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Abstract
Detecting small amounts of genetic subdivision across geographic space remains a persistent challenge. Often a failure to
detect genetic structure is mistaken for evidence of panmixia, when more powerful statistical tests may uncover evidence for
subtle geographic differentiation. Such slight subdivision can be demographically and evolutionarily important as well as
being critical for management decisions. We introduce here a method, called spatial analysis of shared alleles (SAShA), that
detects geographically restricted alleles by comparing the spatial arrangement of allelic co-occurrences with the expectation
under panmixia. The approach is allele-based and spatially explicit, eliminating the loss of statistical power that can occur
with user-defined populations and statistical averaging within populations. Using simulated data sets generated under
a stepping-stone model of gene flow, we show that this method outperforms spatial autocorrelation (SA) and UST under
common real-world conditions: at relatively high migration rates when diversity is moderate or high, especially when
sampling is poor. We then use this method to show clear differences in the genetic patterns of 2 nearshore Pacific mollusks,
Tegula funebralis (5 Chlorostoma funebralis) and Katharina tunicata, whose overall patterns of within-species differentiation are
similar according to traditional population genetics analyses. SAShA meaningfully complements UST/FST, SA, and other
existing geographic genetic analyses and is especially appropriate for evaluating species with high gene flow and subtle
genetic differentiation.
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A central problem in population genetics is detecting small
amounts of population subdivision created by substantial,
though nonrandom, gene flow among demes. As gene flow
increases, values of FST and its analogues (such as UST)
become small relative to their confidence intervals (Waples
1998), making it impossible to assess subtle genetic
subdivision without impractically large sample sizes. How-
ever, such apparently minor deviations from panmixia can
have major demographic and evolutionary implications. For
example, identifying distinct stocks of a commercial fish
species is critical for management, yet for sufficiently large
populations, a migration rate of 10% between distinct stocks
may be impossible to distinguish from panmixia (Palumbi
2003). More sensitive statistical tools are clearly desirable.

Previous authors have proposed measures of genetic
subdivision based on the observation that alleles arise by
mutation and spread over geographic space via migration,
making use of allelic identity and the relationships among

alleles to infer limitations to gene flow. Slatkin (1981, 1985)
demonstrated that the frequency of alleles occurring in only
one geographic location (private alleles) estimates the
number of migrants among populations in a given gener-
ation (Nm). Subsequently, Hudson (2000) introduced
a measure, Snn, based not on identical alleles but rather on
nearest neighbors in sequence space (i.e., the most similar,
nonidentical alleles) that co-occur in a location. He found
that the frequency of these co-occurring nearest neighbors
could be used to identify significant departures from
panmixia, as geographically restricted, newly arisen nearest-
neighbor alleles suggest a limitation to the spread of these
alleles over space.

Whereas Slatkin’s rare alleles method considers only
private alleles occurring within a location, and Hudson’s
nearest-neighbor statistic evaluates closely related alleles
occurring within a location, we introduce here a method of
analyzing co-occurrences of the same allele over geographic
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space. This approach, called spatial analysis of shared alleles
(SAShA), is a simple allele statistic that is sensitive to subtle
genetic subdivision in ecological time, does not require user-
designated populations, is amenable to a variety of data
types, and is free from the assumptions required by an
underlying theoretical model of gene flow.

Co-occurrences of an allele in different geographic
locations are evidence of gene flow, under the assumption
that alleles identical in state are identical by descent. We test
whether the geographic distances between co-occurrences
of alleles are distributed randomly; nonrandom distributions
of these pairwise occurrences can indicate departures from
panmixia. Alleles may be ‘‘underdistributed’’ (or over-
distributed), occurring more closely together (or further
apart) in space than expected by chance. In addition to
analyzing all alleles in a data set simultaneously, our method
allows individual alleles to be scrutinized. This may be useful
in cases where common and widespread alleles mask the
nonrandom distribution of less common alleles. The statistic
returned by SAShA is the average geographic distance
between occurrences of alleles, which is intuitive and
biologically relevant. Homoplasy, or the existence of alleles
that are identical in state but not identical by descent, is
expected to occur relatively rarely and without regard to
geography and therefore does not introduce systematic bias
into the analysis.

Individual- or allele-based methods for detecting geo-
graphic genetic structure have become increasingly com-
mon in recent years, in part because they address 2 primary
drawbacks of traditional population-based statistics: the
approximation of biological populations as collection
locations and population-level averaging over individuals
or alleles. FST and its relatives (Wright 1951, 1965; Nei
1973; Weir and Cockerham 1984; Excoffier et al. 1992;
Slatkin 1995), Fisher’s Exact test (Hudson et al. 1992;
Raymond and Rousset 1995), the Mantel test (Smouse et al.
1986), Hudson’s nearest neighbor (Hudson 2000), and
various coalescence-based analyses (see, e.g., Beerli 2006) all
suffer a loss of resolution due to these population-level
simplifications.

