < 0 ∀j,
0 otherwise.

(3.3)

This interpolant, (3.1), is then evolved exactly in time and projected on the
staggered cell-averages on the next time step, tn+1, resulting in the two-step predictor-
corrector form,

w
n+ 1

2
j = wnj −

λ

2
f ′j , wj := w(xj , t

n) = w̄j ,(3.4)

w̄n+1
j+ 1

2

=
1

2
(w̄nj + w̄nj+1) +

1

8
(w′j − w′j+1)− λ

[
f
(
w
n+ 1

2
j+1

)
− f

(
w
n+ 1

2
j

)]
.(3.5)

The discrete derivatives of the flux, f ′j , can be computed, e.g., by f ′j = Anjw
′
j , with

Anj := A(w̄nj ) = fu(w̄nj ); alternatively, one can apply the min-mod limiter to each of
the components of f . This componentwise approach is one of the main advantages of-
fered by the central NT schemes over the corresponding characteristic decompositions
required by upwind schemes (consult the discussion in [22, 9]).

In order to transform the staggered second-order scheme (3.4)–(3.5) into a non-
staggered scheme, we apply the method described in section 2. First, we reconstruct
a piecewise-linear interpolant through the calculated staggered cell-averages at time
tn+1 (consult Figure 3.1):

wn+1
j± 1

2

= w̄n+1
j± 1

2

+ w′j± 1
2

(
x− xj± 1

2

∆x

)
.(3.6)

The staggered discrete derivatives, w′
j± 1

2

, are given by

w′j− 1
2

= MM(∆w̄n+1
j ,∆w̄n+1

j−1 ), w′j+ 1
2

= MM(∆w̄n+1
j+1 ,∆w̄

n+1
j ),(3.7)

with

∆w̄n+1
i := w̄n+1

i+ 1
2

− w̄n+1
i− 1

2

=
w̄ni+1 − w̄ni−1

2
− 1

8

(
w′i−1 − 2w′i + w′i+1

)
− λ

[
f
(
w
n+ 1

2
i−1

)
− 2f

(
w
n+ 1

2
i

)
+ f

(
w
n+ 1

2
i+1

)]
, i = j − 1, j, j + 1.
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Fig. 3.1. Second-order reconstruction.

Second, the cell-averages at the next time step, w̄n+1
j , are obtained by averaging this

interpolant, (3.6), resulting in the nonstaggered corrector scheme

w̄n+1
j =

1

∆x

∫ xj

x
j− 1

2

wn+1
j− 1

2

+

∫ x
j+ 1

2

xj

wn+1
j+ 1

2


=
w̄n+1
j− 1

2

+ w̄n+1
j+ 1

2

2
− 1

8
(w′j+ 1

2
− w′j− 1

2
)

=
1

4
(w̄nj−1 + 2w̄nj + w̄nj+1)− 1

16
(w′j+1 − w′j−1)

− λ

2

[
f
(
w
n+ 1

2
j+1

)
− f

(
w
n+ 1

2
j−1

)]
− 1

8

(
w′j+ 1

2
− w′j− 1

2

)
.(3.8)

Here, {w′j} and {w′
j± 1

2

} are, respectively, the discrete derivatives at time levels tn and

tn+1 given in (3.2) and (3.7), and {wn+ 1
2 } are predicted at time level tn+ 1

2 according
to (3.4).

Remarks.

1. This nonstaggered second-order scheme (3.8) is still an essentially three-point
scheme, since w̄nj−1 = w̄nj = w̄nj+1 implies w̄n

j± 1
2

≡ 0, which, in turn, implies

that ∆w̄n+1
j ≡ 0 and hence w′

j± 1
2

≡ 0.

