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ABSTRACT: 
 
We describe two reversible line-drawing methods for cartographic applications based on the kinetic (moving-point) 
Voronoi diagram. Our objectives were to optimize the user’s ability to draw and edit the map, rather than to produce 
the most efficient batch-oriented algorithm for large data sets, and all our algorithms are based on local operations 
(except for basic point location). Because the deletion of individual points or line segments is a necessary part of the 
manual editing process, incremental insertion and deletion is used. The original concept used here is that, as a curve 
(line) is the locus of a moving point, then segments are drawn by maintaining the topology of a single moving point 
(MP, or the “pen”) as it moves through the topological network (visualized as either the Voronoi diagram (VD) or 
Delaunay triangulation (DT)). The trailing line accumulates the adjacency relationships of MP. There are thus three 
parts to our method: the maintenance of MP in the DT/VD; the use of MP to draw the constrained edges in the 
Delaunay triangulation; and the use of MP to draw the line segment Voronoi diagram. In all cases deletion is the 
inverse of the original drawing: move MP so as to “roll up” the desired segment. This approach also has the interesting 
property that a “log file” of all operations may be preserved, allowing reversion to previous map states, or “dates”, as 
required.  
 
 

1. INTRODUCTION 

1.1 Objects and Fields 

It is traditional in GIS to talk about “geometry” (coordinate 
information) and “topology” (connectivity information) 
separately when talking about “vector” data consisting of points, 
lines and polygons. More complex objects (e.g. building 
outlines) are composed of these elements, with attributes 
attached. The same approach may be used for space-covering 
polygon tessellations, where boundaries are shared by adjacent 
polygons, etc. 
 
This requires the description of the relationships between 
several classes of entities, each of which may be a cartographic 
object (in that attributes may be associated with it) or else 
merely an entity linking these objects (perhaps a triangle edge 
in a TIN). A variety of tessellation data structures have been 
proposed over the years, and perhaps the most effective are 
edge data structures, where the edges provide the linking 
between points, as well as the relationships with the polygons 
on each side. 
 
Where we are referring to discrete objects (e.g. houses along 
roads) these structures are inadequate, as they apply only to 
connected graphs – hence the traditional difficulties with 
islands within polygons. In order to take advantage of the 
connectivity properties of a graph our map needs to be always 
connected – usually, but not necessarily, as a tessellation. There 
are at least three ways to achieve this: with a triangulation, with 
a Voronoi diagram, and with a dual graph. 
 
A simple TIN used for terrain modelling clearly is used to 
specify the spatial relationships between discrete data points – 
here the attribute information (the coordinates) is associated 

primarily with the points, although an attribute such as colour 
may be associated with the triangular polygons. It is rare that 
attribute information is associated with the edges. Thus if we 
wish to separate our attributes (including coordinates) from our 
topology an edge data structure is an advantage. 
 
If we are attempting to tessellate more complex discrete objects, 
such as houses, we run into difficulties as the building 
boundaries are clearly part of the cartographic object, as are 
interior triangles, while exterior triangle edges serve merely to 
give the relationships to adjacent buildings. This becomes 
particularly acute when building edges are sufficiently long that 
a standard Delaunay triangulation of the corner points fails to 
preserve the building edge, and a manually-inserted constrained 
triangulation edge is required. This is clearly different from the 
rest of the edges, and must have a label (attribute) attached. 
This breaks down our separation between objects (with 
attributes, including coordinates) and our pure topology. Our 
dynamic constrained DT (CDT) allows the insertion and 
deletion of constrained edges by tracking the topological 
connectivity of a moving point. 
 
A second approach involves the construction of a Voronoi 
diagram of all the cartographic objects (which are themselves 
composed of “cartographic fragments” such as line segments 
and points). Each cartographic object is composed of several 
cartographic fragments. The internal relationships between 
these, and the external relationships between separate objects, 
are expressed by the dual triangulation. (As is well known, the 
dual of a VD is a DT.) Thus the DT contains the topology, 
completely separated from the cartographic objects and their 
descriptions. 
 
