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ABSTRACT. A finite collection of unit vectors S ⊂ Rn is called a spherical two-distance set if there are two numbers a and
b such that the inner products of distinct vectors from S are either a or b. We prove that if a 6= −b, then a two-distance set
that forms a tight frame for Rn is a spherical embedding of a strongly regular graph. We also describe all two-distance tight
frames obtained from a given graph. Together with an earlier work by S. Waldron on the equiangular case (Linear Alg. Appl.,
vol. 41, pp. 2228-2242, 2009) this completely characterizes two-distance tight frames. As an intermediate result, we obtain
a classification of all two-distance 2-designs.

1. INTRODUCTION

A finite collection of unit vectors S ⊂ Rn is called a spherical two-distance set if there are two numbers a and b
such that the inner products of distinct vectors from S are either a or b. If in addition a = −b, then S defines a set of
equiangular lines through the origin in Rn. Equiangular lines form a classical subject in discrete geometry following
foundational papers of Van Lint, Seidel, and Lemmens [17, 16]. Equiangular line sets are closely related to strongly
regular graphs and two-graphs [10, 11] which form the main source of their constructions. Another group of results
is concerned with bounding the maximum size g(n) of spherical two-distance sets in n dimensions. We refer to [3, 4]
for the latest results on upper bounds on g(n) as well as an overview of the relevant literature.

A finite collection of vectors S = {x1, . . . , xN} ⊂ Rn is called a finite frame for the Euclidean space Rn if there
are constants 0 < A ≤ B <∞ such that for all x ∈ Rn

A||x||2 ≤
N∑
i=1

〈x, xi〉2 ≤ B||x||2. (1.1)

If A = B, then S is called an A-tight frame, in which case

A =
1

n

∑
i

‖xi‖2. (1.2)

It is trivially seen that a finite collection of vectors S = {xi : i = 1, . . . N} ⊂ Rn is an A-tight frame if and only if
for any x ∈ Rn,
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Ax =

N∑
i=1

〈x, xi〉xi. (1.3)

If in addition ‖xi‖ = 1 for all i ∈ I , then S is a finite unit-norm tight frame or FUNTF. If at the same time S is a
spherical two-distance set, we call it a two-distance tight frame. In particular, if the two inner products in S satisfy the
condition a = −b, then it is an equiangular tight frame or ETF. All frames in this paper will be assumed unit-norm.

The Gram matrix G of S is defined by Gij = 〈xi, xj〉, 1 ≤ i, j ≤ N, where N = |S|. If S is a FUNTF for Rn,
then it is straightforward to show [12] that G has one nonzero eigenvalue λ = N/n of multiplicity n and eigenvalue 0
of multiplicity N − n.

Frames have been used in signal processing and have a large number of applications in sampling theory, wavelet
theory, data transmission, and filter banks [8, 14]. The study of ETFs was initiated by Strohmer and Heath [23] and
Holmes and Paulsen [13]. In particular, [13] shows that equiangular tight frames give error correcting codes that are
robust against two erasures. Bodmann et al. [6] show that ETFs are useful for signal reconstruction when all the phase
information is lost. Sustik et al. [22] derived necessary conditions on the existence of ETFs as well as bounds on their
maximum cardinality.

Benedetto and Fickus [5] introduced a useful parameter of the frame, called the frame potential. For our purposes
it suffices to define it as FP (S) =

∑N
i,j=1〈xi, xj〉2. For a two-distance frame we obtain

N∑
i,j=1

〈xi, xj〉2 = N + 2νaa
2 + (N(N − 1)− 2νa)b2, (1.4)

where νa = |{(i, j) : i < j : 〈xi, xj〉 = a}|.

Theorem 1.1. [5, Theorem.6.2] Let N > n. If S = {xi : 1 ≤ i ≤ N} is any set of unit-norm vectors, then

FP (S) ≥ N2

n
(1.5)

with equality if and only if S is a tight frame.

A finite collection of unit vectors S = {xi : i = 1, . . . , N} in Rn is called a spherical 2-design [10] if
N∑
i=1

xi = 0,

N∑
i,j=1

〈xi, xj〉2 =
N2

n
. (1.6)

In other words, a spherical 2-design is a FUNTF with the center of mass at the origin.