2. This procedure, for transforming the staggered cell-averages into nonstag-
gered cell-averages, can be reformulated in an ENO-like formulation. If we
denote by Wn(x) the primitive of wn(x), i.e., Wn(x) =

∫ x
−∞ wn(ξ)dξ, then

at time tn+1 according to the staggering procedure, we actually calculate
Wn+1(xj), j ∈ N. Utilizing a high-order ENO reconstruction, we interpo-
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late the known primitive values, such that ∀xj ≤ x ≤ xj+1,

Wn+1(x) := Wn+1
j +

(
x− xj

∆x

)
[Wn+1

j+1 −Wn+1
j ]

+
(x− xj)(x− xj+1)

2(∆x)2
M
[
∆2(Wn+1

j−1 ,W
n+1
j ,Wn+1

j+1 ),

∆2(Wn+1
j ,Wn+1

j+1 ,W
n+1
j+2 )

]
.(3.9)

Here, ∆2(Wj−1,Wj ,Wj+1) := Wj−1− 2Wj +Wj+1, andM denotes an ENO
limiter given by

M{x1, x2} =

{
x1 if|x1| ≤ |x2|,
x2 otherwise.

Sampling (3.9) at the min-points, xj+ 1
2
, supplies the point values of the prim-

itive, Wn+1
j+ 1

2

:= Wn+1(xj+ 1
2
), which are then used to define the nonstaggered

cell-averages

w̄n+1(xj) := Wn+1
j+ 1

2

−Wn+1
j− 1

2

, j ∈ N.

If instead of ENO limiter M we use the min-mod limiter in (3.2), we end up
with the familiar (3.8).

3. Other nonoscillatory limiters are also available. In particular, we mention
here the nonoscillatory uniformly nonoscillatory (UNO) limiter [6]

v′j = MM

{
∆vj− 1

2
+

1

2
MM(∆2vj−1,∆

2vj),∆vj+ 1
2
− 1

2
MM(∆2vj ,∆

2vj+1)

}
.

(3.10)

3.2. A nonstaggered third-order scheme. The staggered third-order central
scheme, presented by Liu and Tadmor in [21], is based on a nonoscillatory third-order
reconstruction by Liu and Osher [19], w(x, tn) =

∑
j pj(x)χj(x). Each quadratic

piece, pj(x), is of the form

pj(x) = wnj + w′j

(
x− xj

∆x

)
+

1

2
w′′j

(
x− xj

∆x

)2

.(3.11)

Due to the conservation requirements, the reconstructed point values and discrete
first and second derivatives are uniquely given by

wj := w̄j − 1

24
w′′j , w′j := θj∆0w̄

n
j , w′′j := θj∆+∆−w̄nj .

θj is a nonlinear limiter, designed to prevent oscillations (for specific details on the

construction of such a nonlinear limiter, consult [19] and [21]). Here, wnj := w̄nj −
w′′j
24 ,

are the reconstructed point values which, starting with the third-order reconstructions,
are not necessarily equal to the cell-averages.

As in the first-order and second-order schemes, an exact evolution of this piecewise-
quadratic reconstruction, followed by a projection on the staggered averages, yields
the scheme which can be formalized in terms of a predictor step

wn+α
j = wnj + λαẇnj +

(λα)2

2
ẅnj , α =

1

2
, 1,(3.12)
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followed by the corrector

w̄n+1
j+ 1

2

=
1

2
(w̄nj + w̄nj+1) +

1

8
(w′j − w′j+1)− λ

6

{[
f(wnj+1) + 4f

(
w
n+ 1

2
j+1

)
+ f(wn+1

j+1 )
]

−
[
f(wnj ) + 4f

(
w
n+ 1

2
j

)
+ f(wn+1

j )
]}

.(3.13)

The “dotted” notation, ẇnj , ẅ
n
j , abbreviates the first and the second time-derivatives,

respectively. The construction of this scheme is based on a more accurate Taylor
expansion to predict the mid-values, as well as Simpson’s time-integration method,
which provides the required accuracy in time.

