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Abstract. We develop a new approach to formulate and prove the weak un-
certainty inequality which was recently introduced by Okoudjou and Strichartz.
We assume either an appropriate measure growth condition with respect to the
effective resistance metric, or, in the absence of such a metric, we assume the
Poincaré inequality and reverse volume doubling property. We also consider
the weak uncertainty inequality in the context of Nash-type inequalities. Our
results can be applied to a wide variety of metric measure spaces, including
graphs, fractals and manifolds.
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1. Introduction

The weak uncertainty inequality recently introduced in [29] for functions defined
on p.c.f. fractals in general, and on the Sierpiński gasket in particular, obeys the
same philosophy as the classical uncertainty principle: it is impossible for any
normalized function to have a small energy and to be highly localized in space. We
refer to [12, 30, 36] for more background on uncertainty principles. However, the
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existence of localized eigenfunctions on some of these fractals (see [10, 11, 34, 42]),
is a main obstacle in proving any analogue of the classical Heisenberg inequality.
In this paper we introduce a new approach to prove weak uncertainty principles for
functions defined on metric measure spaces equipped with a Dirichlet (or energy)
form, which include certain fractals and fractal graphs such as the Sierpiński lattice.
More precisely, we show that the weak uncertainty principle holds on all spaces
equipped with an effective resistance metric and a measure satisfying an appropriate
growth condition. Additionally, we show that if instead of the existence of an
effective resistance metric on the space, we assume that a Poincaré or a Nash
inequality holds along with another appropriate growth condition on the measure,
then it is also possible to prove the weak uncertainty principle in this setting.
In particular, our results show that the self-similarity of the measure, which was
heavily used in [29], can be replaced by weaker conditions.

In order to formulate any uncertainty inequality, one has to define measures of
space and frequency concentration. For example, for complex-valued functions on
R the classical Heisenberg Uncertainty Principle states that

V ar(|f̂(ξ)|2)V ar(|f(x)|2) >
1

16π2

for any function of f ∈ L2(R) such that ‖f‖2 = 1 and where f̂ denotes the Fourier
transform on R. This inequality can be rewritten in the following form

∫

R

∫

R

|x − y|2|f(x)|2 |f(y)|2 dx dy

∫

R

|f ′(x)|2 dx >
1

8

for any function of L2 norm one. We refer to the survey article [12] for more
information on the uncertainty principle.

In this paper we consider a metric measure space (K, d, µ), that is (K, d) is a
metric space equipped with a Borel measure µ. If E is an energy form on this metric
measure space, then we will say that a weak uncertainty principle holds on K if the
following estimate

(1) V arγ(u) E(u, u) > C

holds for any function u ∈ L2(K)
⋂

Dom(E) such that ‖u‖L2 = 1. Here C is a
constant independent of u, and the spacial variance is defined by

(2) V arγ(u) =

∫∫

K×K

d(x, y)γ |u(x)|2 |u(y)|2 dµ(x) dµ(y).

The central question of our paper is the relation between d, γ, µ and E which
implies the weak uncertainty principle, assuming that the measure µ satisfies an
appropriate growth condition. We formulate sufficient conditions in several situa-
tions. The first one is when d is the so called effective resistance metric on K and
satisfies certain scaling properties. This setting is particularly relevant in the con-
text of analysis on fractals associated with E and fractal graphs; see [4, 20, 21, 22]
for more on the effective resistance metric. In this case γ = b + 1, where b is an
exponent which often plays the role of a dimension. Our result not only provides
a different and simpler proof of [29, Theorems 1 and 2], but also extends them to
all p.c.f. fractals [19, 21] and fractal graphs [9, 13, 14, 16, 24, 27, 28], as well as
to modifications of them such as some fractafolds [38, 40]. Additionally, our result
recovers the classical Heisenberg Uncertainty Principle in R, although not with the
best constant. We also consider situations where the effective resistance metric
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does not exist. In these cases we assume some volume conditions and either that
there is a certain scaling in Poincaré’s inequality, or that a Nash-type inequality
holds. Either of these conditions allow us to prove our result. These latter results
are applicable for a wide variety of metric measure spaces, ranging from graphs, to
elliptic operators on manifolds. Note that, in this case, the number γ appearing in
(2) cannot, in general, be interpreted as a dimension in the usual sense. However,
b = γ − 1 will often represent the so-called walk dimension that appears frequently
in recent works on heat kernel estimates (see [9] and references therein). One of the
features of our results is their robustness. For example, since the weak uncertainty
principle holds for the Sierpiński graphs, it also holds for the manifolds with similar
structures, e.g., the fractal-like manifolds considered in [26]. Roughly speaking, the
weak uncertainty principle holds if the energy and measure have polynomial-type
behavior, such as in the case of fractals, fractal graphs and groups of polynomial
growth.

Our paper is organized as follows. In Section 2 we state and prove our main
results. In particular, we prove that the weak uncertainty principle holds under a
variety of conditions raging from the existence of an effective resistance metric, to
assuming Nash or Poincaré inequalities. Section 3 describes a few metric measure
spaces for which the main results of Section 2 can be applied: p.c.f. fractals, uniform
finitely ramified graphs, Sierpiński carpets, fractal-like manifolds. We also discuss
relation with recent results on the heat kernel estimates on metric measure spaces.

