Transcriptome-wide polymorphisms of red abalone (*Haliotis rufescens*) reveal patterns of gene flow and local adaptation

PIERRE DE WIT and STEPHEN R. PALUMBI

Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean view Blvd., Pacific Grove, CA 93950, USA

Abstract

Global climate change is projected to accelerate during the next century, altering oceanic patterns in temperature, pH and oxygen concentrations. Documenting patterns of genetic adaptation to these variables in locations that currently experience geographic variation in them is an important tool in understanding the potential for natural selection to allow populations to adapt as climate change proceeds. We sequenced the mantle transcriptome of 39 red abalone (Haliotis rufescens) individuals from three regions (Monterey Bay, Sonoma, north of Cape Mendocino) distinct in temperature, aragonite saturation, exposure to hypoxia and disease pressure along the California coast. Among 1.17×10^6 Single Nucleotide Polymorphisms (SNPs) identified in this study (1.37% of the transcriptome), 21 579 could be genotyped for all individuals. A principal components analysis concluded that the vast majority of SNPs show no population structure from Monterey, California to the Oregon border, in corroboration with several previous studies. In contrast, an F_{ST} outlier analysis indicated 691 SNPs as exhibiting significantly higher than expected differentiation (experiment-wide P < 0.05). From these, it was possible to identify 163 genes through BLAST annotation, 34 of which contained more than one outlier SNP. A large number of these genes are involved in biomineralization, energy metabolism, heat-, disease- or hypoxia-tolerance. These genes are candidate loci for spatial adaptation to geographic variation that is likely to increase in the future.

Keywords: climate change, gene flow, local adaptation, ocean acidification, population structure, RNA-Seq, Single Nucleotide Polymorphism discovery, transcriptome

Received 23 April 2012; revision received 25 July 2012; accepted 26 July 2012

Introduction

As Earth's climate continues to change, many species are likely to experience increased environmental stress (Reid *et al.* 2009). In particular, for marine species, sea level rise, higher temperatures and decreasing pH are affecting coastal and open ocean ecosystems throughout the world (Fabry *et al.* 2008; Pörtner & Peck 2010; Booth *et al.* 2011; Johnson *et al.* 2011; Philippart *et al.* 2011; Wassmann *et al.* 2011; Wernberg *et al.* 2011). For example, global sea surface temperature has risen by approximately 0.7 °C in the last century and is projected to

Correspondence: Pierre De Wit, Fax: +(831) 375 0793; E-mail: pdewit@stanford.edu increase 2–3 °C in the next 100 years, with the strongest impacts on more polar ecosystems (Solomon *et al.* 2007; Lough & Hobday 2011; Wassmann *et al.* 2011). The average pH of the ocean surface is expected to decrease from approximately 8.1 to nearly 7.7 by the year 2100 (Feely *et al.* 2009) because higher concentrations of atmospheric CO₂ continues to acidify surface waters (Sabine *et al.* 2004; Hauri *et al.* 2009; Hofmann *et al.* 2010). Changes in ocean circulation patterns may also be changing the distributions and severity of deep-sea, low oxygen zones (Stramma *et al.* 2010), which in combination with regional upwelling can contribute to hypoxic conditions in surface waters (Bograd *et al.* 2008).

The responses of marine organisms to these changing conditions are varied and complex. Transient high temperatures can cause coral bleaching (Anthony et al. 2011), death of intertidal organisms (Wethey et al. 2011) or biogeographic shifts in fish and other marine species (Jones et al. 2010; Pörtner & Peck 2010; Booth et al. 2011; Johnson et al. 2011; Somero 2012). Increasing temperature is also often associated with increased exposure to microbes and incidence of disease, such as the withering-foot syndrome in California abalone (Moore et al. 2002, 2011; Raimondi et al. 2002; Rogers-Bennett et al. 2010). Although not all organisms are negatively affected by decreasing pH (Kroeker et al. 2010), species of calcifying organisms have often been shown to experience strong fitness effects, because increased acidity (lower pH) makes it more energy-consuming to precipitate CaCO₃ into shell or skeleton matrices (Feely et al. 2004; Hofmann et al. 2010; Erez et al. 2011; Stumpp et al. 2011; Yu et al. 2011). Shelled molluscs seem particularly susceptible: a large body of evidence suggests a deleterious effect of decreasing pH (Miller et al. 2009a; Talmage & Gobler 2009; Beniash et al. 2010; Zippay & Hofmann 2010; Crim et al. 2011), possibly due to the fact that almost all mollusc shells to some extent consist of aragonite (Furuhashi et al. 2010), a relatively unstable form of calcium carbonate.

Although there has been much focus on possible future changes across the globe for pH, temperature, hypoxia and other environmental factors (Solomon *et al.* 2007; Bograd *et al.* 2008; Reid *et al.* 2009), it is difficult to predict how organisms will react. However, there are places, such as upwelling systems, that currently experience large environmental variations in all of the above-mentioned variables on small geographic or temporal scales (Aristegui *et al.* 2009; Belkin *et al.* 2009; Fransson *et al.* 2009; Hauri *et al.* 2009; Zhang *et al.* 2010). These systems might provide indicators for possible future genetic impacts of climate change.

The geographic variation in basic ocean environment may exert strong selection on populations to adapt to an environmental average or may allow local adaptation of populations to particular local conditions (Hereford 2009; North et al. 2011; Sanford & Kelly 2011). The effect of high dispersal was thought to be enough to keep a population genetically homogeneous along a range of environmental conditions (Díaz-Viloria et al. 2009; Hellberg 2009); however, population genetic theory shows that local adaptation depends on a balance of selection and gene flow (Sotka & Palumbi 2006). Recent studies of marine species at the whole-genome level increasingly demonstrate cases of particularly strong differentiation of some loci in the face of gene flow (Conover et al. 2006; Nielsen et al. 2009; Pespeni & Palumbi 2010). For example, Pespeni et al. (in prep) recently observed that there was enough standing genetic variation in natural populations of the purple

sea urchin such that experimental exposure to high acidity conditions led to marked gene frequency evolution. Such whole-genome approaches are well suited to understanding the relationship of coastal environmental mosaics to potential adaptation for climate change effects.

Along the upwelling-dominated California coast, strong variation in temperature (Checkley & Barth 2009), oxygen concentration (Bograd et al. 2008; Connolly et al. 2010) and pH (Feely et al. 2008; Hauri et al. 2009) suggests that there may be adaptive genes in species that live across this range associated with tolerance to these stressors (Somero 2010; Pespeni et al. 2011). Abalone (Haliotis spp.) are semi-sessile marine gastropods that have evolved and diversified along the Pacific coast of North America (Estes et al. 2005). All but one species is currently listed as under concern in California (CADFG 2011), and they have been shown to be negatively impacted both by increasing temperatures causing increased disease occurrence (Rogers-Bennett et al. 2010) and by decreasing pH causing abnormal larval development in an experimental setting (Crim et al. 2011). The red abalone (Haliotis rufescens), the only species for which there is still a limited recreational fishery, shows remarkably little population structure over large geographic distances, despite a low potential for gene flow (Burton & Tegner 2000; Gruenthal et al. 2007). In this study, we hypothesize that within an overall homogeneous genetic structure in *H. rufescens*, genes that are acted upon by local natural selection may diverge between areas of different environmental stressors along the California coast. As a result, we predict that genes related to shell biomineralization, resistance to hypoxia, temperature tolerance and resistance to pathogens will show the strongest patterns of local adaptation. To test this, we sequenced the mantle transcriptome of 39 H. rufescens individuals from three different regions in the northern part of the species' range between Monterey and the Oregon border (ca. 600 km) to compare Single Nucleotide Polymorphisms (SNPs) among locations. We scored all individuals at 21 579 loci and analysed them for geographic patterns and statistical outliers. We used these analyses to simultaneously estimate overall patterns of gene flow and to trace possible loci and gene functions under local environmental selection.

Material and methods

Non-lethal mantle tissue samples of *Haliotis rufescens* were taken *in situ* with biopsy forceps from 39 individuals in the intertidal zone or underwater using SCUBA. Sampling sites were as follows: Hopkins Marine Station (H) (n = 13), 36° 37.244'N, 121° 54.118'W; Fort Ross (FR)

(n = 6), 38° 30.142'N, 123° 13.856'W; Salt Point (SP) (n = 1), 38° 33.729'N,123° 19.465'W; Gerstle Cove (GC) (n = 1), 38° 34.088'N,123° 20.195'W; Anchor Bay (AB) (n = 6), 38° 48.103'N, 123° 34.995'W; Trinidad Harbour (T) (n = 6), 41° 3.297′N, 124° 8.646′W; Patrick's Point (PP) (n = 4), 41° 7.968'N, 124° 9.799'W; Crescent City (CC) (n = 2): 41° 45.179'N, 124° 13.135'W (Fig. 1). These sampling locations correspond to three environmentally distinct regions along the California coast. Monterey Bay is characterized by mild upwelling during the summer months only, a fairly constant surface water temperature (12-14 °C year-round) (National Buoy Data Center, NOAA) and reports of occasional coastal hypoxia (Booth et al. 2010) as well as a long-term presence of the bacterium causing the lethal withering-foot syndrome during warm periods (Moore et al. 2002). Sonoma, with stronger upwelling during the summer (although primarily offshore), has temperatures between 9 and 12 °C (National Buoy Data Center, NOAA), a reported decrease during summer in aragonite saturation state (although still supersaturated in surface water) (Hauri et al. 2009) and only recent reports of the presence of the agent of the withering-foot syndrome (L. Rogers-Bennett, personal communication). Finally, the region located north of Cape Mendocino, up to the Oregon border, has year-round upwelling, which is very strong during the late summer months, a more

Fig. 1 Map of the species range of red abalone along the US West Coast, showing collecting locations. Location codes: CC, Crescent City; T, Trinidad Harbour; PP, Patrick's Point; AB, Anchor Bay; GC, Gerstle Cove; FR, Fort Ross; SP, Salt Point; H, Hopkins Marine Station.

variable temperature (between 8 and 15 °C) (National Buoy Data Center, NOAA), reported aragonite undersaturation in surface waters (Feely *et al.* 2008) but no presence of the agent of the withering-foot syndrome (Moore *et al.* 2002; L. Rogers-Bennett, personal communication).

Tissue samples were allowed to soak in RNA later (Qiagen, Valencia, CA, USA) at room temperature or at 4 °C for about 1 day, then stored at -80 °C. Total RNA was extracted from tissue using TriZol reagent (Invitrogen, Carlsbad, CA, USA). Tissue pieces were first cut into smaller pieces using a razorblade, after which they were flash frozen with liquid nitrogen and powderized with a micropestle before adding TriZol. Each sample was extracted in duplicate. A standard extraction protocol was used (Rio *et al.* 2010), at the end of which the RNA pellets were eluted in 25 µL of RNAse-free water; duplicates were combined for a total of 50 µL. Total RNA was quantified using QuBit 2.0 flourometer (Invitrogen) RNA assays.