It is a matter of applying the straightforward arguments to construct from this
staggered version a nonstaggered version. From the staggered cell-averages, we re-
construct again a piecewise-quadratic reconstruction. This reconstruction is then pro-
jected on the nonstaggered averages, resulting in

w̄n+1
j =

w̄n+1
j− 1

2

+ w̄n+1
j+ 1

2

2
+

1

8

(
w′j− 1

2
− w′j+ 1

2

)
=: I1 + I2.(3.14)

The average of the staggered cell-averages, I1, equals

I1 =
1

4
(w̄nj−1 + 2w̄nj + w̄nj+1) +

1

16
(w′j−1 − w′j+1)

− λ

12

[
fnj+1 + 4f

n+ 1
2

j+1 + fn+1
j+1 − fnj−1 − 4f

n+ 1
2

j−1 − fn+1
j−1

]
.

As before, {w′j} are evaluated at time level tn, and the discrete derivatives of the

staggered cell-averages required in I2 = 1
8 (w′

j− 1
2

− w′
j+ 1

2

) are given by w′
j± 1

2

=

θj± 1
2
∆0w̄

n+1
j± 1

2

and are evaluated at time level tn+1.

3.3. Boundary conditions. Clearly, one of the main advantages of the non-
staggered schemes is that they are simpler to implement in frameworks which involve
complex geometries and boundary conditions.

The issue of nonoscillatory boundary conditions in the context of staggered central
schemes was systematically studied in [18]. It is straightforward to implement the
ideas presented in [18] to the present nonstaggered framework.

Since this implementation is direct, we list below the main ingredients and leave
the fine details to the enthusiastic reader. The resulting boundary computations are
much simpler than those in [18].

First, one has to distinguish between inflow and outflow boundary cells. In
inflow boundary cells, the point values at the boundary must be prescribed. Hence,
in order to avoid spurious oscillations, a constant reconstruction at those boundary
cells replaces the piecewise-linear interpolant there. This first-order reconstruction at
the boundary does not disturb the second-order accuracy of the internal scheme.

At outflow boundary cells, one has to implement a piecewise-linear reconstruc-
tion. Here, following the natural direction of the flow, the slopes are computed by
extrapolating the values from the interior of the domain up to its boundary.

This nonoscillatory boundary treatment can be naturally extended to systems
and to higher spatial dimensions as well.
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4. Extensions to two dimensions.

4.1. The first-order LxF scheme. In the two-dimensional case, we approxi-
mate solutions to the two-dimensional hyperbolic system of conservation laws, given
by

ut + f(u)x + g(u)y = 0,(4.1)

subject to the given initial data, u(x, y, t = 0) = u0(x, y). We denote by w̄nj,k, the
approximate cell-average at time t = tn, associated with the cell Ij,k := Ij × Ik,
centered around (xj = j∆x, yk = k∆y).

The arguments we applied in the one-dimensional case can be easily extended to
higher dimensions. This extension is straightforward and is based on the exact same
procedure we introduced in section 2, in which a nonstaggered scheme is created from a
staggered scheme by averaging the interpolants we construct from the given staggered
values. Our first two-dimensional example concerns the first-order LxF scheme.

In its staggered form, the LxF scheme supplies the cell-averages at time tn+1,
w̄n+1
j+ 1

2 ,k+ 1
2

, from the given cell-averages at time tn, w̄nj,k,

w̄n+1
j+ 1

2 ,k+ 1
2

=
1

4
(w̄nj,k + w̄nj+1,k + w̄nj,k+1 + w̄nj+1,k+1)

− λ

2

[
f(wnj+1,k)− f(wnj,k) + f(wnj+1,k+1)− f(wnj,k+1)

]
− µ

2

[
g(wnj,k+1)− g(wnj,k) + g(wnj+1,k+1)− g(wnj+1,k)

]
.(4.2)

Here and below, λ := ∆t
∆x and µ := ∆t

∆y denote the fixed mesh-ratios in the x- and the
y-direction, respectively.

Nonstaggered cell-averages, w̄n+1
j,k , can be then derived from the staggered cell-

averages, w̄n+1
j+ 1

2 ,k+ 1
2

, by reconstructing a piecewise-constant two-dimensional inter-

polant through the staggered cell-averages, and averaged over the nonstaggered cells.