By contrast, SAShA and other allele- or individual-based
methods, such as spatial autocorrelation (SA) (Heywood
1991; Hardy and Vekemans 1999; Smouse and Peakall 1999;
Epperson 2003), nested clade analysis (Templeton 1998,
2004, 2008; Panchal and Beaumont 2007; Petit 2007), allelic
aggregation index analysis (AAIA) (Miller 2005), and ‘‘Sp’’
(Vekemans and Hardy 2004) avoid these drawbacks. In
addition, such measures make use of geographic informa-
tion that is ignored in most population statistics (though the
Mantel test is an exception), and therefore may detect small
degrees of genetic structuring that are missed by population
statistics.

Most recently, Novembre and Slatkin (2009) exploited
the geographic information content of identical low-
frequency alleles to estimate the likelihood distribution for
dispersal in 2D space. Like SAShA, this method assumes
that alleles arise only once such that identical alleles are
treated as identical-by-descent. Unlike our approach,

however, likelihood method of Novembre and Slatkin
requires data from individuals randomly sampled across
a landscape and a user-specified subset of alleles for analysis.
Although these additional requirements make possible
a powerful estimation of the size and shape of dispersal,
the concept we describe here is far simpler and less
computationally intensive, merely revealing the arithmetic
mean geographic distance between pairs of shared alleles.

SAShA is expected to be particularly useful for high gene
flow species, in which migration occurs much faster than the
combined effects of mutation and drift, and shared alleles
are consequently spread across the landscape by migration.
The geographic distribution of these alleles reflects the
spatial extent over which gene flow occurs. Below, we find
that the SAShA statistic performs similarly to UST in
modified stepping-stone simulations, but it is more likely
than UST to detect structure when levels of migration are
relatively high, when diversity is relatively high, or when
sampling is sparse. Both SAShA and UST substantially
outperform spatial autocorrelation in our simulations, though
this may be a result of the discrete sampling scheme
implemented. We also compare SAShA with another allele-
based statistic, Miller’s AAIA (see Miller 2005), finding that
these 2 perform similarly but that SAShA is not subject to
AAIA’s high false-negative rate. Finally,we contrast 2 real-world
mitochondrial DNA (mtDNA) data sets from the nearshore
marine environment to demonstrate the utility of SAShA to
uncover genetic structure where other statistics do not.

Materials and Methods

Our approach requires only a table of allele occurrences by
collection localities and the geographic distances between
each pair of those localities. Using these data, we compare
the observed distribution of geographic distances between
instances of each allele (observed distance distribution
[ODD]) with a null distribution generated from the same
data. This null distribution (expected distance distribution
[EDD]) is the distribution of geographic distances between
all pairs of samples in the data set regardless of allelic
identity and therefore represents the expectation under
panmixia (see Appendix 1 for algorithms). We test for
significant deviation of the arithmetic mean of the observed
distribution from that of the null expectation, reporting the
observed mean (OM) distance between co-occurrences of
an allele as our statistic.

OM5meanðODDÞ ð1Þ

When OM is less than the expected mean, the alleles are
underdistributed in the aggregate; overdistributed alleles
generate an OM greater than the expected mean. OM has
the desirable statistical property of being consistent (i.e.,
approaching a ‘‘true’’ value as more data are considered),
though its limits are specific to the data set being analyzed:
the maximum mean geographic distance between shared
alleles will vary with each data set and field sampling regime.
The OM may be conveniently visualized in the context of
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the observed and expected distributions as a histogram or
cumulative distribution frequency plot, both of which are
provided below in the Results section. We note that,
although measures of central tendency other than the
arithmetic mean might also be useful for distilling the
distributions and evaluating the differences between them,
the arithmetic mean performs admirably. We explicitly
considered a wide variety of such measures in deriving our
method, evaluating various nonnormal haplotype frequency
distributions, and ultimately selected the arithmetic mean as
a simple and powerful way of expressing the statistic.

The significance of the statistic is determined by
permutation of the input haplotype matrix, keeping row
and column sums constant (see Appendix 1 for algorithm).
OM is calculated for each randomly permutated matrix,
creating a distribution for the statistic. The P value reported
for OM is the proportion of those permuted data sets
having an OM more extreme than that of the observed data
set. For the results presented below, 500 permutations were
performed for each data set; larger numbers of permutations
result in more precise estimates of significance.

The above calculations may be applied to the entire data
set or to any subset thereof. An analysis of each allele
individually, for example, may be used to identify individual
alleles that drive the pattern observed in the overall data set
or else to examine conflict among alleles. Individual allelic
distributions are most easily visualized in a cumulative
distribution function plot, as below in the Results section.
A jackknife procedure, in which the data set is repeatedly
reanalyzed after excluding each allele in turn, may also be
applied to evaluate the robustness of the pattern observed in
the overall data set. We have included basic versions of each
of these functions in the source code and compiled
executable file, available at http://sasha.stanford.edu.

The performance of the OM statistic was tested in
2 ways: 1) by generating simulated data sets with varying
parameter sets and comparing OM with UST, AAIA, and SA
and 2) by evaluating 2 real-world mtDNA data sets with
SAShA as well as traditional statistics.