Remark 1.1. In [2] spherical sets that satisfy only the tight frame condition (the second condition in (1.6)) are called
spherical designs of harmonic index 2. In the sequel we will refer to such spherical designs as shifted 2-designs.

To state our main result we need several definitions. A regular graph of degree k on v vertices is called strongly
regular if every two adjacent vertices have λ common neighbors and every two non-adjacent vertices have µ common
neighbors. Below we use the notation SRG(v, k, λ, µ) to denote such a graph. Note that the complement of a strongly
regular graph SRG(v, k, λ, µ), is also strongly regular, namely SRG(v, v − k − 1, v − 2k + µ − 2, v − 2k + λ).
The theory of strongly regular graphs is presented, for instance, in [11, 9]. Below we use a classical construction of
spherical embeddings of strongly regular graphs introduced by Delsarte, Goethals, and Seidel [10, Example 9.1]; see
also [19, 1]. Roughly speaking, a spherical embedding of Γ = SRG(v, k, λ, µ) is obtained by associating a basis of
Rv with the vertices of Γ and projecting these vectors on an eigenspace of the adjacency matrix of Γ. A more detailed
description is given in Sect. 3 after we develop all the necessary pieces of notation.

In this paper we characterize two-distance FUNTFs by linking them to spherical 2-designs and strongly regular
graphs. Our main result is as follows:
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Theorem 1.2. Let S = {xi : i ∈ I} be a non-equiangular two-distance FUNTF in Rn. Then S forms a spherical
two-distance 2-design or a shifted 2-design. In either case S can be obtained as a spherical embedding of a strongly
regular graph. Under spherical embedding, every strongly regular graph gives rise to three different two-distance
2-designs and therefore, to six different two-distance tight frames, two of which are regular simplices.

The proof is given in Sections 2, 3. As an intermediate result (see Theorem 3.4), we fully characterize spherical
2-designs that form spherical two-distance sets.

Strongly regular graphs form examples of classical objects in algebraic combinatorics called association schemes
[9]. Although we do not use the language of schemes in this paper, we note that our results contribute to the study of
the general problem of characterizing spherical designs that can be obtained from association schemes.

Note that the connection between equiangular line sets and strongly regular graphs is well known (Seidel et al. [21,
10]; see also [11]). It has been recently addressed in the context of frame theory, particularly in the study of ETFs
[23, 13]. A recent paper by Waldron [24] proves that an ETF in Rn withN ≥ n vectors exists if and only if there exists
an SRG(N − 1, k, (3k−N)/2, k/2), where k is a certain function of n and N . Furthermore, [24] also contains many
examples of ETFs in Rn, n ≤ 50. Together with Theorem 1.2 this result completes the description of two-distance
tight frames, equiangular or not.

2. BASIC PROPERTIES

We begin with an easy example of 2-distance FUNTFs which is given by the following construction. We will need
the following theorem.

Theorem 2.1 (Larman, Rogers, and Seidel, [15]). Let S be a spherical two-distance set in Rn. If |S| > 2n + 1 then
the inner products a, b are related by the equation b = (ka − 1)/(k − 1) where k ∈ {2, . . . , b(1 +

√
2n)/2c} is an

integer.

The original proof of [15] had 2n + 3 in place of 2n + 1, while the above improvement is due to Neumaier [19].
Given the value of a, we denote by bk(a) the corresponding value of b.

Proposition 2.2. Let e1, . . . , en+1 be the standard basis in Rn+1. The projection of the set

S = {ei + ej , 1 ≤ i < j ≤ n+ 1} (2.1)

on the hyperplane x1 + · · ·+ xn+1 = 2 forms a two-distance tight frame for Rn.

Proof. Note that the inner products of distinct vectors in S are either 1 or 0. Let

ν1,1 = |{(i, j) : i < j, 〈e1 + e2, ei + ej〉 = 1}|

Observe that (i, j) is contained in this set if and only if i = 1 or i = 2, and we obtain ν1,1 = 2(n− 1). By symmetry,
the value ν1,1 does not depend on the choice of the fixed vector e1 + e2, so the total number of unordered pairs of
vectors in S with inner product 1 equals

ν1 =
1

2

(
n+ 1

2

)
ν1,1 =

1

2
(n− 1)n(n+ 1).