As in the one-dimensional setup, in this case this procedure is equivalent to the
averaging (consult Figure 4.1)

w̄n+1
j,k =

1

4

(
w̄n+1
j+ 1

2 ,k+ 1
2

+ w̄n+1
j− 1

2 ,k+ 1
2

+ w̄n+1
j− 1

2 ,k− 1
2

+ w̄n+1
j+ 1

2 ,k− 1
2

)
.(4.3)

A straightforward calculation yields

w̄n+1
j,k =

1

16

[
w̄nj−1,k−1 + 2w̄nj−1,k + w̄nj−1,k+1 + 2w̄nj,k−1 + 4w̄nj,k

+ 2w̄nj,k+1 + w̄nj+1,k+1 + 2w̄nj+1,k + w̄nj+1,k+1

]
− λ

2
〈f(wnj+1,·)− f(wnj,·)〉k −

µ

2
〈g(wn·,k+1)− g(wn·,k)〉j .(4.4)

Here, we used the centered averaging notations

〈wj,·〉k =
wj,k−1 + wj,k+1

2
, 〈w·,k〉j =

wj−1,k + wj+1,k

2
.
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Fig. 4.1. Two-dimensional floor plan.

4.2. A second-order extension. A two-dimensional extension of the second-
order central NT scheme was introduced in [9, 1]. As in the one-dimensional case,
this staggered scheme can be viewed as an extension to the first-order LxF scheme. A
piecewise-linear interpolant is reconstructed from the calculated cell-averages at time
tn, w(x, y, tn) =

∑
j,k pj,k(x)χj,k(x, y), χj,k(x, y) := 1Ij,k , where each linear piece,

pj,k(x, y), is of the form

pj,k(x, y) = wnj,k + w′j,k

(
x− xj

∆x

)
+ w8j,k

(
y − yk

∆y

)
, wj,k = w̄j,k.

Here and below, the prime and back-prime notations, w′j,k ∼ ∆x∂xw,w
8
j,k ∼ ∆y∂yw,

denote the discrete derivatives in the x-direction and in the y-direction, respectively.
This reconstruction is then evolved in time and projected on the staggered cell-

averages to yield the staggered cell-average, w̄n+1
j+ 1

2 ,k+ 1
2

,

w̄n+1
j+ 1

2 ,k+ 1
2

=
1

4
(w̄nj,k + w̄nj+1,k + w̄nj,k+1 + w̄nj+1,k+1)

+
1

16
(w′j,k − w′j+1,k + w′j,k+1 − w′j+1,k+1)

+
1

16
(w8j,k − w8j,k+1 + w8j+1,k − w8j+1,k+1)

− λ

2

[
f
(
w
n+ 1

2

j+1,k

)
− f

(
w
n+ 1

2

j,k

)
+ f

(
w
n+ 1

2

j+1,k+1

)
− f

(
w
n+ 1

2

j,k+1

)]
− µ

2

[
g
(
w
n+ 1

2

j,k+1

)
− g

(
w
n+ 1

2

j,k

)
+ g

(
w
n+ 1

2

j+1,k+1

)
− g

(
w
n+ 1

2

j+1,k

)]
.(4.5)

As before, the missing mid-values, wn+ 1
2 , are evaluated by Taylor’s expansion

w
n+ 1

2

j,k = w̄j,k − λ

2
f ′jk −

µ

2
g8jk.(4.6)
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In order to turn this staggered scheme into a nonstaggered scheme, we repeat our
procedure by reconstructing a piecewise-linear interpolant through the staggered cell-
averages given by (4.5),

wn+1
j+ 1

2 ,k+ 1
2

= w̄n+1
j+ 1

2 ,k+ 1
2

+ w′j+ 1
2 ,k+ 1

2

(
x− xj+ 1

2 ,k+ 1
2

∆x

)
+ w8j+ 1

2 ,k+ 1
2

(
y − yj+ 1

2 ,k+ 1
2

∆y

)
.