For cDNA library construction, Illumina's TruSeq RNA sample prep kit (Illumina, San Diego, CA, USA) was used, following the standard protocol, using the full 50 μ L of total RNA extract as input. No optional inline controls were used. For multiplexing, we used six different indexing adapters. Complementary DNA was quantified using a QuBit 2.0 flourometer (Invitrogen), an Agilent Bioanalyser (Agilent, Santa Clara, CA, USA) as well as quantitative PCR, after which separate libraries were pooled into seven tubes [six with six samples each, and one with three samples (AB51, GC28 and H4)]. Cluster generation and parallel sequencing of single-end 50 base-reads was then performed in seven lanes in an Illumina HiSeq 2000 (Illumina) at the University of Utah's Bioinformatics Core Facility.

A detailed pipeline of all data processing steps can be found at http://sfg.stanford.edu (De Wit et al. 2012). Short reads were trimmed using a phred-scale quality score cut-off of 20; residual adapter sequences were clipped from the reads after which reads shorter than 20 bases were discarded. Quality score and nucleotide distributions as well as the proportions of duplicate reads were examined using the fastx toolkit (http:// hannonlab.cshl.edu/fastx_toolkit/). Trimmed and clipped short reads from all individuals were imported to CLC genomics workbench (CLC bio, Cambridge, MA, USA) and combined to generate a de novo assembly with mismatch cost 1 and insertion and deletion cost 2 (limit 5), while voting for conflict resolution and ignoring all nonspecific matches and specifying a minimum contig length of 200 bases.

To annotate the *de novo* assembly, it was compared against the UniProt knowledgebase and GenBank's nr database using the BLASTx algorithm, and against GenBank's nt database and the Lottia gigantea genome project's (http://genome.jgi.doe.gov/Lotgi1/Lotgi1.home. html) 'all gene models' data set using the tBLASTx algorithm. In all cases, NCBI's default parameters were used. Hits with *e*-values $<10^{-5}$ were considered significant. BLASTing was conducted on Stanford University's Bio-X² cluster (http://biox2.stanford.edu/). Gene Ontology (GO) annotation was acquired from AGbase (http:// www.agbase.msstate.edu/) using UniProt identifiers, when possible. To remove non-abalone contigs, ME-GAN 4 (http://ab.inf.uni-tuebingen.de/software/megan/) (Huson et al. 2011) was used with the results of the tBLASTx to nt, to create a list of contigs that were assigned to non-metazoa (minimum score 55, minimum support 2). These contigs were excluded from further analysis.

Samples were then individually mapped against the assembly using the Burrows-Wheeler Aligner (http:// bio-bwa.sourceforge.net/) (Li & Durbin 2009), using default parameters (except n = 0.005 and k = 5). For SNP detection, the Genome Analysis Toolkit (McKenna et al. 2010; DePristo et al. 2011) was used, following the best practise protocol version 2 of the Broad Institute (http://www.broadinstitute.org/gsa/wiki/index.php/ Best_Practice_Variant_Detection_with_the_GATK_v2); only deviating in the omission of the Base Quality Score Recalibration step, as this step requires known variant sites as input. An initial variant call set was obtained using a phred-scale quality threshold of 30 as well as applying hard filtering with all settings as recommended by the Broad Institute except cluster-window size = 10. This call set was used to train the Variant Quality Score Recalibration model and filter a call set with a variant quality score threshold of 4 (all other settings as recommended by the Broad Institute). The HARD_TO_VALIDATE filter was used to train the Gaussian mixture model but was ignored when applying the final filter, as recommended by the Broad Institute. The list of polymorphic sites was then filtered to extract only sites for which there were confident genotypes (phred-scale threshold 20) assigned to all 39 individuals.

For data analysis purposes, the individuals were grouped into three populations: Monterey (n = 13), Sonoma (including FR, GC, SP and AB) (n = 14) and north of Cape Mendocino (including T, PP and CC) (n = 12). A principal components analysis (PCA) was performed using the EIGENSOFT software package (http://genepath.med.harvard.edu/~reich/Software.

htm) (Patterson *et al.* 2006). The results of the PCA led us to remove two deviating individuals from Patrick's Point (PP1 and PP3) and then repeat the SNP detection pipeline as described above with the remaining 37 individuals, after which another PCA was performed. Finally, the data set was further trimmed by removing variant sites for which all individuals had been genotyped as heterozygotes (likely to be due to either contamination or paralogous genes, n = 70) and by removing all sites in which the minor allele frequency was <2.5%. Mean global and pairwise F_{ST} were calculated using GenePop (http://kimura.univ-montp2.fr/ ~rousset/Genepop.htm) (Rousset 2008). To further assess the species status of individuals PP1 and PP3, genomic DNA was back-extracted from Trizol, and the VERL gene, which has been shown to be useful for abalone species identification (Gruenthal & Burton 2005), was amplified using the protocol and primers described in Swanson *et al.* (2001).

To scan the transcriptome for $F_{\rm ST}$ outlier SNPs, the Lositan selection workbench (http://popgen.eu/soft/lositan/) (Antao *et al.* 2008) was used, using a 'neutral' mean $F_{\rm ST}$, running 500 000 simulations and a 95% confidence interval. From the resulting list of outlier SNPs, genes for which there were more than one outlier SNP as well as at least one significant BLAST hit were extracted. Pairwise $F_{\rm ST}$ between the three populations were calculated for outlier SNPs in these contigs using GenePop and plotted in a 3D scatterplot in R.

Results

Transcriptomic coverage

The number of reads per individual after quality trimming and adapter clipping ranged from 22 885 713 to 25 237 104 in the lane with only three individuals, and from 9 721 592 to 21 646 749 in the remaining lanes. 355 678 562 reads were used in the de novo assembly, creating 162 928 contigs of average length 522 bases (N50 = 653) for a total length of 85 063 104 bases (supplementary material 1). BLAST annotations could be assigned to 48 004 out of 162 928 contigs (e-value threshold 10⁻⁵) (supplementary material 3). BLASTx against NCBI's nr database resulted in 33 049 hits, while tBLASTx against NCBI's nt database returned 42 603 hits. BLASTx against the UniProt knowledgebase returned 28 819 hits. tBLASTx against the Lottia gigantea genome resulted in 34 994 hits. The MEGAN algorithm was able to identify 546 contigs in the reference assembly that were non-metazoan (supplementary material 4).

This study provides the first transcriptomic resource for abalone. The large number of contigs (162 928) in the *de novo* assembly is disconcerting (although a known issue when dealing with short reads). After removing the 546 non-metazoan contigs, this is still many more than the number of genes described for *Lottia gigantea* (23 851) (Lotgi v1.0), or ca. 28 000 in the sea urchin *Strongylocentrotus purpuratus* (Sodergren *et al.* 2006; Pespeni et al. 2011). However, 114 924 contigs remain un-annotated. It is likely that a large fraction of these are contaminant sequences from bacteria, fungi or unicellular eukaryotes present inside or on the surface of the mantle tissue. In addition, the short average lengths of the contigs indicate that in most cases, several contigs represent different regions of the same genes. Even with a slight overlap, the de novo assembly algorithm might not combine adjacent contigs from the same exon in many cases (Martin & Wang 2011). The results from the BLASTx against the nr database (which contains only protein-coding sequences) support this in that 33% of the annotated contigs (10 876 out of 33 049) have the same top hit as one or more additional contig (s) in the assembly. By counting the number of unique hits from the BLASTx against nr, the number of genes in the assembly was approximated to ca. 22 000. Further work is needed to more completely assemble, annotate and remove contaminant sequences from this abalone transcriptome, but the stringent filters that we have used here for annotation give us confidence that we have identified abalone SNPs correctly, at the cost of some data loss.

We also designed primers to amplify outlier-containing fragments of four genes from genomic DNA, using the Lottia genome to predict intron-exon boundaries (Pif (F-AGCCTGACTTGTACCTCCC; R-ACAAGAAAGAG-ATGACCAGAACG), Chitin synthase 2 (F-ACACTGA-AACATGAATTGGAACC; R-ATTGTGTAGTTTGTGCG CCA), Sodium glucose cotransporter (F-GAACATCTC CAACGCCAAGG; R-GCCAGCATGAGACCTCGGA) and ATP synthase β chain (F-AGCAGCACCAA-ACAGAT; R-CAACAACCCAGACTTCCTTTG)). All primer pairs successfully amplified fragments in the predicted size range in all study individuals; Sanger sequencing of the amplicons confirmed all outlier SNPs in Pif and Chitin synthase 2, and some of the SNPs in the remaining two genes (length-polymorphic introns prohibited validation of all SNPs in Sodium glucose cotransporter and in ATP synthase β chain) (P. De Wit, unpublished data).

Genotyping and population structure

An average of 62.86% (SD 4.41%) of the reads aligned to only one position in the assembly (mapping quality >20). The initial SNP detection resulted in 1 178 549 high-quality variant sites, of which 21 285 had confident genotype calls for all 39 individuals. We removed 70 of these due to failure to conform to Hardy–Weinberg expectations.

A Principal Components Analysis (Fig. 2A) suggests a lack of strong population structure, but finds two deviating individuals (PP1, PP3) on the only significant axis (PC 1, $P = 3 \times 10^{-21}$). Subsequent analysis of SNP weights indicates that the differences observed derive from subtle patterns at many base pair sites and that these two individuals are heterozygous at 498 of the 500 most highly weighted SNPs on PC axis one. The VERL sequences of the two individuals were compared to the data set published on GenBank by Swanson et al. (2001) for Haliotis rufescens; both were found to be identical to sequence AF250893. Still, because of the possibility that these two individuals represent hybrids (first generation or later backcross, see Discussion), this data set was discarded and the SNP detection pipeline was repeated, resulting in 1 166 275 variant sites (Q > 20) (supplementary material 2), of which 21 579 have confident genotype calls (Q > 20) for all 37 individuals. A PCA of this data set (Fig. 2B) continues to suggest that there is no strong genetic differentiation between geographic locations. In addition, mean F_{ST} indicates low genetic differentiation among regions for all SNPs (Global $F_{ST} = 0.0003$). The distribution of minor allele frequencies in the data set is given in Fig. 3.

Only 1.85% of the detected variant sites have confident genotypes for all 37 individuals. Due to randomness in sample preparation and the multiplexing of six individuals in each HiSeq lane, it is likely that only the most highly expressed genes were sequenced to sufficient depth to be confidently genotyped for all individuals. The GATK uses a combination of sequencing depth and read qualities at a given site to calculate Bayesian posterior probabilities for the different genotypes and log odds ratios between them, emitting a genotype only if the log odds ratio exceeds a threshold (P > 0.99 in our case). Deeper re-sequencing would undoubtedly increase genotype data significantly and provide information on less common transcripts. For this initial study, however, genotype information at 21 579 SNP sites allows us to explore patterns of differentiation across genes likely to be important in organism function.