Acknowledgments. The authors are grateful to Martin Barlow, Richard Bass
and Robert Strichartz for many helpful discussions, and to an anonymous referee
for suggesting to consider Nash inequality in this context.

2. Main results

Let (K, d) be a metric space equipped with a measure µ and a positive-definite
symmetric quadratic form E with domain Dom(E) ⊂ L2(K). Later, we will impose
some conditions relating the distance d to the form E . We denote by Br(x) the
ball with center x and radius r in the metric d. To simplify notation, we make the
convention that the L2-norm is infinite if a function is not square integrable, and
that the energy form is infinite if a function is not in its domain.

2.1. Weak uncertainty principle and effective resistance metric. In this
subsection, we assume that E is a Dirichlet form and that the metric measure space
(K, d, µ) is such that d is the effective resistance metric associated to E . We refer
to [22] (where the form E is called a resistance form) for more details about such
spaces.

The effective resistance metric is defined by

d(x, y) = sup E−1(u, u),

where the supremum is taken over all continuous functions u such that u(x) =
1, u(y) = 0. The existence of the effective resistance metric is a nontrivial problem,
see [3, 4, 5, 6, 20, 21]; in particular, it is worth noticing that there are spaces without
an effective resistance metric that is, for which the quantity above is infinite, e.g.,
for R

n with n > 2. However, on p.c.f. fractals and on some Sierpiński carpets, which
are “not far from being one dimensional”, it is known that the effective resistance
metric does exist (see Subsection 3.4).

We now state our first main result which generalizes Theorems 1 and 2 of [29].
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Theorem 1. Let K be a space equipped with a measure µ and the effective resis-
tance metric d associated to the Dirichlet form E. Assume that there exist positive
constants b, C1, C2 such that for all x ∈ K and r > 0 the following inequalities hold:

(3) C1r
b ≤ µ(Br(x)) ≤ C2r

b.

Then there exists C > 0 such that for all u ∈ Dom(E) with ‖u‖2 = 1 and γ = b+1
one has

V arγ(u)E(u, u) > C.

Proof. Let v = V arγ(u) =
∫∫

K×K
d(x, y)γ |u(x)|2 |u(y)|2 dµ(x) dµ(y), where γ =

b + 1. There exists y such that
∫

K

dγ(x, y)u2(x)dµ(x) 6 v.

Let r be defined by

(4) r = sup

{

s :

∫

Bs(y)

u2(x)dµ(x) <
1

2

}

.

For each s > 0 such that
∫

Bs(y) |u(x)|2 dµ(x) 6 1
2 , we have

v >

∫

K−Bs(y)

d(x, y)γ |u(x)|2 dµ(x) > sγ

∫

K−Bs(y)

|u(x)|2 dµ(x) > 1
2sγ ,

and the definition of r implies that

(5) rγ 6 2v.

Moreover, by (3) there is c > 1 (it suffices to take c such that cb = 9C2

C1
) such that

(6) µ(Bcr(y)) > 8C2r
b.

Let t be an arbitrary number such that t > r. By the definition of r we have

(7)

∫

Bt(y)

u2(x)dµ(x) >
1

2

which together with (3) yields

sup
Bt(y)

u2(x) ≥ 1

2C2tb
.

Additionally, ‖u‖2 = 1 yields

inf
Bct(y)

u2(x) <
1

8C2tb
.

Consequently, there are x1, x2 ∈ Bct(y) such that

(u(x1) − u(x2))
2 ≥ 1

8C2tb
.

Thus, by the definition of the effective resistance metric,

E(u, u) >
(u(x1) − u(x2))

2

d(x1, x2)
≥ 1

16 C2 c t tb
=

1

16 C2 c tb+1
.

Since this last inequality holds for all t > r we conclude that

E(u, u) >
1

16 C2 c rb+1
=

C
1/b
1

16 C
1+1/b
2 9

1/b
rb+1

.
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Using now (5) we conclude that

vEK(u, u) ≥ C
1/b
1 v

16 C
1+1/b
2 9

1/b
v

b+1
γ

=
C

1/b
1 v

16 C
1+1/b
2 9

1/b
v

=
C

1/b
1

16 C
1+1/b
2 9

1/b = C,

where we have used the fact γ = b + 1. �

Remark 1. (a) The metric measure space (K, d, µ) in Theorem 1 with the measure
µ satisfying (3) is said to be an Ahlfors regular space [17]. Moreover, the constant
b appearing in (3) is the Hausdorff dimension of (K, d).
(b) Theorem 1 holds when K = R

1 with b = 1 and is exactly the classical Heisenberg
uncertainty principle of which we have given yet a different proof except for the
precise value of C.
(c) One can modify this proof for various cases when properties of the space are
different on small and large scales. Two such modifications are given in Theorems 2
and 3.

Theorem 1 assumes implicitly that the space (K, d) is unbounded. In particular,
it is not applicable to such interesting examples as p.c.f. fractals. The next result
which is a weaker version of the previous one, generalizes the main result of [29]
and deals with bounded spaces. We omit its proof since it follows from obvious
modifications from the proof of Theorem 1 below.