This reconstruction is then averaged to yield the nonstaggered cell-average, w̄n+1
j,k ,

at time tn+1:

w̄n+1
j,k =

1

4∆x∆y

∫ ∫
I
j+ 1

2
,k+ 1

2

wn+1
j+ 1

2 ,k+ 1
2

+

∫ ∫
I
j− 1

2
,k+ 1

2

wn+1
j− 1

2 ,k+ 1
2

+

∫ ∫
I
j− 1

2
,k− 1

2

wn+1
j− 1

2 ,k− 1
2

+

∫ ∫
I
j+ 1

2
,k− 1

2

wn+1
j+ 1

2 ,k− 1
2


=

1

4

(
w̄n+1
j+ 1

2 ,k+ 1
2

+ w̄n+1
j− 1

2 ,k+ 1
2

+ w̄n+1
j− 1

2 ,k− 1
2

+ w̄n+1
j+ 1

2 ,k− 1
2

)
+

1

16

[(
w′j− 1

2 ,k− 1
2
− w′j+ 1

2 ,k− 1
2

)
+
(
w′j− 1

2 ,k+ 1
2
− w′j+ 1

2 ,k+ 1
2

)
+
(
w8j− 1

2 ,k− 1
2
− w8j− 1

2 ,k+ 1
2

)
+
(
w8j+ 1

2 ,k− 1
2
− w8j+ 1

2 ,k+ 1
2

)]
.(4.7)

The staggered cell-averages, {w̄n+1
j± 1

2 ,k± 1
2

}, are given by (4.5), while the discrete stag-

gered derivatives, {w′
j± 1

2 ,k± 1
2

}, can be computed, e.g., using a min-mod limiter on the

staggered cell-averages at time tn+1.
Remark . The above method can be naturally extended to more accurate methods

(such as the third-order two-dimensional scheme, introduced in [16]).

5. Numerical examples. In this section, we implement our second-order
schemes presented in sections 3 and 4, for several one- and two-dimensional model
problems. Below, we abbreviate the different schemes by NT-p-q: “NT” stands for
the Nessyahu–Tadmor scheme (3.4)–(3.8); “p” stands for the type of limiter used in
computing the numerical derivatives (“MM1” and “MM2” refer to the θ-dependent
limiter (3.2) with θ = 1 and θ = 2, respectively; or the UNO limiter outlined in
(3.10)); “q” is either “S” (the staggered version) or “N” (the nonstaggered version).

Example 1. Accuracy test . In Table 1, we compare the accuracy of the nonstag-
gered schemes, NT-MM1-N, NT-MM2-N, and NT-UNO-N, with the accuracy of the
corresponding staggered schemes, NT-MM1-S, NT-MM2-S, and NT-UNO-S. This ac-
curacy check is done by approximating solutions to the linear problem, ut + ux = 0,
subject to the initial data u(x, 0) = sin 2πx. The accuracy of the computations was
checked at time T = 1, with CFL = 0.475.

These results show that the additional reconstruction step in the nonstaggered
schemes results in slightly less accurate results when compared with the staggered
schemes with the same limiter. The UNO limiter is the most accurate limiter from
the three limiters we used, because it is the only limiter which is uniformly second-
order accurate. The penalty of using the UNO limiter is that it has a wider stencil
(five points for computing numerical derivatives, whereas the MM limiter only utilizes
three points). The computational cost with the UNO limiter, however, is almost the
same as that with the MM2 limiter. The MM1 limiter is the most dissipative and
hence the least accurate.
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Table 1
Accuracy of staggered and nonstaggered schemes, ut +ux = 0, u(x, 0) = sin 2πx, CFL = 0.475,

T = 1.