Outlier and gene association analysis

From the 21 579 SNP sites for which there was genotype information for all 37 individuals, 70 were removed due to all individuals being genotyped as heterozygotes and 8 292 were removed due to a minor allele frequency <2.5%, leaving 13 217 variant sites from 3 342 contigs for the F_{ST} outlier analysis. Lositan indicated 691 SNPs as significantly more divergent between geographic locations than likely from chance alone (supplementary material 5). The SNPs were distributed across 486 contigs, from which 163 genes were identifiable by BLAST search. Of these 163, 34 genes contain more than one outlier SNP and thus are particularly good candidates for being targets of differentiation caused by natural selection (Table 1). This list includes genes basic

Fig. 2 Principal components plot of PC 1 vs. PC 2. (A) Using 21 222 Single Nucleotide Polymorphisms (SNPs) with highquality genotypes for all 39 individuals. Axis 1 is significant ($P = 3 \times 10^{-21}$). (B) Using 21 509 SNPs with high-quality genotypes for all 37 individuals after re-running the SNP detection without the two deviant individuals PP1 and PP3. None of the axes are significant. In both (A) and (B), SNPs genotyped as heterozygotes in all individuals have been omitted.

to shell formation and Calcium regulation, genes involved in hypoxia and disease resistance, as well as genes involved in energy metabolism. We compared pairwise F_{ST} among the three populations for each SNP within the 34 genes. For 18 genes where all SNPs in a gene showed a clear consistent pattern, we list which of our three main populations was deviant (Table 1).

Discussion

Our data broadly agree with prior results that show very low genetic differentiation of red abalone along the California coast (Burton & Tegner 2000; Gruenthal *et al.* 2007), despite their predicted low dispersal ability (Prince *et al.* 1987). Nevertheless, we also detected outlier SNPs with higher than expected differentiation in 486 contigs, suggesting that overlain on a pattern of high gene flow is the signature of local adaptation in some genes.

Possible hybrids

Two individuals from Patrick's Point (PP1 & 3) are clearly deviant in the principal component analysis

(Fig. 2A). The strongest component of this difference was derived from more than 500 loci that loaded heavily onto PCA axis 1 (Fig. 2A). Individuals PP1 and PP3 were uniquely heterozygous at all but two of these SNPs, suggesting that they might be hybrids between red and another co-occurring abalone species, such as Haliotis walallensis or Haliotis kamtschatkana. Abalone hybridization is presumed rare because of the species specific interaction of gamete recognition proteins (Swanson & Vacquier 1995; Clark et al. 2009), yet natural hybrids have been reported between Haliotis rufescens and all other North American species of abalone at an average rate of 0.2% (de la Cruz & Gallardo-Escarate 2010). This rate was observed to be higher in areas of ecological disturbance or at the extreme range limits of one species. The collection point for PP1 and PP3 is north of Cape Mendocino, near the northern limit of H. rufescens. VERL sequences of the two individuals were unambiguous and identical to published sequences for H. rufescens (Swanson et al. 2001). The VERL primers used (Swanson et al. 2001) have previously been used to successfully amplify VERL fragments of all North American abalone species, as the polymorphism rate in VERL is very low between species (Gruenthal & Burton 2005). Still, this result cannot rule out that the individuals are hybrids or backcrosses. Confirmation of the hybrid nature of these individuals must await genomic data from the other potential parent species.

Population differentiation

The principal component analyses (Fig. 2) and the mean F_{ST} show that there is no genetic differentiation at the

Fig. 3 Minor allele frequency histogram, indicating that a large fraction of detected Single Nucleotide Polymorphisms exist in low frequency in the natural populations.

vast majority of SNPs between geographic locations. This is consistent with previous findings (Burton & Tegner 2000; Gruenthal *et al.* 2007) and indicates that red abalone larvae have dispersed among populations along the California coast, despite their short pelagic life stage. Overall $F_{\rm ST}$ is 0.0003, suggesting high rates of historic gene flow at most SNPs.

A comparison of heterozygosity and F_{ST} may help explain the conundrum between short larval duration and low differentiation. We find nearly 1.2 million high quality, variant sites in the abalone transcriptome, resulting in a polymorphism rate of about 1.37%. This is much higher than the variation described in the human genome (0.1%) (Gibbs et al. 2003), yet similarly high numbers have been reported from sea urchins (4%) (Britten et al. 1978) and oysters (1.67%) (Curole & Hedgecock 2005; Sauvage et al. 2007). The genome-wide polymorphism rate is expected to be even higher than the rate in protein-coding expressed DNA reported here. High polymorphism in abalone suggests, as in urchins and oysters, the build-up of genetic diversity in a consistently large population with a high mutation rate. Kang et al. (2010) also found high SNP heterozygosity in *Haliotis iris* in New Zealand (3.2%, n = 2) and multiple microsatellite studies also demonstrate high allele numbers and high heterozygosity in many species of abalone (Huang et al. 2000; Maynard et al. 2004; Tang et al. 2004; Gutierrez-Gonzalez et al. 2007; Gruenthal & Burton 2008; Shu et al. 2008; Díaz-Viloria et al. 2009; Miller et al. 2009b).

High polymorphism rate (1.37%) suggests a large population size. If the average mutation rate per base is on the order of 10^{-8} – 10^{-9} per generation (or about 0.2% to 0.02% mutation per million years with a 5-year