The difficulties with this approach have been that the 
algorithms for the construction of the line-segment VD (LSVD) 
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are extremely complex and sensitive to the limitations of 
computer floating-point arithmetic. Held (2001) states that it 
took him ten years to achieve this for a static algorithm. Gold et 
al. (1995) constructed an LSVD of unconnected line segments. 
Imai (1996) constructed an incremental algorithm for line 
segments and closed polygons, where a maximum of two line 
segments meet at a vertex. Karavelas (2004) described a general 
incremental algorithm. We believe that we are the first to 
construct a dynamic algorithm, where points and line segments 
may be inserted, intersected and deleted – which is particularly 
useful for a dynamic GIS. The difficulties associated with this 
approach are primarily concerned with preserving the correct 
order of tangent points around the Delaunay circumcircles at 
locations where line segments meet. This is work is an 
extension of the original algorithm of Yang and Gold (1995), 
and is related to the CDT algorithm mentioned above. 
 
1.2 Dynamic GIS 

The number of dynamic algorithms for maintaining GIS data 
structures is limited, because they are usually based on a line-
intersection spatial model, rather than a tessellation. The 
primary tessellation model is the Constrained DT, which is 
usually static, in that all vertices are added first to give a simple 
DT, and then constrained edges are added to give enforced 
boundaries. Deletion of these edges is not addressed, and even 
point deletion in the simple DT is only recently described 
(Devillers 1999, Mostafavi et al. 2003). As previously 
mentioned, there is no satisfactory separation of cartography 
and topology. 
 
Our own approach to resolving these conflicting requirements 
was first of all to insist on a tessellation model, as this preserved 
the topological requirement of the ordering of edges around 
nodes. The VD/DT approach is fairly obvious as it gives a 
stable tessellation (and thus topology) from arbitrary vertex 
locations. Incremental insertion and deletion algorithms were 
used to give a dynamic solution. 
 
Since line segments are also required to define cartographic 
features, and not just points, a kinetic model was developed 
which allowed the VD/DT to be maintained as the “pen” point 
moved through the tessellation: a line is the locus of a moving 
point. While the dynamic model could be developed with only 
the “CCW” and “InCircle” geometric predicates used in 
Computational Geometry (Guibas and Stolfi 1985), giving a 
guaranteed robustness, the kinetic model requires additional 
tests to handle near-degenerate cases, especially point collision. 
The Constrained DT was constructed in this fashion, with the 
additional benefit that any constrained edge could be deleted by 
reversing the movement of the pen. Thus building boundaries 
could be inserted and deleted as specific, labelled triangle edges. 
 
In order to obtain the desired separation of cartography and 
topology these line segments needed to be distinguished from 
the triangle edges. This was achieved by creating line-segment 
Voronoi generators, in addition to the point generators, again by 
moving the “pen”. In this case, however, the result was not an 
arbitrary triangle edge but a line-segment object, and both point 
and line objects were connected by the triangulation topology. 
This was first reported in Yang and Gold (1993, 1995) but 
suffered from robustness difficulties due to the arithmetic 
operations needed for collision and circumcentre calculations. 
More recent work by Anton and Gold (1997), Anton et al. 
(1998) and ourselves appears to have resolved these problems, 
although no actual proof of robustness appears to be feasible. 

This algorithmic approach has the following stages: 
 
1: The Moving-Point (Kinetic) VD or DT 
This requires the dynamic incremental insertion and deletion of 
data points. In addition, individual points may be moved from 
their previous location to some subsequent location – the 
“trajectory”. In order to maintain the VD/DT geometric 
properties there must be a predictive tool to specify at what 
location the neighbouring VD/DT edges must be modified – a 
“topological event” (TE). 
 

2: The Kinetic Constrained DT  

The Moving Point (MP) in the moving point VD is split from a 
previous “old” point (making two new adjacent triangles with 
“zero” area) and moved towards its “new” destination. The 
initial zero length triangle edge between the old and new points 
is flagged as constrained (CE), and any TE generated by the 
moving point is ignored if it involves switching the CE. 
 

3: The Kinetic Line-Segment VD 

Instead of flagging the CE in the initial position of the 
Constrained DT, a pair of “half-lines” is generated. These are 
two new generators in the VD – one for each side of the line, in 
addition to the two end points. Each of these is the potential 
generator of a Voronoi proximal region. As the MP moves, TEs 
are identified as before, and the topology updated, thus giving 
an expanding region associated with each half-line. 
 