The pairs of distinct vectors not counted in ν1 are orthogonal, and their number is

ν0 =

(
n(n+ 1)/2

2

)
− ν1 =

1

8
(n− 2)(n− 1)n(n+ 1).

Now let us project the vectors of S on the plane x1 + · · · + xn+1 = 2 and scale the result to place them on the unit
sphere around the point z0 = 2

n+1 (1, 1, . . . , 1). Since each vector zi,j = ei + ej already belongs to the plane, the
resulting vector will be z′i,j = c(zi,j − z0) where c = 1√

2− 4
n+1

. By a series of computations we see that

〈z′i,j , z′k,l〉 = c2(〈zi,j , zk,l〉 − 4
n+1 ).
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And since 〈zi,j , zk,l〉 ∈ {0, 1} we arrive that the fact that 〈z′i,j , z′k,l〉 ∈ {a, b} with a = (n − 3)/(2(n − 1)) and
b = −2/(n− 1).

This information suffices to compute the frame potential, and we obtain

FP (S) = N + 2ν1a
2 + 2ν0b

2 =
N2

n

The frame potential meets the lower bound (1.5) with equality, which implies that S forms a FUNTF for Rn. �

We next give a characterization result for two-distance FUNTFs.

Definition 2.3. Let S ⊂ Rn be a spherical two-distance set with inner products a and b, b < a, let xi ∈ S, and let

Na,i = |{j : xj ∈ S, 〈xi, xj〉 = a}|.

S is called regular if Na,i does not depend on i. For regular sets we denote this quantity simply by Na.

Theorem 2.4. Let S ⊂ Rn, |S| = N be a two-distance FUNTF with inner products a and b such that a2 − b2 6= 0.
Then S is regular and

Na =
(N/n)− 1− (N − 1)b2

a2 − b2
(2.2)

−n(a+ b)− nab(N − 1) = N − n or (N − n)(a+ b)− nab(N − 1) = N − n. (2.3)

Proof. G is similar to a diagonal matrix of order N with n nonzero entries λ = N/n on the diagonal. Therefore,
G2 − λG = 0, so G2 = λG and (G2)ii = λ for all i since Gii = 1. We also have (G2)ii =

∑N
j=1G

2
ij , so the norm

of every row and of every column is the same and equals
√
λ.

Now let Na be the number of entries a in any fixed column. Then

1 + a2Na + b2(N − 1−Na) =
N

n
.

This implies (2.2).
Thus, 1 = (11 . . . 1) is an eigenvector of the Gram matrix G with eigenvalue 0 or N/n. Suppose it is the former,

thenG ·1 = 0, so the sum of entries in every row is 0. This implies that 1+aNa+(N−1−Na)b = 0. By substituting
Na given by (2.2) into this last equation, and after some simplifications we obtain the first of the two options for b
in (2.3).

Now suppose that G · 1 = N
n 1, so the sum of entries of G in any given row equals N/n. Repeating the calculation

performed for the first case, we obtain the second of the two possibilities for b. �

Remark 2.1. Another way to express the alternative in (2.3) is as follows. The sum of squared entries of every row of
G equals N/n and the sum of the entries is either 0 or N/n. These two equations translate into the two conditions for
a and b.

In the next section we characterize FUNTF for each of the two cases in (2.3).

Remark 2.2. If a = −b, then the statement of Theorem 2.4 does not hold. Indeed, consider the set S = {x1, . . . , x28}
of 28 vectors in R7 constructed as in (2.1). By Theorem 2.1 the inner products between distinct vectors in S are±1/3,
so they form a set of equiangular lines. For any given vector x ∈ S we have |{y ∈ S : 〈x, y〉 = 1/3}| = 12 and
|{y ∈ S : 〈x, y〉 = −1/3}| = 15. Now consider the set S′ = {−x1, x2, . . . , x28} which is also a FUNTF with
inner products ±1/3, but the first column of G contains 12 entries equal to −1/3, which is different from all the other
columns.
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3. TWO-DISTANCE FUNTFS AND STRONGLY REGULAR GRAPHS

Connections between equiangular line sets and ETFs on the one side and strongly regular graphs on the other are
well known and have been used in the literature to characterize the sets of parameters of ETFs [11, Ch. 11], [24]. In
this section we extend this connection by relating two-distance (non equiangular) FUNTFs, 2 designs, and strongly
regular graphs.