Gene Ognism Complexity control of the SNS Contro SNS Control of the SNS	Top BLAST hit			Nimbor of	Diment
78 KDa guccoerregulated protein Creassitrer gipts Contrig 14773, contrig 145731 2 Attimitating enzyme precursor 2 (LPAM) Encentra gipts Contrig 14775, contrig 145731 2 Attimitating enzyme precursor 2 (LPAM) Encentra gipts Contrig 95166 2 Attimitating enzyme precursor 2 (LPAM) Encentra gipts Contrig 9166 2 Attimitation Contrig 9166 Contrig 9166 2 2 Attimitation Contrig 9166 Contrig 9175 2 2 Attimitation Contrig 9166 Contrig 9175 2 2 Attimitation Contrig 9166 Contrig 9175 2 2 Calimoting protein Matrix direvision Contrig 9256 2 2 Calimoting protein Matrix direvision Contrig 9257 2 2 Calimoting protein Matrix direvision Contrig 9257 2 2 Calimoting protein Matrix direvision Contrig 9583 2 2 Calimoting protein Matrix direvision Contrig 9586 2 2	Gene	Organism	Contig(s) containing outlier SNPs	outlier SNPs	population
Actim-relating spectra Agoid: Contige3666 2 Actim-relating enzyme precursor 2 (LPAM) Excertion Agoid: Contige3016 2 Adyth-annichting enzyme precursor 2 (LPAM) Printian fungmes coppuis Contige3407 2 Adyth-annichting enzyme precursor 2 (LPAM) Printian fungmes coppuis Contige3407 2 Adyth-annichting enzyme precursor 2 (LPAM) Printian fungmes coppuis Contige3407 2 ATP synthuse BC Contige3407 Contige3405 2 ATP synthuse BC Data synthuse Contige3405 2 Capring rotein (actin filament) muscle Z-line, beta (Capzh) Mais muscuins Contige3645 2 Cambosin contraining protein Editoris drava facus Contige3645 2 Cambosin contraining protein Editoris drava facus Contige3645 2 Dematopontin Editoris drava facus Contige3645 2 <td>78 kDa glucose-regulated protein</td> <td>Crassostrea gigas</td> <td>Contig147173, contig148731</td> <td>7</td> <td>North</td>	78 kDa glucose-regulated protein	Crassostrea gigas	Contig147173, contig148731	7	North
Apha-anidating arezyne procursar 2 (LPAM) Jymanes aloganis Contig2016 3 Adsyrin: Adsyrin: Contig2015 Contig2016 3 Adsyrin: Ansyrin: Contig2017 Contig2017 3 Adsyrin: Ansyrin: Contig2017 Contig2017 3 Argin kinas Contig2015 Contig2017 3 Argin kinas Contig2016 Contig2017 3 Carabase Contig1027 Contig2015 3 Catabase Contig1027 Contig2027 3 Cytosolic Ans musculus Contig1027 3 Consolic protein EGFlike domain Contig1027 3 Cytosolic Contig2056 3 3 Consolic discus Contig2057 3 3 Contig2057 Consignery discussor Contig2057 3 Consolic discus Contig2057 3 3 Consolic discus discus Contig2057 3 3 Consolic discus discus Contig2057 3	Actin-related protein 2/3	Saccostrea kegaki	Contig83864	2	
Anytyri-1 Deficialis humanus carporis Contig_10476 2 Argyine Kinese Argyine Kinese Contig_10476 2 Argyine Kinese Argyine Kinese Contig_10476 2 Argyine Kinese Argyine Kinese Contig_10476 2 Argyine Kinese Capbob Haliotis directs directs Contig_10476 2 Capping Incerin (actin filament) muscle Zhine, bela (Capcb) Haliotis directs directs Contig_10476 2 Capping Incerin Contig Contig_10476 Contig_10476 2 Capping Incerin Captob Haliotis discus discus Contig_10476 2 Captob Haliotis discus discus Contig_10476 2 2 Cytosolin male delychorgenase Haliotis discus discus Contig_10476 2 2 Cytosolin transcript Contig_10476 Contig_10476 2 2 2 Cytosolin alle delychorgenase Galetin + Like protein transcript Contig_10573 2 2 Galetin + Like protein transcript Contig 36575 Contig 36575 2	Alpha-amidating enzyme precursor 2 (LPAM)	Lymnaea stagnalis	Contig89165	С	
Arginus kinase Arginus kinase Contige0217 3 Arg synthase B chain Cathodutis Contige0443 2 Carlmodutis Cathodutis Contige0443 2 Cathore Cathodutis Contige066 3 Cathore Contige065 3 2 Cathore Contige066 3 2 Cathore Contige066 3 2 Cumbs complex protein (strin filament) muscle Z-line, beta (Cap2b) Mains aniscuis Contige066 3 Cumbs complex protein (strin filament) muscle Contige066 3 3 Cumbs complex protein (strin filament) muscle Contige066 3 3 Cumbs complex protein Edition direction Contige066 3 3 Cumbs containing protein Edition direction Contige066 3 3 Glacere-sphosphare 1-dehytrogenase (gsPD) Cressitre gions Contige066 3 3 Glacere-sphosphare 1-dehytrogenase GsPD) Contige0472 3 3 3 Glacere-sphosphare 1-dehytroge	Ankyrin-1	Pediculus humanus corporis	Contig24507	2	North
ATT synthse B dain ATT synthse B dain Conjeg 10776 2 Calmordini 2 Calmodini 2 Conjeg 39315 2 Calmodini 2 Calmodini 2 Conjeg 39315 2 Capping previncing (arth filament) muscle Z-line, beta (Cap2b) Hainis direvision Conjeg 3865 2 Carbon protein (stru) 13020) Kinis inscar discus Conjeg 3865 2 Crumbs complex protein (Smp J 30280) Maynis inscar discus Conjeg 3865 2 Crumbs complex protein (Smp J 30280) Maynis discus discus Conjeg 3865 2 Demanaporuti Halinis discus discus Conjeg 35577 4 Demanaporuti Halinis discus discus Conjeg 35577 4 Cultarnic synthetae Consister spin Conjeg 35577 3 Gulcun 4-like protein transcrip Consester spin Conjeg 3557 3 Gulcun 4-like protein transcrip Consister spin Conjeg 3557 3 Gulcun 4-like protein transcrip Consister spin Conjeg 3557 3 Gulcun 4-like protein transcrip Consister spin Conjeg 3557 3 Gulcur 4-like protein transcrip Consister spin Conjeg 3557 3 Haloris discus discus Conjeg 3566 2 2 Gulcuransporter C	Arginine kinase	Haliotis madaka	Contig90217	3	Monterey
Calmodinin 2 Caning6443 2 Capping protein (actin filament) muscle Z-line, beta (Capzb) Halois discues Contige6443 2 Cambies complex protein (smp. J30280) Raines masculus Contige3666 2 Crumbs complex protein (smp. J30280) Schissosana muscui Contige3666 2 Crumbs complex protein (smp. J30280) Schissosana muscui Contige3666 3 Dermadopoutin Dermadopoutin Contige3666 3 Dermadopoutin Halois discue (contige3656 3 Dermadopoutin Contige3666 3 Galectin 4-like protein muscript Halois discue (contige374 4 Galectin 4-like protein muscript Halois discue (contige3774 4 Galectin 4-like protein muscript Contige3785 3 Galectin 4-like protein muscript Contige3945 3 Galectin 4-like protein muscri 2 Contige3945 3 <td>ATP synthase B chain</td> <td>Ixodes scapularis</td> <td>Contig104796</td> <td>2</td> <td>North</td>	ATP synthase B chain	Ixodes scapularis	Contig104796	2	North
Capping protein (actin filament) muscle Zline, beta (Cap2b) Mas musculas Contig2015 2 Catalase Contig3680 Schistosmu mansoni Contig3666 3 Crunbs complex protein (strip 130280) Schistosmu mansoni Contig3666 3 Cytosolic malate dehydrogenase Haliotis discus discus Contig3666 3 Cytosolic malate dehydrogenase Haliotis discus discus Contig35377 3 Galectin 4 like protein transcript Haliotis discus discus Contig2666 3 Galectin 4 like protein transcript Consubs377 4 3 Galectin 4 like protein transcript Consubs377 4 3 Galectin 4 like protein transcript Contig2363 2 3 Guicose-ophosphate 1 Contig333 Contig333 3 Guicose-ophosphater 2 Danio rerio Contig3345 3 Halanin Pointolar protein Haliotis discus discus Contig3345 3 Malate dehydrogenase precursor Danio rerio Contig3345 3 3 Malatio Guivore reginanci contig3345	Calmodulin 2	Haliotis diversicolor	Contig46443	2	Hopkins
Industs Contig8805 Contig8805 2 Cumbs complex protein (Smp_J3020) Schistosam munsori Contig1427 2 Cynosic malte dehydrogenase Mythile colifornialite colifornialite colifornialite colifornialite colifornialite colifornialite colifornialite colifornialitie colifornialitie colifornialitie colifornialitie colifornialitie colifornialitie colifornialitie contig25774 2 Dermatopontin Rationis containing potein Haliois direvision Contig1427 3 Chockee-fohosphate 1-dehydrogenase (gfPD) Contig25921 3 3 Glucone-of-phosphate 1-dehydrogenase (gfPD) Contig2058 2 3 Highoria discne discne Contig2058 2 3 3 Malate dehydrogenase precursor MOINM Limmus synthese 2 3 Nollaste dehydrogenase precursor MOINM Limmus discne discne 2 3 Nollaste dehydrogenase precursor <td>Capping protein (actin filament) muscle Z-line, beta (Capzb)</td> <td>Mus musculus</td> <td>Contig83915</td> <td>2</td> <td></td>	Capping protein (actin filament) muscle Z-line, beta (Capzb)	Mus musculus	Contig83915	2	
Crumbs complex protein (Samp_130280) Solistosoma musori Conig/4237 2 Cytosolic malate delydrogenase Haltoits disers align: conig/15444 3 Cytosolic malate delydrogenase Haltoits disers discus Conig/15444 3 EGF-like domain containing protein Haltoits disers discus Conig/83377 3 EGF-like domain containing protein Haltoits discus hearanti Conig/83377 3 Glocose-byposphate 1-delydrogenase (g6PD) Crassoftre g/gas Conig/93377 3 Glocose-byposphate 1-delydrogenase (g6PD) Crassoftre g/gas Conig/9343 3 Glycine transporter 2 Dimin rerio Conig/9345 3 Glycine transporter 2 Limuta male algoritations Conig/9345 3 Molluscan defene conolecule precursor Limuta male algoritations Conig/9345 3 Molluscan defene conolecule precursor Limuta male algoritations Conig/9345 3 Molluscan defene conolecule precursor Limuta male algoritations Conig/9345 3 Malaticat (ADD) Limuta male algoritations Conig/9345 3 Nasconstate delorin	Catalase	Haliotis discus discus	Contig88626	2	
Cytosolic malate dehydrogenase Mytiks californiums Contig26566 3 Dermatoputin Erransportin Editoris discus Contig3774 3 Dermatoputin Electratoputing protein Haliois discus larces Contig3774 3 Detratoputin Electratoput Contig3774 3 3 Glacetin 4-like protein transcript Contig26951 3 3 Glactin 4-like protein transcript Contig26953 3 3 Glactin 4-like protein transcript Contig26954 3 3 Glactin 4-like protein transcript Contig26953 3 3 Glactin 4-like protein transcript Contig26953 3 3 Glactin 4-like protein transcript Contig26953 3 3 Glattanis synthase (MDM) Danio region Contig36951 3 3 Mallate dehydrogenase precursor Limitus polypterms Contig3945 2 Mallate dehydrogenase precursor Limitus polypterms Contig3942 3 Mallate dehydrogenase precursor Limitus polypterms Contig3942 2 <	Crumbs complex protein (Smp_130280)	Schistosoma mansoni	Contig14237	2	
Dematopontin Haltois discus Contig1544 3 EGF-like domain containing protein Haltois discus humai Contig55774 4 Gleceri - Hike protein transcript Haltois discus humai Contig55774 3 Glucterine synthetase Glucterine synthetase Contig2577 3 Glucterine synthetase Contig25921 3 Glucterine synthetase Contig2058 Contig2058 3 Glucterine synthetase Contig2058 Contig2058 3 Glucter accosestrea gigas Contig1053-33 2 3 Haltoit Tarssorter gigas Contig80734 3 Malate delydrogenase precursor Limulus puptimus Contig80734 3 Malate delydrogenase precursor Limulus puptimus Contig807342 2 Malate delydrogenase precursor Limulus puptimus Contig84742 2 Malate delydrogenase precursor MDM) Lynumae signalis Contig84742 2 Melous and telene molecule precursor Dinois afficis Contig84742 2 2 Planctoxin	Cytosolic malate dehydrogenase	Mytilus californianus	Contig26566	Ю	
EGT-like domain containing protein Haliotis direvsiolor Contig8357 4 Calcerin + like protein transcript Haliotis direvsiolor Contig30557 3 Calcorects + like protein transcript Edicorect - dehydrogenase (goPD) Crassostrea gigas Contig30557 3 Glucorects - protein transcript Crassostrea gigas Contig3055 3 2 Glucorects - sumiolevulinate synthase (ALS) Danio reno Contig30655 2 Hillarin Contig3055 Contig3055 2 Malate dehydrogenase precursor Hindo moderialis Contig3055 2 Malate dehydrogenase precursor Hindo moderialis Contig3055 2 Molusean defence molecule Precursor Hindo moderialis Contig3055 2 Molusean defence molecule Precursor Hindo moderialis Contig3055 2 Nervous system adducin (ADD) Paypria adifornica Contig3857 2 Nervous system adducin (ADD) Paypria adifornica Contig3852 2 Nervous system adducin (ADD) Paypria adifornica Contig3854 3 Nervous system adducin (ADD) Paintoria (Contig3852 2 2 Nervous system adducin (ADD) Paintoria (Contig3852 2 2 Nolusean defence	Dermatopontin	Haliotis discus discus	Contig115444	Ю	
Galectin 4-like protein transcript Haliotis discus hannai Contig25921 3 Gulearine synthase Contig25921 3 Glutanine synthase Contig2593 3 Gulearine synthase Contig2593 3 Gynie transporter 2 Crassofrea gigas Contig2658 3 Hepatopancreas 5-aminolevulinate synthase (ALS) Limulus polyphemus Contig2658 3 Hillarin Contig38857 Limulus polyphemus Contig88612 2 Malate dehydrogenase procursor Hainis discus discus Contig8862 3 Malate dehydrogenase procursor Hainis discus discus Contig885345 3 Nacvous system adducin (ADD) Limutana staguitis Contig8472 2 Nervous system adducin (ADD) Dimicardin fuctin Contig8472 3 Poly-U binding protein Pinctada fuctin Contig2456 4 Panctioxin Pinctada fuctin Contig2456 4 Poly-U binding splicin factors (pf00a) Pinctada fuctin Contig2456 4 Poly-U binding splicin factors (pf00a) Pinctada fuctin Contig2448 3 Poly-U binding splicin factors (pf00a) Pinctada fuctin Contig2448 3 Proteasome alpha type 2 Proteasome alpha type 2 Proteas	EGF-like domain containing protein	Haliotis diversicolor	Contig83774	4	
Glucose-6-phosphate 1-dehydrogenase (g6PD) Crassostrea gigas Contig/0598 2 Glycine transporter 2 Crassostrea gigas Contig/0598 2 Glycine transporter 2 Danio rerio Contig/0598 2 Glycine transporter 2 Danio rerio Contig/0594 2 Glycine transporter 2 Danio rerio Contig/05945 2 Hallarin Haluits polyhemus Contig/8867 3 Malate dehydrogenase precursor Lymmaer stagnalis Contig/8742 2 Molluscan defence molecule precursor Lymmaer stagnalis Contig/8742 2 Nolluscan defence molecule precursor Lymmaer stagnalis Contig/8742 2 Nolluscan defence molecule precursor Lymmaer stagnalis Contig/8742 2 Nolluscan defence molecule precursor Lymmaer stagnalis Contig/8742 2 Nervous system adducin (ADD) Phylicita discus discus Contig/8742 2 Nervous Pinctad fucta Contig/88977 3 Nervous Pinctad fucta Contig/8742 2 Noluscan defence molecule precursor Malate dehydrogenase 2 Nortioni Pinctad fucta Contig/88927 3 Pariota Contig/8712 2 2 <	Galectin 4-like protein transcript	Haliotis discus hannai	Contig83577	С	North
Glutamine synthetase Crassofrea gigas Contig90598 2 Gyvine transporter 2 Danio revio Contig102343 2 Hindo medicinitis Contig8612 2 Hilahrin Contig88612 2 Malate dehydrogenase precursor Hindo medicinitis Contig88612 2 Malate dehydrogenase precursor Hindo medicinitis Contig88612 2 Malate dehydrogenase precursor MDM) Hindo medicinitis Contig88612 2 Molluscan defence molecule precursor MDM) Pintrada fucata Contig88474 2 Nolluscan defence molecule precursor MDM) Pintrada fucata Contig3474 4 Nervous system adducin Aplysia culifornicia Contig3474 4 Nervous system adducin Pintrada fucata Contig3474 4 Nervous system adducin Contig3474 3 2 Nervous system adducin Contig3474 3 3 Nervous system adducin Contig3474 3 3 Nortin rich 15-like (PRR15L) ATPase Pintrada fucata Contig3493 3 Proline rich 15-like (PRR15L) ATPase Panio serio Contig2449 3 Protein disulfide isomenase 1 Evotes seried fucata Contig2449 3<	Glucose-6-phosphate 1-dehydrogenase (g6PD)	Crassostrea gigas	Contig25921	Ю	North