NT-MM 1-S NT-MM 1-N
N L∞ error Order L1 error Order L∞ error Order L1 error Order
20 3.506e-2 - 1.290e-2 - 1.626e-1 - 7.079e-2 -
40 1.380e-2 1.35 3.166e-3 2.03 7.151e-2 1.19 2.863e-2 1.31
80 5.543e-3 1.32 8.243e-4 1.94 3.017e-2 1.25 8.069e-3 1.83
160 2.251e-3 1.30 2.065e-4 2.00 1.243e-2 1.28 2.173e-3 1.89
320 9.130e-4 1.30 5.256e-5 1.97 5.069e-3 1.29 5.959e-4 1.87

NT-MM 2-S NT-MM 2-N
N L∞ error Order L1 error Order L∞ error Order L1 error Order
20 1.474e-2 - 5.735e-3 - 6.903e-2 - 2.410e-2 -
40 5.839e-3 1.34 1.333e-3 2.11 2.457e-2 1.49 5.874e-3 2.04
80 2.121e-3 1.46 3.107e-4 2.10 8.691e-3 1.50 1.328e-3 2.15
160 7.980e-4 1.41 7.010e-5 2.15 3.027e-3 1.52 2.699e-4 2.30
320 3.365e-4 1.25 1.580e-5 2.15 1.041e-3 1.54 5.497e-5 2.30

NT-UNO-S NT-UNO-N
N L∞ error Order L1 error Order L∞ error Order L1 error Order
20 2.887e-3 - 1.867e-3 - 1.115e-2 - 7.201e-3 -
40 6.578e-4 2.13 4.195e-4 2.15 1.478e-3 2.92 9.628e-4 2.90
80 1.616e-4 2.03 1.029e-4 2.03 2.336e-4 2.66 1.486e-4 2.70
160 4.015e-5 2.01 2.556e-5 2.01 4.490e-5 2.38 2.858e-5 2.38
320 9.909e-6 2.02 6.308e-6 2.02 1.024e-5 2.13 6.516e-6 2.13

Example 2. Burgers’s equation. Here, we approximate solutions to the inviscid
Burgers’s equation

ut +

(
u2

2

)
x

= 0, −1 ≤ x ≤ 1,(5.1)

subject to the 2-periodic initial data u0(x) = 0.25 + 0.5 sin(πx). Figure 5.1 shows
the solutions at time T = 1.1, when the shock is well developed. The nonstaggered
schemes smear the shock slightly more than the corresponding staggered schemes
using the same limiter. In this problem, the MM2 limiter gives resolution similar to
the UNO limiter.

Example 3. Buckley–Leverett problem. Here we apply the schemes to the Buckley–
Leverett problem (whose flux is nonconvex),

ut + f(u)x = 0, f(u) =
u2

4u2 + (1− u)2
,(5.2)

subject to the initial data u0(x) = 1 for x ∈ [−0.5, 0] and 0 otherwise. We compute
the solution up to T = 0.4 and use the CFL 0.475. The results are presented in Figure
5.2. The MM2 limiter seems to give the wrong solution for both the staggered and
the nonstaggered scheme. The UNO limiter, however, produces accurate results in
both cases. Similar phenomena are found when the grid is refined and/or the CFL
number is reduced. Nevertheless, in many other cases, we found that the MM2 and
the UNO limiter produce rather similar results.

Example 4. One-dimensional Euler–Riemann problem. In this example, we apply
the schemes to the one-dimensional Euler system,

ut + f(u)x = 0,(5.3)
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Fig. 5.1. One-dimensional Burgers’s equation, T = 1.1, CFL = 0.475, ∆x = 1/40. (a) NT-
MM 1-S; (a′) NT-MM 1-N; (b) NT-MM 2-S; (b′) NT-MM 2-N; (c) NT-UNO-S; (c′) NT-UNO-N.

where

u = (ρ, ρu,E)T ,

f(u) = (ρu, P + ρu2, u(E + P ))T(5.4)

augmented with P = (γ − 1)(E − 1
2ρu

2). Here ρ, u, P , and E are, respectively, the
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Fig. 5.2. Buckley–Leverett problem. T = 0.4, CFL = 0.475, ∆x = 1/40. (a) NT-MM 1-S; (a′)
NT-MM 1-N; (b) NT-MM 2-S; (b′) NT-MM 2-N; (c) NT-UNO-S; (c′) NT-UNO-N.

density, velocity, pressure, and total specific energy. The system is complemented
with Riemann initial data of the form

u(x, 0) =

{
uL if x < 0,
uR if x > 0.
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• The first Riemann problem was proposed by Sod [27]. The initial data are
taken as

(ρL, uL, PL) = (1, 0, 1), (ρR, uR, PR) = (0.125, 0, 0.1).