In this model the topological events are the same as before, but 
the circumcircle (CC) calculation must be expanded in order to 
work with distances from line segments as well as points. In 
earlier work (Gold, 1990, Yang and Gold, 1995) a direct 
calculation of Voronoi boundary intersections was used to find 
the circumcentre. This failed on occasion as arithmetic 
precision limitations could place the centre on the wrong side of 
a line segment, thus destroying the node-ordering necessary for 
topology maintenance. A new iterative algorithm was 
developed (Anton and Gold, 1997, Anton et al., 1998) that 
converged on the correct solution from an initial condition 
while preserving the necessary order of the generator locations 
around the circumcircle. 
 
All the operations used have their inverses, as MP movement 
may expand or contract the trailing line (Mioc et al., 1999). 
Preserving the topological relationships during construction 
means that potential collisions may be detected in advance, and 
the appropriate join operations implemented. This is simplified 
as the lines and their proximal regions are embedded in the two-
dimensional space, guaranteeing that, for example, one VD line 
segment may detect an imminent collision and form the 
appropriate junction that preserves the correct node and region 
ordering around the junction point. 
 
 

2. THE KINETIC POINT VD AND ITS DUAL DT 

“Kinetic” data structures maintain their topological structure 
while the entities move; “dynamic” ones merely permit local 
insertion and deletion of these entities (points, segments, etc.) 
Insertion algorithms are well known, but published point 
deletion algorithms are relatively recent. 
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2.1 The Dynamic VD and DT 

The simple VD can be constructed in many ways, 
(Aurenhammer, 1991, Okabe et al., 1992) but the incremental 
algorithm has often been found to be both stable and simple 
(Guibas and Stolfi, 1985). In simple terms, each new point is 
inserted into the existing DT by first finding the enclosing 
triangle, using the CCW test of Guibas and Stolfi (1985), 
splitting it into three triangles using the new point, and then 
testing each edge recursively to see if it conforms to the 
Delaunay criterion: that neither of the adjacent triangles’ CCs 
have an interior point. If they do, the common diagonal is 
switched and the new edges are added to the stack of edges to 
be tested. This CC test (INCIRCLE, Guibas and Stolfi 1985) 
can be shown to be equivalent to calculating the VD vertices 
and testing if the VD edges cross. Point deletion can be 
performed by approximately following the inverse process: 
switch DT edges if the result gives an exterior triangle whose 
CC is empty except for the point being deleted. When only 
three triangles remain the central point is deleted. There are two 
similar approaches: (Devillers, 1999 and Mostafavi et al., 2003). 
Thus the VD is updated at the same time as the DT. Both 
insertion and deletion may be considered as partitioning the DT 
into two parts: the valid DT exterior area and the valid DT 
interior area. Boundary edges are then switched until the two 
parts merge. 
 
2.2 The Moving-point (Kinetic) VD and DT 

When a point MP moves as part of a DT/VD it may either travel 
a short distance without requiring a topology update, or else 
triangle edges must be switched to maintain the Delaunay 
criterion. These topological events (Gold 1990, Roos 1990, 
Guibas et al., 1991) occur when MP moves into or out of a CC. 
“Real” CCs are those formed from triangles immediately 
exterior to the “star” or set of triangles connected to MP. 
“Imaginary” CCs are formed by triangles that would be created 
if MP was moved out of its CC, and are formed by triples of 
adjacent points around MP’s star. Thus if MP moved into a 
constellation of points in a DT it would first enter the CC of a 
triangle, causing a triangle edge switch and adding the furthest 
point of the triangle to the star of MP. The original real CC is 
now preserved as an imaginary one. As MP continues to move, 
at some later time it would move out of this imaginary CC, the 
original triangle will be recreated and the CC will become real 
again. 
 
 

3. THE KINETIC CONSTRAINED DT 

Where MP collides exactly with a neighbouring point, the 
points are merged by removing MP along with the two triangles 
adjacent to the edge between these points. The reverse process 
may be used to create a new MP from a previous point (split). 
This creates a zero-length edge between them, which expands 
as MP moves away. In the normal course of events this edge 
will be switched once MP moves outside the imaginary CC 
formed by the previous point and its two adjacent points in the 
star. However, for many applications it would be desirable if 
the edge was preserved, and MP used to “draw” a triangle edge 
between two locations. In this case the trailing edge of MP is 
flagged “do not switch”, and all tests to switch it are ignored. 
This generates the Constrained DT, where specific triangle 
edges are fixed (constrained, CE) and do not follow the DT/VD 
condition (Chew 1989, Shewchuk 1996). 
 