Glycine transporter 2 Danio rerio Contig 102343 2 Hindarin Hirudo medicinalis Contig 8857 3 Hillarin Contig 8857 2 Hindarin Contig 8857 2 Hindarin Contig 8857 2 Malusca delydrogenase precursor Haliotis is discus Contig 8857 2 Maluscan defence molecule precursor MDM) Lymmae stagnalis Contig 88474 2 Nervous system adducin (ADD) Lymmae stagnalis Contig 84742 2 Nervous system adducin (ADD) Lymmae stagnalis Contig 24566 4 Pili177 Aragonite-binding protein Pinctada fucata Contig 24566 4 Pancitoxin Danio rerio Contig 2456 4 Poly-U binding splicing factor a (puf60a) Pinctada fucata Contig 2456 3 Poly-U binding splicing factor a (puf60a) Pinctada fucata Contig 2456 4 Proline rich 15-like (PRRISL) ATPase Haliotis cracherodii Contig 24491 3 Poly-U binding splicing factor a (puf60a) Pinctada fucata Contig 24491 3 Proline rich 15-like (PRRISL) ATPase Pinnio rerio Contig 24491 3 Proline rich 15-like (PRRISL) ATPase Pinnio rerio Contig 24491 3 </td <td>Glutamine synthetase</td> <td>Crassostrea gigas</td> <td>Contig90598</td> <td>2</td> <td></td>	Glutamine synthetase	Crassostrea gigas	Contig90598	2	
Hepatopancreas 5-aminolevulinate synthase (ALS)Limulus polyphemusContig888573HillarinHirudo medicinalisContig886122Malate dehydrogenase precursorHirudo medicinalisContig886122Malate dehydrogenase precursorHirudo medicinalisContig886122Malate dehydrogenase precursorLymmae antigratisContig839452Nervous system adducin (ADD)Lymmae antigratisContig847422Pif177 Aragonite-binding proteinHaliotis cracherodiiContig847422PinctoxinRagonite-binding proteinHaliotis cracherodiiContig847422PinctoxinContig84742Contig847422PinctoxinRagonite-binding proteinHaliotis cracherodiiContig8474913PinctoxinPoly-U binding splicing factor a (puf60a)Haliotis cracherodiiContig47142Proline rich 15-like (PRR15L) ATPaseHano sapiensContig147142Proline rich 15-like (PRR15L) ATPaseHanois sagintisContig147142Proline rich 15-like (PRR15L) ATPaseHanois sagirasContig137142Protein disuffice isomerase 1RAS-related proteinContig137142Sacro/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctaal fucataContig13717Sacro/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctaal fucataContig137122Sodium/glucose cotransporterContig137187Contig137212Spectrin alpha chainContig3748Contig137122 <td>Glycine transporter 2</td> <td>Danio rerio</td> <td>Contig102343</td> <td>2</td> <td>Sonoma</td>	Glycine transporter 2	Danio rerio	Contig102343	2	Sonoma
HillarinHirudo medicinalisContig886122Malate delydrogenase precursorMalate delydrogenase precursorHaliotis discus discusContig886122Molluscan defence molecule precursor (MDM)Lymmaer stagnalisContig889452Nervous system adducin (ADD)Aplysia californicaContig8892702Pinctualing proteinAplysia californicaContig8892703PlancitoxinHaliotis cracherodiiContig889233Poly-U binding splicing factor a (puf60a)Haliotis cracherodiiContig889232Poly-U binding splicing factor a (puf60a)Haliotis cracherodiiContig889232Poly-U binding splicing factor a (puf60a)Haliotis cracherodiiContig1471142Proline rich 15-like (PRR15L) ATPaseHomo sepiensContig1471142Protein disulfide isomerase 1Rosters discusContig1471142Protein disulfide isomerase 1Ixodes scapularisContig1471142Sarco/endoJbasmic reticulum calcium ATPase isoform C (SERCA)Princlada fuctarContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Princlada fuctarContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Princlada fuctarContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Princlada fuctarContig137187, contig137243Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Princlada fuctarContig137187, contig137243<	Hepatopancreas 5-aminolevulinate synthase (ALS)	Limulus polyphemus	Contig88857	ю	North
Malate dehydrogenase precursorHaliotis discus discusContig839452Molluscan defence molecule precursor (MDM)Lymuaen stagnalisContig847422Nervous system adducin (ADD)Aplysia californicaContig847422Nervous system adducin (ADD)Aplysia californicaContig847422Pif177 Aragonite-binding proteinPinctand fucataContig827703Pif177 Aragonite-binding splicing factor a (puf60a)Haliotis cracherodiiContig244913Poly-U binding splicing factor a (puf60a)Danio rerioContig244913Proline rich 15-like (PRR15L) ATPaseHomo sopiensContig244913Proline rich 15-like (PRR15L) ATPaseHaliotis cracherodiiContig244913Proline rich 15-like (PRR15L) ATPaseHaliotis scalend factorContig1471142Proline rich 15-like (PRR15L) ATPaseHaliotis scalend factorContig1471142Proline rich 15-like (PRR15L) ATPaseExoses scapularisContig1471142Protein disulfide isomerase 1Kodes scapularisContig138643Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Princtada fucataContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Princtada fucataContig137187, contig137234Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Princtada fucataContig137187, contig137234Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Princtada fucataContig137187, contig137234Sar	Hillarin	Hirudo medicinalis	Contig88612	2	
Molluscan defence molecule precursor (MDM)Lymmaea stagnalisContig847422Nervous system adducin (ADD)Aplysia californicaContig245664Pif177 Aragonite-binding proteinPinctada fucataContig245664PlancitoxinPinctada fucataContig889232Poly-U binding splicing factor a (puf60a)Haliotis cracherodiiContig889232Poly-U binding splicing factor a (puf60a)Haliotis cracherodiiContig244913Poly-U binding splicing factor a (puf60a)Haliotis cracherodiiContig1471142Protein erich 15-like (PRR15L) ATPaseHaliotis discusContig1471142Protein disulfide isomerase 1Ixodes scapularisContig161192Protein disulfide isomerase 1Ixodes scapularisContig161192Sarcophaga 26,29 kDa proteinasePinctada fucataContig137187, contig137212Sodium/glucose cotransporterCassostrea gigasContig137178, contig1021688Sodium/glucose cotransporterIxodes scapularisContig837124Sodium/glucose cotransporterCassostrea gigasContig273178, contig1021682TNATAR inheractivo revolvin 1Davio resolvinDavio resolvinContig273178, contig1021683TNATAR inheractivo revolvin 1Davio resolvinDavio resolvinContig273178, contig1021683	Malate dehydrogenase precursor	Haliotis discus discus	Contig83945	2	Sonoma
Nervous system adducin (ADD)Aplysia californicaContig245664Pif177 Aragonite-binding proteinPinctada fucataContig827703PlancitoxinPlancitoxinHaliotis cracherodiiContig882232PlancitoxinProly-U binding splicing factor a (puf60a)Haliotis cracherodiiContig88232Poly-U binding splicing factor a (puf60a)Panito revioContig1471142Proline rich 15-like (PRR15L) ATPaseHaliotis discus discusContig244913Proleasome alpha type 2Proteasome alpha type 2Contig274483Protein disulfide isomerase 1Ixodes scapularisContig161192Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig1372212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig37178, contig1021688Sodium/glucose corransporterCassostrea gigasContig249452TNFA IT73 interactionContig24945Contig249453TNFA IT73 interactionContig249452TNFA IT73 interactionContig249453TNFA IT73 interactionContig249453TNFA IT73 interactionContig249453TNFA IT73 interactionContig249453TNFA IT73 interactionContig249453TNFA IT73 interactionContig249453TNFA IT73 interactionContig274483TNFA IT73 interactionContig274483TNFA IT73 interactionContig2748	Molluscan defence molecule precursor (MDM)	Lymnaea stagnalis	Contig84742	2	
Pif177 Aragonite-binding proteinPinctada fucataContig827703PlancitoxinPlancitoxinHaliotis cracherodiiContig89232Poly-U binding splicing factor a (puf60a)Danio rerioContig89232Proline rich 15-like (PRR15L) ATPaseHomo sapiensContig1471142Proline rich 15-like (prR15L) ATPaseHaliotis discus discusContig1471142Proteasome alpha type 2Exotes agriansContig1471142Protein disulfide isomerase 1Ixodes scapularisContig1471142Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig13643Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sodium/glucose cotransporterCrassostrea gigasContig234453Spectrin alpha chainIxodes scapularisContig249453TNFAIP3 interactino motein 1Danio revioContig24953TNFAIP3 interaction motein 1Danio revioContig249453TNFAIP3 interaction motein 1Danio revioContig24953TNFAIP3 interaction motein 1Danio revioContig24953TNFAIP3 interaction motein 1Danio revioContig24953TNFAIP3 interaction motein 1Danio revioContig24953TNFAIP3 interaction motein 1Danio revioContig24953TNFAI	Nervous system adducin (ADD)	Aplysia californica	Contig24566	4	Sonoma
PlancitoxinHaliotis cracherodiiContig89232Poly-U binding splicing factor a (puf60a)Danio rerioContig244913Proline rich 15-like (PRR15L) ATPaseHomo sapiensContig1471142Proteasome alpha type 2Haliotis discus discusContig1471142Protein disulfide isomerase 1Ixodes scapularisContig1471142Protein disulfide isomerase 1Ixodes scapularisContig1471193Sarco/endoplasmic reticulum alcium ATPase isoform C (SERCA)Pinctada fucataContig138643Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sodium/glucose cotransporterCassostrea gigasContig249453TNFA IT3 interactino motein 1Danio revioContig249453TNFA IT3 interactino motein 1Danio revioContig249453	Pif177 Aragonite-binding protein	Pinctada fucata	Contig82770	ю	North
Poly-U binding splicing factor a (puf60a)Danio rerioContig244913Proline rich 15-like (PRR15L) ATPaseHomo sapiensContig1471142Proteasome alpha type 2Haliotis discusContig1471142Proteasome alpha type 2Haliotis discusContig274483Protein disulfide isomerase 1Ixodes scapularisContig161192RAS-related proteinSacro/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig138643Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig237488Sodium/glucose cotransporterCrassofrea gigasContig237452TNA ITP3 interactino motein 1Danio revioContig249453TNFA ITP3 interaction motein 1Danio revioContig249453TNFA ITP3 interaction motein 1Danio revioContig249453TNFA ITP3 interaction motein 1Danio revioContig249453 </td <td>Plancitoxin</td> <td>Haliotis cracherodii</td> <td>Contig88923</td> <td>2</td> <td></td>	Plancitoxin	Haliotis cracherodii	Contig88923	2	
Proline rich 15-like (PRR15L) ATPaseHomo sapiensContig1471142Proteasome alpha type 2Proteasome alpha type 2Haliotis discus discusContig274483Protein disulfide isomerase 1Ixodes scapularisContig161192RAS-related proteinSarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig138643Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarcophaga 26,29 kDa proteinaseCassostrea gigasContig37178, contig1021688Sodium/glucose cotransporterCrassostrea gigasContig249452TNFA IP3 interactino motein 1Danio revioContig249453	Poly-U binding splicing factor a (puf60a)	Danio rerio	Contig24491	С	Monterey
Proteasome alpha type 2Haliotis discusContig274483Protein disulfide isomerase 1Ixodes scapularisContig161192Protein disulfide isomerase 1Ixodes scapularisContig138643Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarcophaga 26,29 kDa proteinaseContig137187, contig13718, contig1021688Sodium/glucose cotransporterCrassostrea gigasContig249452TNFA IP3 interactino motein 1Danio revioContig249453	Proline rich 15-like (PRR15L) ATPase	Homo sapiens	Contig147114	2	North
Protein disulfide isomerase 1Ixodes scapularisContig161192RAS-related proteinIxodes scapularisContig138643Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)Pinctada fucataContig137187, contig137212Sarco/endoplasmic reticulum seePeriplaneta americanaContig137187, contig137212Sarcophaga 26,29 kDa proteinasePeriplaneta americanaContig837124Sodium/glucose cotransporterCrassostrea gigasContig249452TNFA IP3 interactino motein 1Danio revioContig249453	Proteasome alpha type 2	Haliotis discus discus	Contig27448	Ю	North
RAS-related protein Ixodes scapularis Contig13864 3 Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA) Pinctada fucata Contig137187, contig13721 2 Sarcophaga 26,29 kDa proteinase Periplaneta americana Contig33712 4 Sodium/glucose cotransporter Crassostrea gigas Contig73178, contig102168 8 Spectrin alpha chain Ixodes scapularis Contig24945 2 TNFA IP3 interacting mortein 1 Danio revio Contig24945 3	Protein disulfide isomerase 1	Ixodes scapularis	Contig16119	2	
Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA) Pinctada fucata Contig137187, contig13721 2 Sarcophaga 26,29 kDa proteinase Periplaneta americana Contig83712 4 Sodium/glucose cotransporter Crassostrea gigas Contig23718, contig102168 8 Spectrin alpha chain Ixodes scapularis Contig24945 2 TNFA IP3 interacting motion Danio revio Contig24945 3	RAS-related protein	Ixodes scapularis	Contig13864	С	Sonoma
Sarcophaga 26,29 kDa proteinase Periplaneta americana Contig83712 4 Sodium/glucose cotransporter Crassostrea gigas Contig7178, contig102168 8 Spectrin alpha chain Ixodes scapularis Contig24945 2 TNFA IP3 interacting modeling Danio revio Contig24945 3	Sarco/endoplasmic reticulum calcium ATPase isoform C (SERCA)	Pinctada fucata	Contig137187, contig137221	2	Sonoma
Sodium/glucose cotransporter Crassostrea gigas Contig73178, contig102168 8 Spectrin alpha chain Lxodes scapularis Contig24945 2 TNFA IP3 interactino motein 1 Danio revio Contige88834 3	Sarcophaga 26,29 kDa proteinase	Periplaneta americana	Contig83712	4	
Spectrin alpha chain Ixodes scapularis Contig24945 2 TNFA IP2 interacting model Danio revio Contige8834 3	Sodium/glucose cotransporter	Crassostrea gigas	Contig73178, contig102168	8	Monterey
TNFAIP3 interacting mortain 1 Control 20 Control 3	Spectrin alpha chain	Ixodes scapularis	Contig24945	2	
	TNFAIP3 interacting protein 1	Danio rerio	Contig88834	3	
лиевень роршанов из лока ону мнен радмые rst < 0.1 лг сопратьов мли роки оннет роршановы из золие от ап от не оншег эмть млили а gene, ана ло сон. Фет is seen	Divergent population is noted only when pairwise $r_{ST} < 0.1$ in compatern is seen.	บารงทร พานเ อบนเ บนเยา อบอุนเลนบา		וווו מ לפווב, מווע ווט טי	numennig pe