We begin with a necessary condition for the existence of two-distance FUNTFs. Let S be such a frame. The Gram
matrix of any two-distance set with inner products a, b can be written as

G = I + aΦ1 + bΦ2, (3.1)

where Φ1 and Φ2 are the corresponding indicator matrices. We also denote by Γ1 and Γ2 the graphs with adjacency
matrices Φ1 and Φ2, respectively.

Proposition 3.1. If S is a 2-distance FUNTF in Rn with inner products a, b, then S is either an n-dimensional
spherical 2-design, or is similar to an (n − 1)-dimensional spherical 2-design contained in a subsphere of radius√

1− 1/n. In the former (resp., latter) case a and b satisfy the first (resp., second) equality in (2.3).

Proof. Let S = {xi : 1 ≤ i ≤ N} and let s =
∑N
i=1 xi. Then for each i, 1 ≤ i ≤ N the value t := 〈xi, s〉 does not

depend on i and is equal to t = Naa+ (N −Na)b+ 1, where Na is given in (2.2).
Applying (1.3) for x = s, we obtain

N

n
s =

N∑
i=1

txi = ts.

Hence either s = 0 and S is a spherical 2-design, or t = N
n and then 〈s, s〉 = Nt = N2

n .

Suppose that s 6= 0 (equivalently t = N/n). For each i, 1 ≤ i ≤ N , denote yi = xi−s/N√
1−1/n

. We will show that the

set S′ = {yi : i = 1, . . . , N}, which is similar to the set S, forms a spherical 2-design in Rn−1. This will imply that
S lies on a sphere of radius

√
1− 1/n in Rn.

First we check that 〈yi, s〉 = 0 for all i. Indeed,

〈yi, s〉 =
〈xi, s〉 − 〈s, s〉/N√

1− 1/n
=
N/n− N2/n

N√
1− 1/n

= 0. (3.2)

This establishes that S′ is an (n − 1)-dimensional set. Moreover, S′ lies on the unit sphere. Indeed, using that
〈yi, s〉 = 0, we obtain

‖yi‖2 =
‖xi‖2 − ‖s/N‖2

1− 1/n
=

1− N2/n
N2

1− 1/n
= 1.

Clearly S′ is a two-distance set. It remains to show that S′ forms a 2-design (1.6). The center-of-masses condition is
clearly satisfied. To check the tight frame condition let us compute the frame potential of S′ and use Theorem 1.1. We
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have

N2

n
=

N∑
i,j=1

|〈xi, xj〉|2 =

N∑
i,j=1

∣∣∣〈√1− 1

n
yi +

s

N
,

√
1− 1

n
yi +

s

N

〉∣∣∣2
=

N∑
i,j=1

((
1− 1

n

)
〈yi, yj〉+

‖s‖2

N2

)2
=
(

1− 1

n

)2
FP (S′) +

2

n

N∑
i,j=1

〈yi, yj〉+
N2

n2

=
(

1− 1

n

)2
FP (S′) +

N2

n2

where the last step uses the condition
∑
i yi = 0. Thus, FP (S′) = N2

n−1 and therefore, S′ is an (n − 1)-dimensional
2-design.

Finally, note that t is an eigenvalue of G, namely, G · 1 = t1. Recalling that the two cases in (2.3) correspond to
t = 0 and t = N/n, we obtain the final claim of the proposition. �

Observe that a related result was proved in [20]. Namely, Theorem 4.7 in that paper states (in our terms) that a

spherical set S ⊂ Rn is a 2-design if and only if G · 1 = 0 and G2 =
∑

x∈S ‖x‖
2

n G.

Due to the Delsarte-Goethals-Seidel theorem ([10, Theorem 7.4]), any spherical two-distance 2-design is associated
with a strongly regular graph and therefore, due to Proposition 3.1, any two-distance tight frame, too, is associated
with a strongly regular graph. To keep our exposition self-contained we give a short direct proof of this fact.

Proposition 3.2. If S is a two-distance tight frame with inner products a and b, a2− b2 6= 0, then its associated graph
Γ1 (and Γ2 as the complement of Γ1) is a strongly regular graph.