The interesting thing about our approach, as opposed to those in 
the literature, is that it is incremental, allowing the addition of 
further points or constraints as required. A further property is 
that it is reversible – MP may be moved back along its 
(constrained) trajectory, “rolling it up” as it goes, until it 
reaches its starting point, with which it may be merged. Thus 
each operation has its inverse, giving a kinetic data structure 
which allows the construction and incremental or interactive 
modification of the desired map. In addition, the construction 
commands may be preserved as a “log file” for later 
reconstruction or modification. If timestamps are associated 
with each command the map may be rolled forwards or 
backwards to any desired time (Mioc et al., 1999). 
 
 

   

 
 

 
 

Figure 1. a) Building boundaries; b) Constrained Delaunay 
Triangulation; c) the Voronoi Diagram (note the two 

overlapping Voronoi boundaries where the constrained edge 
differs from the unconstrained edge) 

 
Figs. 1a and 1b show the construction of the Constrained DT 
for a UK urban data set. This is of particular interest because of 
the work of (Jones et al., 1995, Jones and Ware 1998 and Ware 
and Jones 1998) who constructed the CDT of roads and 
building outlines and then used the adjacency information to 
modify and move the buildings as part of the process of map 
generalization. Fig. 1c shows that for this example only two 
constrained edges are absolutely necessary (their Voronoi edges 
overlap) – these prevent the switching to give a valid VD/DT – 
while the others would be unchanged. Fig. 2 shows the 
constrained DT for several buildings and roads.  
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4. THE KINETIC LINE-SEGMENT VD 

The primary problem with the Constrained DT is the confusion 
of entities. For a simple point DT/VD the primary objects are 
data points, which are the generators of the proximal Voronoi 
cells. The DT merely describes the dual relationships of the 
Voronoi edges: Delaunay edges are merely pointers expressing 
which pairs of data points are separated by Voronoi boundaries. 
For a simple TIN model it is convenient to imagine that these 
are geometrically defined as “straight”, as the triangle is a 2D 
simplex and hence forms a basis for linear interpolation within, 
but their real function is to support the set of equidistant 
boundaries that form the VD of a set of generators. (These 
generators may, if required, be any set of non-overlapping 
objects: the dual DT remains a triangulation.)  
 
 

 
 

Figure 2.  The Constrained DT for several buildings and roads 
 
However, with the Constrained DT there is confusion between 
triangle edges that express duals of VD edges and those that 
have been manually added as objects – in the sense that a 
building outline is formed of point and line-segment objects. 
Thus the VD of a Constrained DT is broken at each constrained 
edge, and the VD edges that are correct on one side of a 
constrained edge are invalid when they penetrate to the other 
side. It is more correct to define the map objects separately 
(perhaps composed of points and line segments) and then to 
construct the DT/VD expressing the spatial relationships 
between them.  
 
Unfortunately the construction of the VD of points and line 
segments has proved to be a difficult task, primarily due to the 
limited precision of computer arithmetic. This causes no great 
difficulty for well-separated individual line segments (e.g. Gold 
et al., 1995) but map objects constructed from connected points 
and line segments need to have tight guarantees that, for 
example, the circumcircle for a line segment, its end-point, and 
a line segment connected to that point, falls on the correct side 
of the polyline. (Geometrically it falls precisely on the common 
end-point, but topologically it must be associated with the 
correct side.) This has proved difficult to achieve, and workers 
have spent a great deal of time attempting to construct robust 
algorithms (e.g. Held 2001, Imai 1996, Shewchuk 1997 and 
Sugihara et al. 2000). 
 
In addition, we have wanted to allow incremental, rather than 
batch, construction, so we followed the approach of Gold et al. 
(1995) which was based on the concept of the moving point VD 
described above. Instead of preserving a trailing triangle edge, 

as described above for the Constrained DT, the “old point” OP 
and the “moving point” MP are connected with additional map 
objects: half-lines connecting OP and MP that stretch as MP 
moves away. Here a “half-line” is similar to the “half-edge” 
structure used in CAD consisting of one side of the desired line 
segment, in anticlockwise orientation viewed from the face. As 
both end points and both half-lines are map objects they are 
therefore generators of the VD, and thus they are vertices of the 
dual DT, as shown in Fig. 3. Half-lines HL1 and HL2 are linked 
with DT edge ne7, and they are linked by DT edges to 
endpoints OP and MP. In Karavelas (2004) an incremental 
algorithm was produced for exact arithmetic which allowed 
intersections by splitting line segments in advance, using exact 
arithmetic and implicit coordinates for intersections, as they 
have the original end points as support. We can not do this, as 
we allow arbitrary line segment deletion, but we allow MP to 
move from its origin to its destination and manage any 
collisions as it detects them. Thus calculation of the 
circumcircles of these triangles is more complex than for point 
data sets. In Yang and Gold (1995) this was calculated from the 
intersections of the curves forming the Voronoi boundaries, but 
this suffered from the arithmetic precision problems mentioned 
above. 
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Figure 3. Half-lines between two data points 
 