Theorem 2. Let K be a space equipped with a measure µ and the effective resis-
tance metric d associated to the Dirichlet form E. Assume that there exist positive
constants b, C0, C1, C2 such that (3) holds for all x ∈ K and all 0 < r < C0.

Then there exists C > 0 such that for all u ∈ Dom(E) with ‖u‖2 = 1 and γ = b+1
one has

V arγ(u)(E(u, u) + 1) > C.

Similarly, Theorem 1 excludes spaces where the local structure is significantly
different from the global one, for instance, manifolds, graphs and spaces equipped
with measure having atoms. In these cases the following variant of the our first
result can be proved using similar ideas.

Theorem 3. Let K be a space equipped with a measure µ and the effective resis-
tance metric d associated to the Dirichlet form E. Assume that there exist positive
constants b, C0, C1, C2 such that (3) holds for all x ∈ K and all r > C0. Then there
exists C > 0 such that for all u ∈ Dom(E) with ‖u‖2 = 1 one has

(V arγ(u) + 1)EK(u, u) > C.

2.2. Weak uncertainty principle and Poincaré-type inequality. In this sub-
section we no longer assume that d is an effective resistance metric. Instead, we
will assume that a Poincaré inequality holds. No specific property of the form E is
required for the proof, it can be taken to be an arbitrary positive-definite symmetric
quadratic form on L2(K, dµ). In this case the following theorem holds.

Theorem 4. Let K be a space equipped with a measure µ and a metric d (not nec-
essarily an effective resistance metric). Assume that there exists a positive constant
C1 such that the energy form E on K satisfies the following Poincaré inequality for
all locally square integrable functions u ∈ Dom(E)

(8)

∫

Br(y)

(u(x) − ūBr(y))
2dµ(x) ≤ C1r

γE(u, u),
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where ūBr(y) is the average of u over Br(y), and γ is a positive constant. Further-
more, assume that the measure µ satisfies the “reverse volume doubling property”
that is, there exist an integer k and a constant C2 > 1 such that for all for all
x ∈ K and r > 0 we have

(9) C2µ(Br(x)) ≤ µ(Bkr(x)).

Then there exists C > 0 such that for all u ∈ DomE with ‖u‖2 = 1 one has

V arγ(u)E(u, u) > C.

Proof. The proof is similar to that of Theorem 1 with the main difference coming
from the fact we need to use Poincaré’s inequality instead of the basic properties
of the effective resistance metric.

Let v = V arγ(u) =
∫∫

K×K
d(x, y)γ |u(x)|2 |u(y)|2 dµ(x) dµ(y), and choose y ∈ K

such that
∫

K
d(x, y)γ |u(x)|2 dµ(x) ≤ v. Define r by

r = sup

{

s :

∫

Bs(y)

u2(x)dµ(x) <
1

2

}

.

Note that the definition of r implies that rγ 6 2v. Now, iterating (9) we can choose
an integer n > 1 and a constant c such that Cn

2 ≥ 16 and c ≥ kn+1 where C2 is the

constant appearing in (9). It suffices to choose n = b 4 log 2
log C2

c + 1. For this choice of

c we have,

(10)
µ(Bcr(y))

µ(Bkr(y))
≥ 16.

Notice that the definition of r implies that
∫

Bkr(y)

u2(x)dµ(x) ≥ 1
2 . Since

∣

∣

∣

∣

∣

∣

∣

∫

Bcr(y)

u(x)dµ(x)

∣

∣

∣

∣

∣

∣

∣

≤
√

µ(Bcr(y))

we conclude that
|ūBcr(y)| ≤ 1√

µ(Bcr(y))
.

Now, using (8) we see that

C1c
γrγE(u, u) ≥

∫

Bcr(y)

(u(x) − ūBcr(y))
2dµ(x)

= ‖u − ūBcr(y)‖2
L2

Bcr(y)

≥ ‖u − ūBcr(y)‖2
L2

Bkr(y)

≥
(

‖u‖L2(Bkr(y)) − ‖ūBcr(y)‖L2(Bkr(y))

)2

=
(

‖u‖L2(Bkr(y)) − |ūBcr(y)|
√

µ(Bkr(y))
)2

≥
(

1√
2
− 1

4

)2

= 9−4
√

2
16 .

Thus, using the fact that rγ ≤ 2v we can write

vE(u, u) ≥ 9−4
√

2
16

v

C1cγrγ
≥ 9−4

√
2

32

v

C1cγv
= 9−4

√
2

32C1cγ = C.
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This last estimate concludes the proof. �

It is interesting to observe that Theorem 4 can be proved under a slightly different
form of the Poincaré inequality. In fact we have the following variant of Theorem 4.

Note that, for some applications, Theorem 5 is in a sense the strongest result of
our paper, as discussed in Subsection 3.5 in relation to the analysis on groups.

Theorem 5. The conclusion of Theorem 4 holds when condition (8) is replaced by
the following modified Poincaré inequality

(11)

∫

Br(y)

(u(x) − ur(x))2dµ(x) ≤ C1 rγE(u, u),

where ur(x) = ūBr(x) = 1
µ(Br(x))

∫

Br(x) u(y) dµ(y), and γ and C1 are some positive
constants.