Proof. It follows from (1.3) and (1.2) that for any two vectors xk, xl of S,

N

n
〈xk, xl〉 =

N∑
i=1

〈xk, xi〉〈xi, xl〉. (3.3)

Fix indices k and l and assume 〈xk, xl〉 = a. Let

Iα,β = {i ∈ {1, . . . , N} : 〈xk, xi〉 = α and 〈xi, xl〉 = β},

where α, β ∈ {a, b}, and let Ca := |Ia,a|. Note that by the symmetry of the Gram matrix G, we have that |Ia,b| =
|Ib,a|. Let us find the cardinality of Ia,b, i.e., the set of indices i with the entry a in row k and entry b in row l. Consider
the subset of indices i in row k of G with 〈xk, xi〉 = a except i = l (in this position row l contains 1). There are
Na − 1 such indices, where Na is the number of a’s in the row (see the remark before Theorem 2.4). We then need to
subtract the number of those i for which 〈xi, xl〉 = a. But those are precisely the indices in the set Ia,a. Consequently,

|Ia,b| = |Ib,a| = Na − Ca − 1. (3.4)

We next observe that the union of the (disjoint) sets Iα,β α, β ∈ {a, b} gives all the indices in row k of G except the
diagonal entry. Therefore, we obtain

N − 1 = |Ia,a|+ 2|Ia,b|+ |Ib,b|. (3.5)

Recall that we have Nb + Na = N − 1. Taking this together with (3.4) and (3.5) and performing simplifications, we
obtain

|Ib,b| = Nb −Na + Ca + 1.
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We can then rewrite (3.3) as

N

n
a = 2(Na − Ca − 1)ab+ Caa

2 + (Nb −Na + Ca + 1)b2

= 2(Na − 1)ab+ (Nb −Na + 1)b2 + Ca(a− b)2.

Since a 6= b, there is a unique Ca that satisfies this equality. In other words, any pair of connected vertices of the
associated graph Γ1 has the same number Ca of common neighbors. Similarly, any two non-connected vertices of Γ1

have the same number Cb of common neighbors. Therefore, Γ1 is a strongly regular graph. �

We now set out to describe all two-distance tight frames. Propositions 3.1 and 3.2 imply that we just need to find
all spherical two-distance embeddings of strongly regular graphs and check the 2-design conditions for them.

Spherical embeddings of SRGs. Let Γ1 be an SRG(v, k, λ, µ) which is not a complete or empty graph and let Φ1 be
its adjacency matrix. As already mentioned, the set of vertices of Γ1 can be embedded in the sphere by projecting the
vectors of the standard basis of the space Rv on the eigenspaces of Φ1.

The spectral structure of the matrix Φ1 is as follows. It has three mutually orthogonal eigenspaces that correspond
to three eigenvalues: the all-one vector 1 with eigenvalue k, an eigenspaceE1 of dimension n1 with eigenvalue r1, and
an eigenspace E2 of dimension n2 with eigenvalue r2 [9, p.117]. Note that for Turán graphs and their complements it
is possible that r1 = k. The values of n1, r1, n2, r2 can be found explicitly via the parameters (v, k, λ, µ). Since these
values are useful in constructing examples, we quote the expressions for them from [11, pp.219-220]:

r1,2 =
1

2
(λ− µ±

√
(λ− µ)2 + 4(k − µ) )

n1,2 =
1

2

(
v − 1∓ 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

)
.

Geometrically the Delsarte-Goethals-Seidel construction amounts to projecting orthogonally the standard basis
vectors of Rv on an eigenspace, for instance E1, and normalizing the projections (they all have the same length) to
obtain unit lengths. Denote the obtained spherical set by S1 = S1(Γ1) and denote its two inner products by a1 and
b1, so that Γ1 is the graph of inner products a1, b1; cf. (3.1). It is easy to show [10] that this spherical set supports an
n1-dimensional 2-design.

Similarly we can obtain an n2-dimensional 2-design S2 = S2(Γ1) with inner products a2 and b2 by projecting RN
on E2 and normalizing the projections. Finally, let S0 denote the trivial one-dimensional embedding and note that
a0 = b0 = 1.

Let Γ2 be the complement graph of Γ1 and let Φ2 be its adjacency matrix. We have

Φ2 = J − I − Φ1.