4.1 Circumcircle 

In our new work we use the approach of Anton et al. (1998) 
where the simple point circumcircle calculation was given an 
initial estimate based on the configuration of the points/line-
segments used. Initially points and the mid-points of valid 
portions of the line segments were used for the INCIRCLE test. 
The centre was then projected onto each line segment, and a 
new CC calculated based on INCIRCLE. When the new 
circumcentre was projected onto each line, and the projection 
point was outside the line segment, then a point half way 
between the old projection point and the appropriate endpoint 
of the line was used. This was iterated to a suitable level of 
precision, and the method was guaranteed to preserve the order 
of the generating points around the CC, thus keeping the initial 
Voronoi edge order around the circumcentre (and thus the 
correct DT order as well), (Anton et al. 1998).  
 
4.2 Line Segment Construction 

As with the Constrained DT, the MP is used to draw the line 
segment using the half-lines described above. As MP moves it 
acquires and loses Voronoi neighbours, as with the simple 
moving point, but when it loses them they are transferred to the 
trailing line segment: since this is the locus of MP, it retains all 
the neighbourhood relationships previously held by MP. 



 

 

 ISPRS Workshop on Updating Geo-spatial Databases with Imagery & The 5th ISPRS Workshop on DMGISs 

 

45 

For a simple line segment with two end points there are four 
Voronoi regions: one for each end point and one for each half-
line. This permits the querying of each side of a line, e.g. to find 
if a point is inside or outside a polygon. As shown in Gold 
(1990) the partitioning of the map space into proximal regions 
also makes buffer-zone generation an elementary operation on 
each region. Fig. 4 shows the line segment VD for the same 
urban dataset shown previously. When the DT is also displayed, 
note that each line segment is also a DT vertex. This clearly 
distinguishes the DT function of expressing the adjacency 
relationships, and not being part of the map object. Each of the 
map objects may be edited by the insertion or deletion of line 
segments (half-line pairs) and free vertices. The method is 
dynamic, in the sense of being locally updatable, and kinetic, in 
the sense that MP may move within the map space. However, 
line segments may only expand or shrink, and not sweep 
sideways, as collision detection and topology maintenance are 
based on MP alone. As with the Constrained DT, the Line-
segment VD may have intersecting segments. The line 
segments are map objects having two separate sides (Fig. 3), 
allowing attributes (such as polygon colour) to be assigned to 
each side. 

 

 
 

Figure 4.  a) Line segment VD; b) VD plus DT for the simple 
buildings of Fig. 1. 

 
Space does not permit the description of all the details of the 
suite of algorithms described in this paper. The key question in 
practice is the robustness of the method for all types of data 
input, given the problems of arithmetic precision. The 
underlying method described here consists of two parts: a 
geometric test and a topological update. Any arithmetic 
operation not resulting in a topological change causes no 
robustness problems. Only geometric tests used to trigger 
topological changes can cause robustness problems, and there 
are only two – calculation of CCs and a sidedness test (“walk” 
in Gold et al. 1977, “CCW” in Guibas and Stolfi 1985). These 
problems are described in more detail in Gold and Dakowicz 
(2006). 
 
Our previous examples have been urban applications, showing 
building and street boundaries, for potential application in map 
generalization (Jones et al. 1995, Jones and Ware 1998). We 
will briefly show one other. Fig. 5 shows the Line-segment VD 
for a portion of a contour map. Both the points and line-

segments forming the contours are map objects, as would have 
been the intention of the compilers. In addition, the medial axis, 
or skeleton, between or within the contours is clearly seen (see 
Gold and Snoeyink (2001) for further discussion of the 
skeleton). This map is directly editable if required. 