Proof. We define v, r and y as in the proof of Theorem 4. Then, again similarly to
the proof of Theorem 4, we can iterate (9) and find a constant c > 2k such that

µ(Bcr/2(y))

µ(Bkr(y))
≥ 16.

Then for any z ∈ Bkr(y) we have

|ucr(z)| ≤ 1
√

µ (Bcr(z))
≤ 1
√

µ
(

B cr
2

(y)
)

.

Consequently, we have

‖ucr‖L2(Bkr(y)) ≤
√

µ(Bkr(y))

µ(Bcr/2(y))
≤ 1

4
.

Now, using (11) we see that

C1c
γrγE(u, u) ≥

∫

Bcr(y)

(u(x) − ūBcr(y))
2dµ(x)

≥
(

‖u‖L2(Bkr(y)) − ‖ucr‖L2(Bkr(y))

)2

≥
(

1√
2
− 1

4

)2

= 9−4
√

2
16 .

Then the proof follows the same argument as in the proof of Theorem 4. �

The following proposition gives a comparison between (8) and (11) under the
volume doubling condition.

Proposition 1. Assume that the measure µ satisfies the doubling volume condition,
that is, there exists C > 0 such that for all x ∈ K and all r > 0 we have

(12) µ(B2r(x)) ≤ Cµ(Br(x)).

Let u be a locally square integrable function that satisfies (8). Then u satisfies
also (11).
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Proof. Let u be a locally square integrable function that satisfies (8). Observe that

‖u − ur‖L2(Br(y)) ≤ ‖u − ūBr(y)‖L2(Br(y)) + ‖ur − ūBr(y)‖L2(Br(y)) = I + J.

By (8) we see I2 ≤ C1r
γE(u, u), where C1 is the constant appearing in (8). To

complete the proof it suffices to give a similar estimate for J2. To simplify the
notation, we let V (x, r) = µ(Br(x)) for x ∈ K and r > 0. The second term in the
right hand side of the last estimate can be estimated by

J2 =

∫

Br(y)

(ur(x) − ūBr(y))
2 dµ(x)

=

∫

Br(y)

∣

∣

∣

1
V (x,r)

∫

Br(x)

u(t)dµ(t) − 1
V (y,r)

∫

Br(y)

u(z)dµ(z)
∣

∣

∣

2

dx

=

∫

Br(y)

∣

∣

∣

1
V (x,r)V (y,r)

∫∫

Br(x)Br(y)

(u(t) − u(z))dµ(z) dµ(t)
∣

∣

∣

2

dx.

=

∫

Br(y)

M(x)dµ(x).

For each x ∈ Br(y) we have by Jensen’s inequality

M(x) ≤ 1
V (x,r)V (y,r)

∫∫

Br(x)Br(y)

|u(t) − u(z)|2dµ(z) dµ(t)

≤ 1
V (x,r)V (y,r)

∫

B2r(x)

(

∫

B2r(x)

|u(z) − u(t)|2dµ(z)
)

dµ(t)

≤ 4 V (x,2r)
V (x,r)V (y,r) 2γ C1 rγ E(u, u)

where we have used once again (8). By (12), the last inequality becomes

M(x) ≤ 4
V (y,r) 2γ C C1 rγ E(u, u).

Substituting this last inequality back in J2 yields

J2 ≤
∫

Br(y)

4
V (y,r) 2γ C C1r

γE(u, u) dµ(x) = 4 2γ C C1 rγ E(u, u).

which complete the proof of the proposition. �

It is easily seen that both Theorems 4 and 5 only apply to unbounded spaces.
For bounded spaces, we have the following modification of these results.

Theorem 6. Let K be a space equipped with a measure µ and a metric d (not nec-
essarily an effective resistance metric). Assume that there exist positive constants
γ, C0, C1 and C2 > 1 such that (9) together with either (8) or (11) hold for all
x ∈ K and all 0 < r < C0.

Then there exists C > 0 such that for all u ∈ Dom(E) with ‖u‖2 = 1 and γ = b+1
one has

V arγ(u)(E(u, u) + 1) > C.

Remark 2. (a) In general, and as opposed to the constant b appearing in Theorem 1,
the constant γ in (8) may not represent any sort of dimension of the space (K, d)
in the usual sense. However, in some of the examples we consider later, γ is related
to the so called walk dimension (see [5, 9] and references therein).
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(b) It is worth pointing out that in all of the results we prove in this paper, the
measure µ is not necessarily a self-similar measure. But if it is self-similar, then
the measure weights and the resistance scaling weights are related by a power law.
(c) Theorems 4 and 5 apply to K = R

n, n > 1 with γ = 2.
(d) One can show that on a metric measure space (K, d, µ) where d is the effective
resistance metric, and where µ satisfies (3), then the Poincaré inequality (8) holds
as well as (9). Indeed, if u is a function which has L2

µ-norm one in a ball of radius r
with respect to the effective resistance metric, then (3) implies that the supremum
of |u| has a lower bound of the form A · r−b/2 for some positive constant A. If, in
addition, u is orthogonal to constants, then the difference between the supremum
of u and the infimum of u also has a lower bound of the form B · r−b/2. Then the
definition of the effective resistance implies that E(u, u) has a lower bound of the
form C · r−b−1.
(e) If (K, d) is a non-compact space and d is “geodesic”, that is, if for any two points
x, y ∈ K there is a continuous curve s : [0, 1] → K such that s(0) = x, s(1) = y
and d(x, s(t)) = t then (12) implies (9).