Table 1 Genes potentially under differential selective pressure along the California coast in Haliotis rufescens

© 2012 John Wiley & Sons Ltd

LOCAL ADAPTATION IN RED ABALONE 2891

generation time (Swanson et al. 2001)), then the effective population size for red abalone is approximately $(\Theta = 4N_e\mu)$ 350 000–3 500 000. Populations with such a high effective size show very low genetic drift, and as a result even small amounts of gene flow can greatly reduce differentiation (Slatkin 1993). Even under an isolation-by-distance model along a one-dimensional 2000 km coastline, this large population size is predicted to have little discernable structure (e.g. $< F_{ST} = 0.005$ coastwide) with as little average dispersal as 5-15 km. (effective pop = 175-1750 per km: slope = 0.01/2000 km; average dispersal = $sqrt[1/(4*D_m*slope)] = 5.4$ km) (Rousset 1999), see also Pinsky et al. (2010). This relationship places red abalone in the zone described by Waples (1998), between low ecological dispersal and high evolutionary gene flow.

Differentiation and selection

Such high effective population sizes also allow the influence of selection to be discerned more clearly. On average, selection is more important to differentiation than is genetic drift when the selective coefficient, *s*, is greater than the inverse of the effective population size, $N_{\rm e}$ (Slatkin 1993). With $N_{\rm e} = 3.5 \times 10^6$, very low selective differentials can result in the build-up of differences in allele frequencies among populations.

 $F_{\rm ST}$ outlier analysis suggests that there are many SNPs putatively under differential selection. Our initial analysis suggested 691 SNPs from 486 contigs as significant outliers. Since false positives have been shown to be an issue in this type of analysis (Narum & Hess 2011), we chose to further filter loci indicated by Lositan as being under selection in order to not overstate our conclusions. By focusing on loci for which there were two or more outliers present, we concentrate on the abalone genes most likely to be under selection. We also restrict our discussion to contigs with a robust annotation. It is worth noting, however, that even a seemingly robust BLAST annotation (*e*-value $<10^{-5}$) should be regarded as tentative in poorly known organisms, such as abalone, especially when the annotation is derived from distantly related taxa. For this reason, we have chosen to focus the discussion on genes with known function in closely related organisms, such as oysters. Finally, it is important to keep in mind that even in cases when allele frequency differences in an outlier are correlated with environmental factors, causality cannot be inferred from natural populations. The strength of a transcriptomic data set of natural variation is the ability to detect correlations and generate hypotheses of causality to be subsequently tested in experimental settings.

Biomineralization genes

Recently, Pespeni *et al.* (in prep) observed that experimental treatment of sea urchin larvae with high CO_2 generated strong allele-dependent selection especially among biomineralization genes. Our analysis of abalone reveals several genes involved in biomineralization that are affected by differential selection along the coast. These genes are likely to be highly expressed in our red abalone transcriptome because we expressly chose shell-forming mantle tissues as our RNA source.

Pif177—an mRNA transcript coding for two proteins critical for nacre formation in the pearl oyster Pinctada fucata (Suzuki et al. 2009)-is differentiated northern California compared to Sonoma and Monterey. Northern California, especially the coast north of Cape Mendocino, is strongly affected by upwelling, which seasonally brings up seawater particularly high in CO₂ content and low in aragonite saturation state (Feely et al. 2008). Pif177 is proteolytically cleaved post-translationally into Pif80 and Pif97 in pearl oysters, where Pif80 binds aragonite, while Pif97 contains a chitinbinding domain and is thought to help anchor the aragonite onto a chitin matrix (Kröger 2009). The Pif97 contig with three outlier SNPs (contig82770) contains five SNPs in total, all coding for amino acid substitutions. Contig82770 matches amino acids 456-526 in Pif177, a stretch not known to be part of any functional domain in oysters. The functional significance of amino acid variation in red abalone Pif97 in different CO2 regimes would represent interesting future work.

In the *H. rufescens* transcriptome, 11 contigs are identified by BLAST as Pif97, yet no matches are found for Pif80. A search of the *Lottia gigantea* genome also fails to find any matches to Pif80, suggesting that the nacre formation mechanism might be different in gastropods compared to oysters.

Calcium ATPase isoform C (SERCA) is a protein involved in intracellular (sarco/endoplasmic reticulum) Calcium homeostasis in pearl oysters (P. fucata) (Fan et al. 2007) and has been shown to be upregulated in urchin larvae exposed to high CO₂ (Stumpp et al. 2011). Also part of this gene family, the Plasma Membrane Calcium ATPase (PMCA) gene is associated with Calcium transport across cell membranes (Wang et al. 2008), and proton pumping out of the calcifying space in corals (Zoccola et al. 2004). Contigs137187 and 137221, identified as Calcium ATPases, are divergent in Sonoma compared to the other two populations. BLAST searches against the Lottia genome show that these two contigs are more similar to the sarco/endoplasmic reticulum form of Calcium ATPase than to the PMCA form.

Several genes with functions related to environmental stress or disease are indicated as under differential selective pressure along the California coast. Arginine kinase has been shown to be upregulated in shrimp exposed to low oxygen concentrations and is thought to facilitate oxygen re-uptake after a hypoxic event (Abe et al. 2007). In our assembly, 5 contigs match Arginine kinase from Haliotis madaka, out of which one (contig90360) contains two linked outlier SNPs. Arginine kinase is different in Monterey compared to Sonoma and northern California (Table 1). The canyons of Monterey Bay bring deep water from the Oxygen Minimum Zone close to shore, and hypoxic water (<ca. 60 µmol/kg) has been regularly observed in shallow water (Bograd et al. 2008; Booth et al. 2010). Incidence of hypoxia at the other locations is currently unknown.

The 78-kDa glucose-regulated protein (GRP78 (different in northern California)) is a heat-shock protein, induced with heat treatment in oysters (Yokoyama *et al.* 2006) and implicated as having a function salvaging incorrectly folded proteins. Our data set has two contigs of this gene with three outlier SNPs.

Disease-related genes include the sodium/glucose co-transporter protein, which has been shown to be important in resistance to bacteria during warm conditions in the oyster *Crassostrea gigas* (Huvet *et al.* 2004) and is different in Monterey compared to Sonoma and northern California (contigs73178 and 102168, eight outliers). The Rickettsiales-like bacterium that causes withering-foot syndrome in California abalone had until recently only been documented south of the mouth of San Francisco Bay (Moore *et al.* 2002, L. Rogers-Bennett, personal communication).

Metabolism

An ATP synthase, a 5-aminolevulinate synthase (critical for erythrocyte formation in vertebrates (Ferreira & Gong 1995)) and a Proline-rich ATPase are all divergent in the northern population compared to the other two. Within contig 104796 (one of the ATP synthases mentioned above), 2 SNPs are outliers. Five of 18 total SNPs in this contig code for amino acid substitutions, out of which one (position 194) is an outlier showing a strong latitudinal clinal pattern. In experimental ocean acidification settings, sea urchin larvae have been found to up-regulate ATP synthase (Stumpp *et al.* 2011) and mantle tissue ATP levels in oysters have been seen to decrease significantly (Lannig *et al.* 2010), indicating an increased energy demand under high CO_2 stress.