 

 
Figure 5. Line-segment VD for contours 

 
 

5. CONCLUSIONS AND ACKNOWLEDGEMENTS 

We have attempted to show that a tessellated spatial model has 
definite advantages for cartographic applications, and facilitates 
a kinetic structure for map updating and simulation. Firstly, the 
moving-point DT/VD model approximates human thinking, and 
manages collision detection, snapping and intersection at the 
data input stage by maintaining a topology based on a complete 
tessellation. Secondly, the Constrained DT allows the 
simulation of edges, and not just points, with only minor 
changes to the moving-point model, but at the cost of confusing 
map objects and topological entities. Thirdly, the Line-segment 
VD is a better-specified model of the spatial relationships for 
compound map objects built from points and line segments than 
is the Constrained DT. However, until now it has been more 
difficult to develop. We believe that this method is now viable 
for 2D cartography, and in many cases it should replace the 
Constrained DT. However, whichever method is used, the 
concept of using the moving point as a pen, permitting 
interactive navigation within the map under construction, 
together with the ability to delete and add line segments as 
desired in the construction and updating process, appears to be a 
very useful approach. 
 
Resolution of these issues opens up a variety of elegant 
solutions to cartographic problems: the point in polygon 
problem; the buffer zone problem; the watershed and 
cumulative catchment area problems; feature adjacency 
problems; and incremental and interactive updating of the 
cartographic product with only local changes to the topology 
and hence to the properties just described. In addition, as 
described in Gold and Yang (1993) and Mioc et al. (1999) all 
updates may be time-stamped, and hence the map may be 
updated or rolled back to any desired date. 
 
We would like to acknowledge the financial support of the EU 
Marie-Curie Chair in GIS at the University of Glamorgan. 
 
 



 

 

 ISPRS Workshop on Updating Geo-spatial Databases with Imagery & The 5th ISPRS Workshop on DMGISs 

 

46 

REFERENCES 

Anton, F. and Gold, C. M., 1997. “An iterative algorithm for 
the determination of Voronoi vertices in polygonal and non-
polygonal domains”, In Proceedings, Ninth Canadian 
Conference on Computational Geometry, Kingston, ON, 
Canada, pp.257-262. 
 
Anton, F., Snoeyink, J. and Gold, C. M., 1998. “An iterative 
algorithm for the determination of Voronoi vertices in 
polygonal and non-polygonal domains on the plane and the 
sphere”, In Proceedings, 14th European Workshop on 
Computational Geometry (CG'98), Spain, pp.33-35. 
 
Aurenhammer, F., 1991. “Voronoi Diagrams - A Survey of a 
Fundamental Geometric Data Structure”, ACM Computing 
Surveys, v. 23 (3), pp. 345-405. 
 
Chew, P., 1989. “Constrained Delaunay Triangulations”, 
Algorithmica, v. 4 pp. 97- 108. 
 
Devillers, O., 1999. “On deletion in Delaunay triangulations”, 
the 15th Annual ACM Symposium on Computational Geometry, 
pp. 181-188.  
 
Gold, C. M. and Dakowicz, M. 2006. Kinetic Voronoi - 
Delaunay drawing tools.  Proceedings, 3rd. International 
Symposium on Voronoi Diagrams in Science and Engineering, 
Banff, Canada July 2006, pp. 76-84. 
 
Gold, C. M. and Snoeyink, J., 2001. “A one-step crust and 
skeleton extraction algorithm”, Algorithmica, v. 30, pp.144-163. 
 
Gold, C. M. and Yang, W., 1993. The design of an urban GIS to 
manage frequent spatial updates. In D. Du, J. Chen, B. Forester, 
and X. Shi, editors, Proceedings AUSIA'93 Advances in Urban 
Spatial Information and Analysis, pages 1-7, Wuhan, China. 
 
Gold, C. M., Charters, T. D. and Ramsden, J. (1977), 
Automated contour mapping using triangular element data 
structures and an interpolant over each triangular domain, In 
Proceedings: Sigraph '77. Computer Graphics, v. 11, pp.170-
175 
 
Gold, C. M., Remmele, P. R. and Roos, T., 1995. “Voronoi 
diagrams of line segments made easy”, In Proceedings, 7th. 
Canadian Conference on Computational Geometry, (Eds.: Gold, 
C. M. and Robert, J. M.), Quebec, QC, Canada, pp.223-228. 
 
Gold, C.M., 1990. “Spatial Data Structures - The Extension 
from One to Two Dimensions”, In: L.F. Pau (ad.), Mapping and 
Spatial Modelling for Navigation, NATO ASI Series F No. 65, 
Springer-Verlag, Berlin, pp. 11- 39. 
 