2.3. Weak uncertainty principle and Nash-type inequalities. In this subsec-
tion we investigate the relationship between Nash-type inequalities and the weak un-
certainty principle. In particular, we first prove that the Nash inequality with small
enough dimension parameters implies the weak uncertainty principle if the measure
is upper b-regular. Furthermore, we use a Nash-type inequality to prove a weak
uncertainty principle even when these dimension parameters are big. The Nash
inequality plays an important role in heat kernel estimates [8, 9, 15, 16, 21, 23, 35]
and references therein. Note that in general the Nash inequality does not imply the
Poincaré inequality.

Theorem 7. Let K be a space equipped with a measure µ, a metric d and a positive-
definite symmetric quadratic form E on L2

µ. Assume that the metric measure space
(K, d, µ) satisfies the following upper b-regularity condition

(13) µ(Br(x)) ≤ C1r
b, for all x ∈ K and r > 0

and the following Nash inequality

(14) ‖f‖2+4/θ
2 6 C2 E(f, f) ‖f‖4/θ

1

for some positive constants b, θ, C1 and C2. Furthermore assume that θ < 2. Then
there exists C > 0 such that for all u ∈ DomE with ‖u‖2 = 1 and γ = 2b

θ one has

V arγ(u)E(u, u) > C.

Proof. Let ‖u‖2 = 1 and v = V arγ(u) =
∫∫

K×K d(x, y)γ |u(x)|2 |u(y)|2 dµ(x) dµ(y).
Then it suffices to prove that

(15) ‖u‖4/θ
1 6 C3 · v,

where C3 is a constant to be specified. By the definition of v, there exists y such
that

∫

K
dγ(x, y)u2(x)dµ(x) 6 v. For any r > 0 we have

‖u‖1 =

∫

Br(y)

|u(x)|dµ(x) +

∫

K−Br(y)

|u(x)|dµ(x) = A + B.

It is readily seen that A ≤
(

µ(Br(y))
)1/2 ≤ C

1/2
1 rb/2. Now we estimate B as follows
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B =

∫

K−Br(y)

|u(x)|dµ(x)

=

∫

K−Br(y)

d(x, y)−γ/2 d(x, y)γ/2 |u(x)|dµ(x)

≤
(

∫

K−Br(y)

d(x, y)−γ dµ(x)
)1/2(

∫

K−Br(y)

d(x, y)γ |u(x)|2dµ(x)
)1/2

≤
(

∫

K−Br(y)

d(x, y)−γ dµ(x)
)1/2(

∫

K

d(x, y)γ |u(x)|2dµ(x)
)1/2

≤ v1/2
(

∫

K−Br(y)

d(x, y)−γ dµ(x)
)1/2

.

The integral in the last estimate can be estimated by

∫

K−Br(y)

d(x, y)−γ dµ(x) =
∑

n≥0

∫

{x:2nr≤d(x,y)<2n+1r}
d(x, y)−γ dµ(x)

≤ r−γ
∑

n≥0

2−nγµ(B2n+1r(y))

≤ C1 2b r−γ+b
∑

n≥0

2n(b−γ)

= C12
b

1−2b−γ rb−γ ,

where in the last estimate we have used the fact that θ < 2 which is equivalent to
b < γ. Therefore,

‖u‖1 6
C

1/2
1 2b/2√
1−2b−γ

(

rb/2 + v1/2rb/2−γ/2
)

.

The minimum of the last expression with respect to r is attained when

r =
(

γ−b
b

)2/γ
v1/γ ,

which implies

‖u‖1 6
C

1/2
1 2b/2√
1−2b−γ

2γ−b
γ−b

(

γ−b
b

)b/γ
v

b
2γ ,

or equivalently

‖u‖1 ≤ C
θ/4
3 vθ/4

where C
θ/4
3 =

C
1/2
1 2b/2√
1−2b−γ

2γ−b
γ−b

(

γ−b
b

)b/γ
, and θ

4 = b
2γ . �

The following variant of Theorem 7 holds for all dimension parameters.

Theorem 8. Let K be a space equipped with a measure µ, a metric d and a sym-
metric quadratic form E on L2

µ. Assume that the metric measure space (K, d, µ)
satisfies the upper b-regularity condition (13), and the following inequality

(16) ‖f‖2+4/θ
2(1+2/θ) 6 C2 E(f, f) ‖f‖4/θ

2
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for some positive constants b, θ, C1 and C2. Then there exists C > 0 such that for
all u ∈ DomE with ‖u‖2 = 1 and γ = 2b

θ one has

V arγ(u)E(u, u) > C.