The vector 1 is an eigenvector of each of these matrices, and any vector z such that 〈z,1〉 =
∑
zi = 0 is an eigenvector

of J and I . Hence if such vector z is an eigenvector of Φ1, it is also an eigenvector of Φ2. Thus, the matrices Φ1 and
Φ2 share the same spectral structure. In particular, Φ2 also has three eigenvalues and three eigenspaces that coincide
with the eigenspaces of Φ1: a vector of all ones 1 with eigenvalue v − 1− k, an eigenspace E1 of dimension n1 with
eigenvalue s1, an eigenspace E2 of dimension n2 with eigenvalue s2.

Proposition 3.3. Let Γ1(N, k, λ, µ) be a strongly regular graph that is not complete or empty. For any two-distance
spherical embedding S = {x1, . . . , xN} of Γ1, there are three nonnegative real numbers α, β, γ, α2 + β2 + γ2 = 1
such that for all i = 1, . . . , N

xi = αxi(0) + βxi(1) + γxi(2) (3.6)

for some xi(j), j = 0, 1, 2. The sets Sj(Γ1) = {xi(j) : 1 ≤ i ≤ N}, j = 0, 1, 2 form the Delsarte-Goethals-Seidel
spherical embeddings of Γ1 and are contained in mutually orthogonal unit spheres of dimensions 1, n1, and n2,
respectively.
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Proof. Let S be a two-distance spherical embedding of Γ1 with distances a and b. Write the Gram matrix G of S as in
(3.1). The embedding S exists if and only ifG is positive semidefinite. Since the matrices Φ1 and Φ2 share the spectral
structure, we can find all eigenvalues of G and check their non-negativity. This results in the following inequalities:

1 + ak + b(N − 1− k) ≥ 0

1 + ar1 + bs1 ≥ 0

1 + ar2 + bs2 ≥ 0,

(3.7)

(some of these inequalities may trivialize to 1 ≥ 0). The set of all feasible pairs (a, b) is the intersection of at most
three half-planes in the plane. Note that this set must belong to the square [−1, 1]2, so it is bounded. Moreover, G � 0
if and only if the inequalities (3.7) hold true, so this region is either a triangle or a single point. Since there are always
at least two different embeddings, namely S0 and the (N − 1)-dimensional regular simplex, this set must be a triangle
whose vertices are the intersections of any two of the three lines defining the inequalities.

Next we note that these intersection points precisely represent S0, S1, and S2 so they are (a0, b0), (a1, b1), and
(a2, b2). Indeed, project the basis orthogonally on one of the spaces 1, E1, E2 and denote the (normalized) resulting set
by X. The eigenvectors of this projection, corresponding to the two other spaces have zero eigenvalues. Subsequently,
the eigenvalues of these vectors for the Gram matrix G = XtX are also zero, which turns two of the inequalities in
(3.7) into equalities.

Any other pair (a, b) can be represented as (a, b) = α2(a0, b0) + β2(a1, b1) + γ2(a2, b2), where α2 + β2 + γ2 = 1
and α, β, γ are non-negative. Now note that the set {xi : 1 ≤ i ≤ N} such that xi = αxi(0) + βxi(1) + γxi(2),
where the set of all vectors xi(0) forms S0, the set of all xi(1) forms S1, and the set of all xi(2) forms S2 in mutually
orthogonal unit spheres, gives a two-distance spherical embedding of Γ1 with inner products a and b. Moreover, any
such embedding is completely determined by its Gram matrix, and therefore, this gives a description of all spherical
two-distance embeddings of Γ1. This completes the proof. �

Proposition 3.3 entails the following description of two-distance 2-designs.

Theorem 3.4. Any spherical two-distance 2-design S = {x1, . . . , xN} with graph Γ1 for one of the distances is either
S1(Γ1) or S2(Γ1), or a regular (N − 1)-dimensional simplex.