Guibas, L. and Stolfi, J., 1985. “Primitives for the manipulation 
of general subdivisions and the computation of Voronoi 
diagrams”, Transactions on Graphics, v. 4, pp. 74-123. 
 
Guibas, L., Mitchell, J.S.B. and Roos, T., 1991. “Voronoi 
diagrams of moving points in the plane”, Proceedings, 17th. 
International Workshop on Graph Theoretic Concepts in 
Computer Science, Fischbachau, Germany. Lecture Notes in 
Computer Science, vol. 70. Berlin: Springer-Verlag, pp. 113-l 
25. 
 

Held, M., 2001. “VRONI: an engineering approach to the 
reliable and efficient computation of Voronoi diagrams of 
points and line segments”, Computational Geometry, Theory 
and Application, v. 18 (2), pp. 95-123. 
 
Imai, T., 1996. “A topology oriented algorithm for the Voronoi 
diagram of polygons”, In Proceedings, 8th Canadian 
Conference on Computational Geometry, Carleton University 
Press, Ottawa, Canada, pp. 107–112.  
 
Jones, C. B., Bundy, G. L. and Ware, J. M., 1995. “Map 
generalization with a triangulated data structure”, Cartography 
and Geographic Information Systems, v. 22 (4), pp. 317–331. 
 
Jones, C.B. and Ware, J.M., 1998. “Proximity Search with a 
Triangulated Spatial Model”, Computer Journal, v.  41 (2), pp. 
71-83. 
 
Karavelas, M.I., 2004. “A robust and efficient implementation 
for the segment Voronoi diagram”, International Symposium on 
Voronoi Diagrams in Science and Engineering (VD2004), pp. 
51-62. 
 
Mioc, D., Anton, F., Gold, C. M. and Moulin, B., 1999, “"Time 
travel" Visualization in a Dynamic Voronoi Data Structure”, 
Cartography and Geographic Information Science, Vol. 26, pp. 
99-108. 
 
Mostafavi, M., Gold, C.M. and Dakowicz, M., 2003, “Dynamic 
Voronoi/ Delaunay Methods and Applications”, Computers and 
Geosciences, v. 29 (4), pp. 523-530. 
 
Okabe, A., Boots, B. and Sugihara, K., 1992. Spatial 
Tessellations - Concepts and Applications of Voronoi Diagrams, 
Chichester: John Wiley and Sons, 521p. 
 
Roos, T., 1990. “Voronoi Diagrams over Dynamic Scenes”, 
Proceedings, Second Canadian Conference on Computational 
Geometry, Ottawa, pp. 209-213. 
 
Shewchuk, J.R., 1996. “Triangle: Engineering a 2D Quality 
Mesh Generator and Delaunay Triangulator”, First Workshop 
on Applied Computational Geometry (Philadelphia, 
Pennsylvania), Association for Computing Machinery, pp. 124-
133. 
 
Shewchuk, J.R., 1997. “Adaptive Precision Floating-Point 
Arithmetic and Fast Robust Geometric Predicates”, Discrete 
and Computational Geometry, v. 18 (3), pp. 305 – 363. 
 
Sugihara, K., Iri, M., Inagaki, H. and Imai, T., 2000. 
“Topology-oriented implementation – an approach to robust 
geometric algorithms”, Algorithmica, v. 27 (1), pp. 5-20. 
 
Ware, J.M. and Jones, C.B., 1998. Conflict Reduction in Map 
Generalization Using Iterative Improvement, GeoInformatica, v. 
2 (4), pp. 383 – 407. 
 
Yang, W. and Gold, C. M., 1993.  An outline of a dynamic 
solution to spatio-temporal windowing in an urban GIS. In 
D. Du, J. Chen, B. Forester, and X. Shi, editors, Proceedings 
AUSIA'93, Advances in Urban Spatial Information and 
Analysis, pp. 36-44, Wuhan, China. 
 
Yang, W. and Gold, C. M., 1995. Dynamic spatial object 
condensation based on the Voronoi diagram. In J. Chen, X. Shi, 



 

 

 ISPRS Workshop on Updating Geo-spatial Databases with Imagery & The 5th ISPRS Workshop on DMGISs 

 

47 

and W. Gao, editors, Proceedings Fourth International 
Symposium of LIESMARS'95 - Towards three-dimensional, 
temporal and dynamic spatial data modelling and analysis, pp. 
134-145, Wuhan, China. 