In Figure 5.3, we show the density, velocity, and pressure plots obtained
by NT-UNO-S and NT-UNO-N. The schemes with the MM2 limiter produce
similar results. Again, the nonstaggered scheme gives slightly lower resolution
at the two ends of the rarefaction wave, the contact and the shock.
• The second Riemann problem was proposed by Lax [12]. Here, the initial

data are given by

(ρL, uL, PL) = (0.445, 0.698, 3.528), (ρR, uR, PR) = (0.5, 0, 0.571).

We present the results by NT-UNO-S and NT-UNO-N in Figure 5.4. The
MM2 limiter gives a slight overshoot in the density profile but otherwise is
similar to the UNO limiter.

Example 5. Blast wave problem. In this example, we test the schemes on the
blast wave problem which was carefully studied by Woodward and Colella [31]. The
governing equation is the one-dimensional Euler system (5.3)–(5.4). The initial data
are

u(x, 0) =

 uL if 0.0 < x < 0.1,
uM if 0.1 < x < 0.9,
uR if 0.9 < x < 1.0,

where

ρL = ρM = ρR = 1, uL = uM = uR = 0, PL = 103, PM = 10−2, PR = 102.

The reflective boundary condition is applied at both x = 0 and x = 1. The results
of NT-UNO-S and NT-UNO-N are shown in Figure 5.5. The “exact” solution in the
figures is obtained with a fourth-order ENO scheme on a very fine grid. Both schemes
perform well at the strong shocks.

Example 6. Oblique Sod’s problem. Here, we analyze the capability of the central
schemes to resolve waves that are oblique to the computational mesh. The governing
equation is the two-dimensional Euler system,

ut + f(u)x + g(u)y = 0,(5.5)

where

u = (ρ, ρu, ρv,E)T ,

f(u) = (ρu, P + ρu2, ρuv, u(E + P ))T ,

g(u) = (ρv, ρuv, P + ρv2, v(E + P ))T(5.6)

augmented with P = (γ−1)(E− 1
2ρ(u2+v2)). Here ρ, u, v, P , and E are, respectively,

the density, velocity in the x-direction, velocity in the y-direction, pressure, and total
specific energy.

The two-dimensional Sod’s problem is solved where the initial jump is at angle
θ to the x-axis (0 < θ ≤ π

2 ). θ = π
2 corresponds to the one-dimensional Sod’s

problem. If 0 < θ < π
2 , then all the produced waves are oblique to the rectangular
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Fig. 5.3. Sod problem. T = 2.0, CFL = 0.475, ∆x = 1/20. (a), (b), (c) NT-UNO-S; (a′), (b′),
(c′) NT-UNO-N. (a), (a′) Density; (b), (b′) velocity; (c), (c′) pressure.

computational cell. The computational domain is [0, 6] × [0, 1] and the initial jump
is positioned at (x, y) = (2.25, 0). The physical domain varies with θ and is taken as
[0, 6

sin θ ]× [0, 1
sin θ ]. The scaling factor, 1

sin θ , supplies the same grid resolution normal
to the wave propagation, on a given mesh and at a fixed time for every θ. In the
simulations, θ is taken as arctan 1, arctan 2, and arctan 4. The solution is computed
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Fig. 5.4. Lax problem. T = 1.3, CFL = 0.475, ∆x = 1/20. (a), (b), (c) NT-UNO-S; (a′), (b′),
(c′) NT-UNO-N. (a), (a′) Density; (b), (b′) velocity; (c), (c′) pressure.

up to T = 1.2 on a 192× 32 grid; consult [8].