Proof. Let ‖u‖2 = 1 and v = V arγ(u) =
∫∫

K×K d(x, y)γ |u(x)|2 |u(y)|2 dµ(x) dµ(y).

We will denote p = 1 + 2/θ. Choose y ∈ K such that
∫

K dγ(x, y)u2(x)dµ(x) 6 v.
Let r be defined by

r = sup

{

s :

∫

Bs(y)

u2(x)dµ(x) <
1

2

}

.

This definition implies that rγ ≤ 2v. Let t be an arbitrary number such that t > r.
Then

∫

Bt(y)
|u(x)|2 dµ(x) ≥ 1

2 . Consequently, we see that

1

2
≤
(

∫

K

|u(x)|2p dµ(x)

)1/p
(

µ
(

Bt(y)
)

)1−1/p

,

or equivalently,

1
2p ≤ ‖u‖2p

2p

(

µ
(

Bt(y)
)

)p−1

.

Using now the hypotheses of the theorem we obtain

1
2p ≤ ‖u‖2p

2p

(

µ(Bt(y))
)p−1

≤ 2 C2 Cp−1
1 E(u, u)tb(p−1)

= 2 C2 C
2/θ
1 E(u, u)t2b/θ

where C1 is the constant appearing in (13). Since this estimate holds for all t > r,
and using the fact that rγ ≤ 2v, we conclude that

1
2p ≤ 2 C2 C

2/θ
1 E(u, u)r2b/θ ≤ 21+2b/θγ C2 C

2/θ
1 E(u, u) v2b/θγ .

Therefore,

E(u, u) V arγ(u)2b/θγ ≥ 2−p−1−2b/θγC−1
2 C

−2/θ
1 = C.

This last inequality completes the proof by the choice of γ. �

Remark 3. We wish to recall that in Theorems 7 and 8 the form E is not assumed
to be a Dirichlet form. However, if E is a Dirichlet form, then it is known that (14)
is equivalent to (16) for all θ > 0; see [1]. Moreover, in this case, it follows from
[35, Theorem 3.1.5] that we can estimate the volume of a ball from below, i.e., for
all x ∈ K and r > 0 we have µ(Br(x)) ≥ Crθ, where C is a positive constant.
Thus for all r > 0 we have Crθ ≤ µ(Br(x)) ≤ C ′rb, and so θ = b. Consequently, if
we assume in Theorem 7 that the energy form E is a Dirichlet form, then we can
remove the restriction θ < 2 by using the above observation. Note that in this case,
γ = 2.
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2.4. Local weak uncertainty principle. In this subsection we state some local
versions of the results proved above. The proofs are easy adaptation of those given
above and are omitted.

Theorem 9. Let K be a space equipped with a measure µ, a metric d and a positive-
definite symmetric quadratic form E on L2

µ. Assume that the metric measure space
(K, d, µ) satisfies the following upper b-regularity condition (13) and the following
Nash inequality

(17) ‖f‖2+4/θ
2 6 C2

(

E(f, f) + ‖f‖2
2

)

‖f‖4/θ
1

for some positive constants b, θ, C1, and C2 with θ < 2. Then there exists positive
constants C > 0 such that for all u ∈ DomE with ‖u‖2 = 1 and γ = 2b

θ one has

V arγ(u)(E(u, u) + 1) > C.

Similarly, we have

Theorem 10. Let K be a space equipped with a measure µ, a metric d and a
symmetric quadratic form E on L2

µ. Assume that the metric measure space (K, d, µ)
satisfies the upper b-regularity condition (13), and the following inequality

(18) ‖f‖2+4/θ
2(1+2/θ) 6 C2

(

E(f, f) + ‖f‖2
2

)

‖f‖4/θ
2

for some positive constant b, C1 and C2. Then there exists C > 0 such that for all
u ∈ DomE with ‖u‖2 = 1 and γ = 2b

θ one has

V arγ(u)(E(u, u) + 1) > C.

3. Applications and examples

3.1. Sierpiński gasket and p.c.f. fractals. As mentioned in the Introduction,
the weak uncertainty principle for functions defined on the Sierpiński gasket was
first introduced in [29]. While the results in that paper were stated for p.c.f. fractals,
they were only proved for the Sierpiński gasket. In this subsection, we use the
results of Section 2 not only to provide a simpler proof to the main results of [29],
but also to establish weak uncertainty principles on all p.c.f. fractals. We briefly
define the Sierpiński gasket which is a typical example of a p.c.f. fractal, and refer
to [2, 21, 38, 41] for more background on analysis on p.c.f. fractals.

Consider the contractions maps F1, F2 and F3 defined on R
2 by F1(x) = 1

2x,

F2(x) = 1
2x + ( 1

2 , 0) and F3(x) = 1
2x + ( 1

4 ,
√

3
4 ), for x ∈ R

2. The Sierpiński gasket

K = SG, is the unique nonempty compact subset of R
2 such that

(19) K =

3
⋃

i=1

FiK.