Proof. We begin with the representation of the vectors xi given by (3.6). Note that since
∑N
i=1 xi = 0, the coefficient

α must be 0. If one of β or γ is 0, then S is either S1 or S2. The remaining case is when they are both positive. In this
case the set S is (n1 + n2)-dimensional, so it must satisfy the tight-frame condition (1.1)-(1.2) for any x ∈ Rn1+n2 :

N

n1 + n2
||x||2 =

N∑
i=1

〈x, xi〉2. (3.8)

Now we express x as the sum of x(1) and x(2), where x(1) belongs to the space Rn1 that contains all the vectors
xi(1), and x(2) belongs to the space Rn2 containing all xi(2). Since S1 and S2 form 2-designs, they must satisfy the
tight-frame condition, namely

N

nj
||x(j)||2 =

N∑
i=1

〈x(j), xi(j)〉2, j = 1, 2.

Using (3.6) and (3.8), we obtain:

N

n1 + n2
(||x(1)||2 + ||x(2)||2) =

N∑
i=1

(β〈x(1), xi(1)〉+ γ〈x(2), xi(2)〉)2

= β2N

n1
||x(1)||2 + γ2

N

n2
||x(2)||2 + 2βγ

N∑
i=1

〈x(1), xi(1)〉〈x(2), xi(2)〉.
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This equality must hold for any x(1) and x(2), so β2 = n1

n1+n2
and γ2 = n2

n1+n2
. To show that with these val-

ues of β and γ the set S forms a 2-design we just need to explain why
N∑
i=1

〈x(1), xi(1)〉〈x(2), xi(2)〉 is always 0.

Refer to the definition of S1 and S2 and let their ambient spaces be E1 and E2. Then the vector with components
〈x(1), xi(1)〉 is just Φ1x(1) times a normalizing coefficient, and the vector with components 〈x(2), xi(2)〉 is Φ1x(2)
with its normalizing coefficient. The first vector belongs to E1 and the second vector belongs to E2 so they must be
orthogonal.

A regular (N−1)-dimensional simplex is obviously a 2-design and can be considered as a two-distance embedding
of Γ1 with equal distances. Since S1 and S2 are not (N − 1)-dimensional, the third 2-design that we constructed must
be a regular simplex (recall that n1 + n2 = N − 1). This observation finishes the proof of the theorem. �

Remark 3.1. The regular simplex can be constructed similarly to S1 and S2: it is obtained by finding orthogonal
projections of (the basis vectors of) RN on E1 ∪ E2 and normalizing to get unit lengths. Another simplex is given by
the orthonormal basis itself which represents a trivial projection.

Proof. Proof of Theorem 1.2. We now recap the arguments that lead to the classification of all non-equiangular two-
distance tight frames in Theorem 1.2. Let S be such a frame and assume that a and b are the two distinct inner
products of the vectors in S. Then, a2 − b2 6= 0. First, by Proposition 3.1, S is either a n dimensional spherical
2−design or similar to (n − 1) dimensional spherical 2−design. On account of Prop. 3.2 the graphs defined by the
Gram matrix of a non-equiangular two-distance FUNTF are strongly regular, so we need to describe all spherical
two-distance embeddings of SRGs and check if they satisfy the design condition. We show in Theorem 3.4 that all
such embeddings are of the Delsarte-Goethals-Seidel type, and yield spherical two-distance 2-designs. Since each
such design gives rise to two FUNTFs, this completes the classification.

�

The results established above enable us to construct large classes of two-distance tight frames. For brevity we write
FUNTF(n,N,Na, a, b) to refer to a two-distance tight frame in n dimensions, with N points, inner products b < a,
and with Na entries a in each row of G. We give a few examples of 2-distance frames derived from the table of
strongly regular graphs in [9, pp.143ff]. Many more examples can be easily obtained using the described recipe.

SRG(N, k, λ, µ) 2-design FUNTF(n,N,Na, a, b) shifted 2-design FUNTF(n,N,Na, a, b)

(10, 6, 3, 4) (4, 10, 6, 1/6,−2/3), (5, 10, 3, 1/3,−1/3) (5, 10, 6, 1/3,−1/3), (6, 10, 3, 4/9,−1/9)

(15, 8, 4, 4) (5, 15, 8, 1/4,−1/2), (9, 15, 8, 1/6,−1/4) (6, 15, 8, 3/8,−1/4), (10, 15, 6, 1/4,−1/8)

(16, 10, 6, 6) (5, 16, 10, 1/5,−3/5), (10, 16, 5, 1/5,−1/5) (6, 16, 10, 1/3,−1/3), (11, 16, 5, 3/11,−1/11)
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