The results are shown in Figure 5.6. (a) and (a′) present a one-dimensional cut
along y = 0. (a) is obtained by the staggered scheme, while (a′) is obtained by the
nonstaggered scheme. The MM2 limiter produces slight overshoots at the shock and
the contact. It achieves, however, the same sharp resolution as the UNO limiter. In
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Fig. 5.5. Blast wave problem. T = 0.038, CFL = 0.475, ∆x = 1/800. (a), (b), (c) NT-UNO-S;
(a′), (b′), (c′) NT-UNO-N. (a), (a′) Density; (b), (b′) velocity; (c), (c′) pressure.

(b)–(d) and (b′)–(d′), we plot, for each scheme, the differences between the densities
at an oblique angle and for the one-dimensional case. The differences in density
resolution at different angles are rather small for all schemes. The magnitude here is
comparable to that reported by Jiang and Shu [8]. An interesting point, which may
be typical to cell-average-type schemes for this problem, is that the largest difference
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Fig. 5.6. Oblique Sod problem. T = 1.2, CFL = 0.475, ∆x = ∆y = 1/32. (a) Staggered;
(a′) nonstaggered. (a), (a′) Density at y = 0 for θ = arctan 1. (b)–(d), (b′)–(d′) Density difference
at y = 0: ρθ − ρ1D with θ = arctan 1, arctan 2, arctan 4. (b) NT-MM 1-S; (b′) NT-MM 1-N; (c)
NT-MM 2-S; (c′) NT-MM 2-N; (d) NT-UNO-S; (d′) NT-UNO-N.
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Fig. 5.7. Double Mach reflection problem. T = 0.2, CFL = 0.475. Grid: (a), (a′) 480 × 120;
(b)–(f), (b′)–(f′) 960×240. (a)–(b), (a′)–(b′) Density; (c), (c′) velocity in x-direction; (d), (d′) velo-
city in y-direction; (e), (e′) pressure; (f), (f′) entropy. (a)–(f) NT-UNO-S; (a′)–(f′) NT-UNO-N.

in density happens for the angle θ = arctan 1, (where the wave fronts are diagonal
in the square cell used). The next largest difference is for θ = arctan 2, and the
least difference is for θ = arctan 4. For finite difference schemes, it seems that the
opposite is true; i.e., the magnitude of the difference increases as the angle changes
from arctan 1 to arctan 4.
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Example 7. Double Mach reflection problem. The governing equation for this
problem is the two-dimensional Euler system (5.5)–(5.6). The computational domain
is [0, 4] × [0, 1]. The reflecting wall lies at the bottom of the computational domain
starting from x = 1

6 . Initially a right-moving Mach 10 shock is positioned at (x, y) =
( 1

6 , 0) and makes a 60◦ angle with the x-axis. For the bottom boundary, the exact
postshock condition is imposed from x = 0 to x = 1

6 , and a reflective boundary
condition is used for the rest of the x-axis. At the top boundary of the computational
domain, the data is set to describe the exact motion of the Mach 10 shock; consult
[31] for a detailed discussion of this problem.

Two grids were used in our simulations: 480× 120 and 960× 240. In Figure 5.7
we plot the results obtained by NT-UNO-S and NT-UNO-N, zooming on [0, 3]× [0, 1].
Only the density is shown for the coarser grid. The entropy is defined here as P

ργ . We
observe that the MM2 limiter performs very similarly to the UNO limiter, whereas
the MM1 limiter is too dissipative for this problem.

6. Conclusions. We applied the nonstaggered schemes to several canonical prob-
lems and compared the numerical results with the staggered version of these schemes.
In general, the nonstaggered schemes produce slightly lower resolution for shocks than
the staggered schemes. We recommend that, whenever possible, the UNO limiter be
used for robustness and accuracy. The most expensive test, the double Mach reflection
problem on the 960× 240 grid, took only about 8 minutes on a Cray C-90.

Acknowledgment. D.L. would also like to thank the Harten fellowship for its
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