For any positive integer m, ω = (ω1, ω2, . . . , ωm) where each ωi ∈ {1, 2, 3} is called
a word of length |ω| = m, and we denote Fω = Fωm ◦Fωm−1 ◦ . . . ◦Fω1 . Then FωK
is called a cell of level m if ω is a word of length m. It is worth mentioning that
SG can be defined as a limit of graphs: Let Γ0 be the complete graph with vertices

V0 = {(0, 0), (1, 0), ( 1
2 ,

√
3

2 )} which are the fixed points of the contractions Fi. The

graph Γm with vertices Vm is defined inductively by Vm =
⋃3

i=1 FiVm−1, m > 1,
and x ∼m y if x and y are in the same m-cell. The (standard) measure on K is
the probability measure on K that assigns to each cell of level m the measure 3−m.
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It follows that SG is equipped with a self-similar measure that satisfies trivially
(3). By defining an energy form on SG, it can be shown that this gives rise to a
resistance metric on SG, see [2, 19, 21]. Consequently, Theorem 2 recovers one of
the main results – Theorem 1 – of [29] for SG.

More generally, let {Fi}N
i=1 be a set of contractive injective maps on a compact

metric space K and

K =

N
⋃

i=1

Fi(K).

We assume that K is a p.c.f. self-similar set in the sense of [19, 21]. Following
[19, 21], one can sometimes define a self-similar energy form E(·, ·) such that

E(u, u) =
N
∑

i=1

ρiE(u ◦ Fi, u ◦ Fi),

which gives rise to an effective resistance metric. If the resistance scaling factors
{ρi}N

i=1 satisfy the regularity condition

ρi > 1

then the effective resistance metric induces the same topology as the original metric
on K. Note that the energy form E(·, ·) is defined without reference to any measure
on K. If we also consider a set of positive real numbers {µi}N

i=1, called the measure

scaling factors, such that
∑N

i=1 µi = 1, then we have a self-similar measure µ on K

such that µ =
∑N

i=1 µiµ ◦ F−1
i . According to [21, 22], the dimension of K in the

effective resistance metric is the unique b such that

N
∑

i=1

ρb
i = 1.

Therefore, the most natural choice of the measure scaling factors is

µi = ρb
i .

Notice that taking µi = ρb
i is also natural because with this choice the asymptotic

behavior of the Weyl function is well studied [18, 21]. Our Theorem 2 holds on K
if condition (3) is satisfied. However, the difficulty is that if the measure scaling
factors are not equal and some combinatorial-geometric conditions are not satisfied,
then in many cases the self-similar measure µ does not satisfy even the volume dou-
bling property much less the regularity condition (3). Fortunately, for many cases
such as the nested fractals, the regularity condition (3) does hold. In particular, for
nested fractals, many related question including the Nash inequality are discussed
in [23].

To construct non compact fractals which satisfy the conditions of Theorem 1,
we assume for simplicity that {Fi}N

i=1 are contractive injective maps on R
d and K

is the unique compact set such that K =
⋃N

i=1 Fi(K). Then one can construct an

increasing sequence of sets Kn using inverse maps F−1
in

, and define the blowup of

K to be K∞ =
⋃∞

n=0 Kn where K0 = K. Then K∞ is an unbounded self-similar
set, called fractal blowup and was first introduced in [37], see also [34, 33, 32, 42]
for more about fractal blowups.
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3.2. Sierpiński graphs. As another application of the results of Section 2, we
prove a weak uncertainty principle of some graphs related to the Sierpiński gasket
K = SG, and its blowup K∞. More precisely, for any integer m > 0, let Γm be
the mth pre-gasket approximation to K, i.e., the mth graph approximation of K.
We define a (finite) graph Γ−m by Γ−m = F−1

ωi
◦F−1

ω2
. . . ◦F−1

ωm
(Γm), and an infinite

graph Γ∞ by Γ∞ =
⋃

m>0 Γ−m. The graph Γ∞ is an example of an infinite self-

similar graph, which is also referred to as the Sierpiński lattice; we refer to [42] and
the references therein for more on this type of graphs. Note that for all integers
m > 0, Γ−m is similar to the (finite) graph obtained by taking Fωi = F1 for all i,
in which case, Γ−m = 2mΓm. In this case it can be shown that Theorem 3 holds
on Γ∞.

3.3. Uniform finitely ramified fractals and graphs. The uniform finitely ram-
ified fractals (u.f.r. ) and the unbounded fractals associated to them were intro-
duced in [16] and include the nested fractals and are contained in the class of p.c.f.
self-similar sets, see [16, 21, 19]. Clearly, Theorems 1 and 2 applies to these class
of fractals.

Additionally, the (infinite) u.f.r. graphs were constructed from u.f.r. in [16], where
it was proved that there exists an effective resistance metric on this class of graphs.
Therefore, using [16, Lemma 3.2] one can show that Theorem 3 applies in this
setting as well.