Diversity, dispersal and selection in red abalone

Simultaneous analysis of transcriptome-wide heterozygosity, population differentiation and outlier SNPs suggests a view of abalone population structure that reconciles different views of this species. Low planktonic duration suggests that short-distance dispersal is common in abalone, and other species in this genus show genetic differentiation across short spatial scales (Huang et al. 2000; Gruenthal & Burton 2008). However, high heterozygosity suggests very long-term, high population size in red abalone, similar to that of other benthic invertebrates such as sea urchins and oysters (Palumbi 1994). Under such conditions, a small amount of gene flow or small selective difference can be more powerful in generating differentiation than genetic drift. One prediction of this model of population genetics is dominance of genetic patterns by a large number of neutral alleles with no differentiation, overlain on a set of loci with greater than expected genetic variation due to selection. We observe this pattern in red abalone: 21 000 SNPs with no significant difference among populations and about 700 (ca. 3.3%) with greater than expected gene frequency shifts.

Loci indicated as experiencing differential selective pressures along the California coast are enriched for genes that affect the calcareous shell formation, across a mosaic of ocean chemistry that is known to affect calcification (Kroeker et al. 2010). As in purple sea urchins, this may allow local selection for alleles that operate better in high CO₂, low pH conditions, given a high enough pre-existing genetic variability. Stressful environmental conditions are expected to increase in severity in future oceans due to build-up of anthropogenic CO2 (Sabine et al. 2004; Feely et al. 2009), so the existence of standing genetic variation for adaptation in a future acidic ocean is an important finding. The candidate genes uncovered by our analysis do not represent a comprehensive list-our analysis will have missed selection on larval genes, reproductive genes or genes with low transcript abundance in mantle tissue. The patterns we report here suggest further work on the small-scale geographic variation of variants sites in these genes, functional studies of the relationship between alleles and fitness, and direct experiments on the impact of high CO₂ on gene frequencies.

Conclusion

By using RNA-Seq to conduct a transcriptome-wide scan of the red abalone, *Haliotis rufescens*, we can confirm low levels of genetic differentiation between geographic locations, along with a substantial number of loci under differential selective pressure along the California coast. The combination of high heterozygosity and low differentiation of abalone despite low dispersal potential points to a widely distributed large population linked by small amounts of gene flow. Under these circumstances, the impact of selection on gene frequencies is predicted to be particularly visible. Loci that appear to be under selection are involved in biomineralization, resistance to hypoxia, response to heat/pathogens and energy metabolism. Upwelling of low pH water to the surface in northern California (Feelv et al. 2008) may be responsible for some of the differences in biomineralization genes. Exposure to hypoxia (Bograd et al. 2008; Booth et al. 2010) and pathogens (Bergen & Raimondi 2001) in Monterey Bay might also be the cause of differential selective pressures.

Acknowledgements

We would like to thank James Grunden (Humboldt State University), Laura Rogers-Bennett and Jerry Kashiwada (California Department of Fish and Game), Freya Sommer (Hopkins Marine Station) and members of the recreational abalone fishing community for collecting help. Also, thank you Dan Barshis, Jason Ladner and Melissa Pespeni for help with data analysis protocol development and script writing. This project was funded by the Partnership for Interdiscplinary Study of the Coastal Oceans (PISCO) through funding from the David and Lucille Packard Foundation, the Wallenberg foundation grant MAW2009-0056, and NSF OCE 1041222. We would also like to thank NSF award CNS-0619926 for computer resources.

References

- Abe H, Hirai S, Okada S (2007) Metabolic responses and arginine kinase expression under hypoxic stress of the kuruma prawn Marsupenaeus japonicus. Comparative Biochemistry and Physiology. Part A, Molecular & integrative physiology, 146, 40–46.
- Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a *F*_{ST}-outlier method. *BMC Bioinformatics*, **9**, 323.
- Anthony KRN, Maynard JA, Diaz-Pulido G et al. (2011) Ocean acidification and warming will lower coral reef resilience. *Global Change Biology*, **17**, 1798–1808.
- Aristegui J, Barton ED, Alvarez-Salgado XA et al. (2009) Subregional ecosystem variability in the Canary Current upwelling. Progress in Oceanography, 83, 33–48.
- Belkin IM, Cornillon PC, Sherman K (2009) Fronts in large marine ecosystems. Progress in Oceanography, 81, 223–236.
- Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters *Crassostrea virginica*. *Marine Ecology Progress Series*, **419**, 95–108.
- Bergen L, Raimondi PT (2001) PISCO update: withering syndrome in black abalone. In: *MBNMS Ecosystem Observations* (ed. Carless J), pp. 9–10. NOAA, Monterey, CA.

- Bograd SJ, Castro CG, Di Lorenzo E *et al.* (2008) Oxygen declines and the shoaling of the hypoxic boundary in the California Current. *Geophysical Research Letters*, **35**, 6.
- Booth JAT, McPhee-Shaw E, Phillips R, Chua P, Gilly W (2010) Naturally occurring coastal hypoxia in Monterey Bay. Poster presented at MBNMS Sanctuary Currents Symposium 2010. Monterey, CA.
- Booth DJ, Bond N, Macreadie P (2011) Detecting range shifts among Australian fishes in response to climate change. *Marine and Freshwater Research*, 62, 1027–1042.
- Britten RJ, Cetta A, Davidson EH (1978) The single-copy DNA sequence polymorphism of the sea urchin *Strongylocentrotus purpuratus. Cell*, **15**, 1175–1186.
- Burton RS, Tegner MJ (2000) Enhancement of red abalone Haliotis rufescens stocks at San Miguel Island: reassessing a success story. Marine Ecology Progress Series, 202, 303–308.
- CADFG (2011) Special Animals (898 taxa). California Department of Fish and Game. Available online at http://www. dfg.ca.gov/biogeodata/cnddb/pdfs/SPAnimals.pdf
- Checkley DM Jr, Barth JA (2009) Patterns and processes in the California current system. *Progress in Oceanography*, 83, 49–64.
- Clark NL, Gasper J, Sekino M, Springer SA, Aquadro CF, Swanson WJ (2009) Coevolution of interacting fertilization proteins. *PLoS Genetics*, 5, e1000570.
- Connolly TP, Hickey BM, Geier SL, Cochlan WP (2010) Processes influencing seasonal hypoxia in the northern California Current System. *Journal of Geophysical Research*, **115**, C03021.
- Conover DO, Clarke LM, Munch SB, Wagner GN (2006) Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. *Journal of Fish Biology*, 69, 21–47.
- Crim RN, Sunday JM, Harley CDG (2011) Elevated seawater CO₂ concentrations impair larval development and reduce larval survival in endangered northern abalone (*Haliotis kamtschatkana*). Journal of Experimental Marine Biology and Ecology, 400, 272–277.
- Curole JP, Hedgecock D (2005) Estimation of preferential pairing rates in second-generation autotetraploid Pacific oysters (Crassostrea gigas). *Genetics*, **171**, 855–859.
- de la Cruz FL, Gallardo-Escarate C (2010) Intraspecies and interspecies hybrids in *Haliotis*: natural and experimental evidence and its impact on abalone aquaculture. *Reviews in Aquaculture*, 3, 74–99.
- De Wit P, Pespeni MH, Ladner JT *et al.* (2012) The simple fool's guide to population genomics via RNA-Seq: gene expression and SNP data analysis in the age of high-throughput sequencing. *Molecular Ecology Resources*, doi: 10. 1111/1755-0998.12003.
- De Pristo M, Banks E, Poplin R *et al.* (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nature Genetics*, **43**, 491–498.
- Díaz-Viloria N, Cruz P, Guzmán del Próo SA, Perez-Enriquez R (2009) Genetic connectivity among pink abalone *Haliotis corrugata* populations. *Journal of Shellfish Research*, 28, 599–608.
- Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral Calcification Under Ocean Acidification and Global Change In: *Coral Reefs: An Ecosystem in Transition* (ed. Dubinsky ZSN), pp. 151–176.
- Estes JA, Lindberg DR, Wray C (2005) Evolution of large body size in abalones (*Haliotis*): patterns and implications. *Paleobiology*, **31**, 591–606.

- Fabry VJ, Siebel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. *ICES Journal of Marine Science*, **65**, 414–432.
- Fan W, Li C, Li S, Feng Q, Xie L, Zhang R (2007) Cloning, characterization, and expression patterns of three sarco/ endoplasmic reticulum Ca²⁺-ATPase isoforms from pearl oyster (*Pinctada fucata*). Acta Biochimica et Biophysica Sinica, **39**, 722–730.
- Feely RA, Sabine CL, Lee K *et al.* (2004) Impact of anthropogenic CO₂ on the CaCO₃ system in the oceans. *Science*, **305**, 362–366.
- Feely RA, Sabine CL, Hernandez-Ayon M, Ianson D, Hales B (2008) Evidence for upwelling of corrosive "acidified" water onto the continental shelf. *Science*, **320**, 1490–1492.
- Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO₂ world. *Oceanography*, **22**, 36–47.
- Ferreira GC, Gong J (1995) 5-aminolevulinate synthase and the first step of heme-biosynthesis. *Journal of Bioenergetics and Biomembranes*, **27**, 151–159.
- Fransson A, Chierici M, Nojiri Y (2009) New insights into the spatial variability of the surface water carbon dioxide in varying sea ice conditions in the Arctic Ocean. *Continental Shelf Research*, **29**, 1317–1328.
- Furuhashi T, Miksik I, Smrz M et al. (2010) Comparison of aragonitic molluscan shell proteins. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 155, 195–200.

Gibbs RA, Belmont JW, Hardenbol P et al. (2003) The International HapMap Project. Nature, 426, 789–796.

- Gruenthal KM, Burton RS (2005) Genetic diversity and species identification in the endangered white abalone (*Haliotis sorenseni*). *Conservation Genetics*, **6**, 929–939.
- Gruenthal KM, Burton RS (2008) Genetic structure of natural populations of the California black abalone (*Haliotis cracherodii* Leach, 1814), a candidate for endangered species status. *Journal of Experimental Marine Biology and Ecology*, **355**, 47–58.
- Gruenthal KM, Acheson LK, Burton RS (2007) Genetic structure of natural populations of California red abalone (*Haliotis rufescens*) using multiple genetic markers. *Marine Biology*, 152, 1237–1248.
- Gutierrez-Gonzalez JL, Cruz P, del Rio-Portilla MA, Perez-Enriquez R (2007) Genetic structure of green abalone *Haliotis fulgens* population off Baja California, Mexico. *Journal of Shellfish Research*, **26**, 839–846.
- Hauri C, Gruber N, Plattner G-K et al. (2009) Ocean acidification in the California current system. Oceanography, 22, 60–71.
- Hellberg ME (2009) Gene flow and isolation among populations of marine animals. *Annual Review of Ecology, Evolution, and Systematics*, **40**, 291–310.
- Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. *The American Naturalist*, **173**, 579–588.
- Hofmann GE, Barry JP, Edmunds PJ *et al.* (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. *Annual Review of Ecology, Evolution, and Systematics*, **41**, 127–147.
- Huang BX, Peakall R, Hanna PJ (2000) Analysis of genetic structure of blacklip abalone (*Haliotis rubra*) populations using RAPD, minisatellite and microsatellite markers. *Marine Biology*, **136**, 207–216.
- Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. *Genome Research*, **21**, 1552–1560.