3.4. Sierpiński carpets and graphical Sierpiński carpets. These are exam-
ples of non finitely ramified fractals and fractal graphs [3, 4, 5, 6, 25]. In particular,
they are non p.c.f. fractals, and it is interesting to notice that most of our results
apply in this setting. Hence, we answer affirmatively a question posed in [29] of
whether the main results of that paper apply to “genuine” non-p.c.f. fractals. More
precisely, on the generalized Sierpiński carpets (GSC) and the unbounded sets that
can be constructed based on them, it is known that a two sided heat kernel esti-
mate holds, [3, 5, 7]. Thus, following [3, 5, 7, 9] or [14, Theorem 3.2], one can show
that (3) holds on the GSC and all related sets; this in turn implies that (9) holds
also in these settings. Moreover, it is known that the two sided heat kernel estimate
implies that the Poincaré inequality holds e.g., see [6, 9]. Consequently, Theorem 4
applies to all unbounded spaces constructed on GSC, while Theorem 6 applies to all
Sierpiński carpets for which such estimates exist. Moreover, Theorem 1 applies to
resistance Dirichlet forms on the Sierpiński carpets in dimension less than 2, such
as self-similar Dirichlet forms on the Sierpiński carpets constructed in [25].

3.5. Groups. Let us briefly describe how our results apply in the case when the
underlying space K = G is a group and the distance d and quadratic form E have
some invariance properties.

For instance, let G be a real connected Lie group equipped with a left-invariant
Riemannian structure (in fact, a left-invariant sub-Riemannian structure would
work as well); see, e.g., [35, 43] for details. We let d be the Riemannian distance
and E(f, f) =

∫

G |5 f |2 dµ where µ is the (left-invariant) Riemannian measure and

| 5 f |2 the Riemannian length of the gradient of f . In this setting, Theorem 1
and Theorem 7 apply only to the case G = R because in higher dimensions the
resistance metric is infinite. Observe that the reverse doubling condition (9) holds
on any non-compact Lie group. Therefore, Theorem 4 applies with γ = 2 to all the
cases where G is non-compact with polynomial volume growth because such group
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satisfy (8) with γ = 2. This includes R
n and all nilpotent Lie groups, in particular

the Heisenberg group

{





1 x z
0 1 y
0 0 0



 : x, y, z ∈ R

}

.

We do not know if condition (8) implies polynomial growth, but it seems unlikely
that it holds for group of exponential growth.

Theorem 5 has the great advantage over Theorem 4 that it applies to all non-
compact unimodular Lie groups. This because (11) holds with γ = 2 on any such
Lie group, see e.g., [35, Theorem 3.3.6].

Finally, because of Remark 3, Theorem 8 is essentially restricted to the case
when G = R

n for some n = θ.
Consequently, in the case of Lie groups, Theorem 5 is by far the most powerful

result. Moreover, Theorem 5 applies as well to the case of infinite, finitely generated
groups equipped with the counting measure and a quadratic form of the type

E(f, f) = 1
2|S|

∑

x∈G

∑

s∈S

|f(xs) − f(x)|2

where S = S−1 is a finitely symmetric generating set. Indeed, in this setting, (11)
holds with γ = 2 (the proof of [35, Theorem 3.3.6] may easily be adapted to this
setting).

3.6. Metric measure spaces and heat kernel estimates. Our results of Sec-
tion 2 are applicable to the general setting of metric measure spaces. For a metric
measure space (K, d, µ) the main assumption we make is the existence of a heat
kernel {pt}t>0, which is the fundamental solution of the heat equation where the
self-adjoint operator associated with the energy form E plays the role of a Lapla-
cian. If the heat kernel, which is a non-negative measurable function pt(x, y) on
[0,∞) × K × K, satisfies the following two sided estimate for µ-almost x, y ∈ K
and all t ∈ (0,∞):

(20)
1

tα/β
Φ1

(

d(x, y)

t1/β

)

6 pt(x, y) 6
1

tα/β
Φ2

(

d(x, y)

t1/β

)

,

where α is the Hausdorff dimension of (K, d) and β = α + 1, and Φ1, Φ2 are
non-negative monotone decreasing functions on [0,∞), then under a mild decay
condition on Φ2, it is shown in [14, Theorem 3.2] that (20) implies (3) with b = α.
This can be used in turn to prove (9). Consequently, once a Poincaré-type estimate
is established in this setting, our results can be applied.

Moreover, heat kernel estimates of the type

c1

µ(B(x, t1/γ))
exp

(

−
(

d(x, y)γ

c1t

)
1

γ−1

)

6 pt(x, y)

6
c2

µ(B(x, t1/γ))
exp

(

−
(

d(x, y)γ

c2t

)
1

γ−1

)

imply the Poincaré inequality, and these estimates can be established on many
fractals and other spaces (see [9] and references therein).
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3.7. Riemannian manifolds. We end the paper by briefly discussing our results
in the context of Riemannian manifolds of dimension n, focussing on Theorems 4
and 8. We observe that Theorem 8 is quite restrictive since the assumptions imply
that the volume function V (x, r) satisfies c1r

n ≤ V (x, r) ≤ c2r
n (see Remark

3). The volume condition needed to apply Theorem 4 is weaker. For instance,
in the context of manifolds with non-negative Ricci curvature, Theorem 4 applies
whenever the manifold is non compact whereas Theorem 8 applies only in the very
restrictive case of manifolds with maximal volume growth; see [35, Sections 3.3.5
and 5.6.3]. Nevertheless, there are cases when Theorem 8 applies but Theorem 4
does not, for instance, the connected sum of two copies of R

n, n ≥ 2.
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