- Huvet A, Herpin A, Dégremont L, Labreuche Y, Samain J-F, Cunningham C (2004) The identification of genes from the oyster *Crassostrea gigas* that are differentially expressed in progeny exhibiting opposed susceptibility to summer mortality. *Gene*, **343**, 211–220.
- Johnson CR, Banks SC, Barrett NS *et al.* (2011) Climate change cascades: shifts in oceanography, species' ranges and subtidal marine community dynamics in eastern Tasmania. *Journal of Experimental Marine Biology and Ecology*, **400**, 17–32.
- Jones SJ, Lima FP, Wethey DS (2010) Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. *Journal of Biogeography*, **37**, 2243–2259.
- Kang J-H, Appleyard SA, Elliott NG et al. (2010) Development of genetic markers in abalone through construction of a SNP database. Animal Genetics, 42, 309–315.
- Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. *Ecology Letters*, **13**, 1419–1434.
- Kröger N (2009) The molecular basis of nacre formation. *Science*, **325**, 1351–1352.
- Lannig G, Eilers S, Portner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, *Crassostrea gigas*—changes in metabolic pathways and thermal response. *Marine Drugs*, **8**, 2318–2339.
- Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. *Bioinformatics*, 25, 1754–1760.
- Lough JM, Hobday AJ (2011) Observed climate change in Australian marine and freshwater environments. *Marine and Freshwater Research*, **62**, 984–999.
- Martin JA, Wang Z (2011) Next-generation transcriptome assembly. *Nature Reviews Genetics*, **12**, 671–682.
- Maynard BT, Hanna PJ, Benzie JAH (2004) Microsatellite DNA analysis of southeast Australian Haliotis laevigata (Donovan) populations—implications for Ranching in Port Phillip Bay. *Journal of Shellfish Research*, **23**, 1195–1200.
- McKenna A, Hanna M, Banks E *et al.* (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*, **20**, 1297–1303.
- Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009a) Shellfish face uncertain future in high CO₂ world: influence of acidification on oyster larvae calcification and growth in estuaries. *PLoS ONE*, **4**, e5661.
- Miller KJ, Maynard BT, Mundy CN (2009b) Genetic diversity and gene flow in collapsed and healthy abalone fisheries. *Molecular Ecology*, **18**, 200–211.
- Moore JD, Finley CA, Robbins TT, Friedman CS (2002) Withering syndrome and restoration of southern California abalone populations. *CalCOFI Report*, **43**, 112–117.
- Moore JD, Marshman BC, Chun CSY (2011) Health and survival of red abalone *Haliotis rufescens* from San Miguel Island, California, USA, in a laboratory simulation of La Nina and El Nino conditions. *Journal of Aquatic Animal Health*, **23**, 78–84.
- Narum SR, Hess JE (2011) Comparison of F_{ST} outlier tests for SNP loci under selection. *Molecular Ecology Resources*, **11**, 184–194.
- Nielsen EE, Hemmer-Hansen J, Poulsen NA et al. (2009) Genomic signatures of local directional selection in a high gene

flow marine organism; the Atlantic cod (*Gadus morhua*). BMC Evolutionary Biology, **9**, 276.

- North A, Pennanen J, Ovaskainen O, Laine A-L (2011) Local adaptation in a changing world: the roles of gene-flow, mutation, and sexual reproduction. *Evolution*, **65**, 79–89.
- Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. *Annual Review of Ecology and Systematics*, 25, 547–572.
- Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. *PLoS Genetics*, **2**, e190.
- Pespeni MH, Palumbi SR (2010) The purple sea urchin genome suggests local adaptation along a latitudinal gradient despite high gene flow. *Integrative and Comparative Biology*, 50, E136.
- Pespeni MH, Garfield DA, Manier MK, Palumbi SR (2011) Genome-wide polymorphisms show unexpected targets of natural selection. *Proceedings of the Royal Society of London. Series B*, 279, 1412–1420.
- Philippart CJM, Anadon R, Danovaro R et al. (2011) Impacts of climate change on European marine ecosystems: observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology, 400, 52–69.
- Pinsky ML, Montes HR Jr, Palumbi SR (2010) Using isolation by distance and effective density to estimate dispersal scales in anemonefish. *Evolution*, 64, 2688–2700.
- Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. *Journal of Fish Biology*, 77, 1745–1779.
- Prince JD, Sellers TL, Ford WB, Talbot SR (1987) Experimental evidence for limited dispersal of haliotid larvae (genus *Haliotis*; Mollusca: Gastropoda). *Journal of Experimental Marine Biology and Ecology*, **106**, 243–263.
- Raimondi PT, Wilson CM, Ambrose RF, Engle JM, Minchinton TE (2002) Continued declines of black abalone along the coast of California: are mass mortalities related to El Niño events? *Marine Ecology Progress Series*, 242, 143–152.
- Reid PC, Fischer AC, Lewis-Brown E et al. (2009) Impacts of the oceans on climate change. In: Advances in Marine Biology, Vol 56 (ed. Sims DW), pp. 1–150. Elsevier, Cambridge, MA.
- Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2010) Purification of RNA Using TRIzol (TRI Reagent). *Cold Spring Harbor Protocols*, 6, doi: 10.1101/pdb.prot5439.
- Rogers-Bennett L, Dondanville RF, Moore JD, Vilchis LI (2010) Response of red abalone reproduction to warm water, starvation, and disease stressors: implications of ocean warming. *Journal of Shellfish Research*, **29**, 599–611.
- Rousset F (1999) Genetic differentiation within and between two habitats. *Genetics*, **151**, 397–407.
- Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. *Molecular Ecology Resources*, 8, 103–106.
- Sabine CL, Feely RA, Gruber N *et al.* (2004) The oceanic sink for anthropogenic CO₂. *Science*, **305**, 367–371.
- Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annual Review of Marine Science, 3, 509–535.
- Sauvage C, Bierne N, Lapegue S, Boudry P (2007) Single Nucleotide polymorphisms and their relationship to codon usage bias in the Pacific oyster Crassostrea gigas. *Gene*, 406, 13–22.
- Shu J, Li Q, Yu R-H, Tian C-Y (2008) Microsatellites analysis on genetic variation between wild and cultured populations

of Pacific abalone (Haliotis discus hannai). Zhongguo Haiyang Daxue Xuebao, **38**, 52–58.

- Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. *Evolution*, **47**, 264–279.
- Sodergren E, Weinstock GM, Davidson EH et al. (2006) Research article—the genome of the sea urchin Strongylocentrotus purpuratus. Science, 314, 941–952.
- Solomon S, Qin D, Manning M *et al.* (2007) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge.
- Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. *Journal of Experimental Biology*, **213**, 912–920.
- Somero GN (2012) The physiology of global change: linking patterns to mechanisms. In: *Annual Review of Marine Science*, Vol 4 (ed. Carlson CAGSJ), pp. 39–61. Annual Reviews, Palo Alto, CA.
- Sotka EE, Palumbi SR (2006) The use of genetic clines to estimate dispersal distances of marine larvae. *Ecology*, 87, 1094–1103.
- Stramma L, Schmidtko S, Levin LA, Johnson GC (2010) Ocean oxygen minima expansions and their biological impacts. *Deep-Sea Research I*, 57, 587–595.
- Stumpp M, Dupont S, Thorndyke MC, Melzner F (2011) CO(2) induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. *Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology*, **160**, 320–330.
- Suzuki M, Saruwatari K, Kogure T *et al.* (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. *Science*, **325**, 1388–1390.
- Swanson WJ, Vacquier VD (1995) Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa. *Proceedings of the National Academy of Sciences*, **92**, 4957–4961.
- Swanson WJ, Aquadro CF, Vacquier VD (2001) Polymorphism in abalone fertilization genes is consistent with the neutral evolution of the egg's receptor for lysin (VERL) and positive selection of sperm lysin. *Molecular Biology and Evolution*, **18**, 376–383.
- Talmage SC, Gobler CJ (2009) The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (*Mercenaria mercenaria*), bay scallops (*Argopecten irradians*), and eastern oysters (*Crassostrea* virginica). Limnology and Oceanography, 54, 2072–2080.
- Tang S, Tassanakajon A, Klinbunga S, Jarayabhand P, Menasveta P (2004) Population structure of tropical abalone (*Haliotis asinina*) in coastal waters of Thailand determined using microsatellite markers. *Marine Biotechnology*, 6, 604–611.
- Wang X, Fan W, Xie L, Zhang R (2008) Molecular cloning and distribution of a plasma membrane Calcium ATPase homolog from the Pearl Oyster *Pinctada fucata*. *Tsinghua Science and Technology*, **13**, 439–446.
- Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. *Journal of Heredity*, **89**, 438–450.
- Wassmann P, Duarte CM, Agusti S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. *Global Change Biology*, **17**, 1235–1249.
- Wernberg T, Russell BD, Moore PJ et al. (2011) Impacts of climate change in a global hotspot for temperate marine

biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology, 400, 7–16.

- Wethey DS, Woodin SA, Hilbish TJ, Jones SJ, Lima FP, Brannock PM (2011) Response of intertidal populations to climate: effects of extreme events versus long term change. *Journal of Experimental Marine Biology and Ecology*, **400**, 132–144.
- Yokoyama Y, Hashimoto H, Kubota S *et al.* (2006) cDNA cloning of Japanese oyster stress protein homologous to the mammalian 78-kDa glucose regulated protein and its induction by heatshock. *Fisheries Science*, **72**, 402–409.
- Yu PC, Matson PG, Martz TR, Hofmann GE (2011) The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO(2)/pH. *Journal of Experimental Marine Biology and Ecology*, **400**, 288–295.
- Zhang J, Gilbert D, Gooday AJ *et al.* (2010) Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. *Biogeosciences*, 7, 1443–1467.
- Zippay ML, Hofmann GE (2010) Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (*Haliotis rufescens*). *Journal of Shellfish Research*, **29**, 429–439.

Zoccola D, Tambutte E, Kulhanek E *et al.* (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral *Stylophora pistillata*. *Biochimica Et Biophysica Acta-Biomembranes*, **1663**, 117–126.

P.D.W. is responsible for project planning, tissue collection, sample preparation, data analysis and manuscript writing. S.R.P. is responsible for project planning, manuscript writing and funding for sequencing.

Data accessibility

Supplementary materials, including the *de novo* transcriptome assembly, a list of all detected variant sites plus genotypes for all individuals at those sites and information on all top hits from BLAST searches to NCBI's nr, nt, the Uniprot knowledgebase, and the *Lottia gigantea* genome, as well as GO annotation are available for download at the Dryad Digital depository (doi:10.5061/dryad.85p80).