Simulations

The stepping-stone model used to generate simulated data
sets was a one locus, many-allele model with nonoverlapping
generations implemented with the coalescence-based simu-
lator SIMCOAL (Excoffier et al. 2000). This simulated gene
flow along a linear array of 31 equally spaced demes at
equilibrium with only the central 9 demes sampled to remove
edge effects. Deme sizes were set to remain constant at 105

individuals, sampling either 10 or 25 individuals from each
deme for analysis. Mutation rates were set at 2.02 # 10$6,
6.05 # 10$6, 1.00 # 10$5, and 2.02 # 10$5 to generate data
sets with average hp values of 1, 3, 5, and 10. The fragment
size generated was 315 bp, mimicking a typical real-world data
set of mtDNA haplotypes.

Rather than restricting migration to occur only between
immediately adjacent populations, we implemented a Gaussian
dispersal kernel, with decreasing probability of migration

increasing with distance between populations. We then
centered the dispersal kernel on each of the 31 simulated
demes, creating the migration matrix input into SIMCOAL,
with migration truncated at the edges of the array,
representing larvae that dispersed beyond the bounds of the
simulation. The width of the dispersal kernel (r) was varied
to reflect migration out of the focal population at a proportion
of 10$4, 10$3, 10$2, 10$1, and 100. The corresponding r
values are 0.225, 0.260, 0.310, and 0.416, with the last case
being approximated by a very large value of r (the width of
the kernel approaching infinity), resulting in a dispersal matrix
of even probabilities (i.e., panmixia).

We performed SAShA analyses on these sampled
haplotypes using the MATLAB software coding environ-
ment (Mathworks, Inc.); each data set was also exported into
Arlequin v3.11(Excoffier et al. 2005) for computation of
UST. SA analyses were performed in MATLAB based on the
implementation described in Smouse and Peakall (1999) and
validated by comparing its outputs with those of GENA-
LEX (Peakall and Smouse 2006). We performed SA using 2
different measures of genetic difference among samples:
pairwise genetic distance and allelic identity in which the
distance matrix consisted of ones (identical allele) and zeros
(different allele). Both SA calculations performed similarly in
our simulations, and consequently, only the pairwise
distance implementation is reported in the Results. Finally,
we coded AAIA in MATLAB based on the description in
Miller (2005).

The significance of each statistic was determined by
permutation: for UST by permuting individuals (haplotypes)
among populations (Excoffier 2000), for SA by permuting
the SA correlogram (T2 test) (Smouse and Peakall 1999),
and for AAIA and SAShA’s OM by permuting as described
above (500–1000 permutations were used here for each test).

Testing Using Original Data Sets

We used 2 cytochrome c oxidase, subunit I (COI) mtDNA
data sets from Pacific nearshore species to test the
performance of the SAShA method with real-world data.
In total, 298 individuals of Tegula funebralis (hereafter, Tegula),
a common intertidal herbivorous snail, were collected from
17 locations between northern Vancouver Island, British
Columbia and San Diego, CA, by S.R.P. and R.P.K. between
2003 and 2007. Ninety-four individuals of Katharina tunicata
(hereafter, Katharina), an abundant nearshore chiton, were
collected from 9 locations between Kachemak Bay, Alaska
and Carmel, California by Douglas J. Eernisse and R.P.K.
Genomic DNA was extracted from each species using either
commercially available columns (Qiagen DNeasy kits;
Qiagen Inc.) or chelex (10% in water, incubated at
65 degrees for 1 h). An approximately 650 bp fragment of
the COI gene was amplified via polymerase chain reaction
with the primers LCO1490 and HCO2198 (Folmer et al.
1994), sequenced using Big Dye version 1.1 (Applied
Biosystems, Inc.), and read on an ABI 3700 or ABI 3730xl
sequence analyzer. Resulting sequences were then trimmed
to 492 bp (Tegula) and 357 bp (Katharina) to eliminate all

425

Kelly et al. % Spatial Analysis of Shared Alleles

 at Stanford U
niversity Libraries on A

pril 11, 2012
http://jhered.oxfordjournals.org/

D
ow

nloaded from
 



missing data and input to Arlequin 3.11 in order to calculate
UST and Mantel values and to output the table of haplotype
frequencies by population. This table and a matrix of
pairwise geographic distances between collection locations
were then input into SAShA for analysis.

Results
Performance of SAShA with Simulated Data Sets

SAShA and other analyses were carried out on ;40 000
data sets generated using a stepping-stone migration model
in SIMCOAL, as detailed in the Materials and Methods.
One thousand data sets were generated for each of 40
unique parameter combinations corresponding to each of
5 migration rates (m5 10$4, 10$3, 10$2, 10$1, and nearly 1),
4 diversity levels (hp5 1, 3, 5, and 10), and 2 levels of
sampling intensity (n 5 10 per deme or 25 per deme).
A small number of SIMCOAL simulations did not
converge, and therefore the actual total number of simu-
lations was 39 940.

We compared the performance of SAShA’s OM
statistic with 3 other population genetics methods, UST,
SA, and Miller’s AAIA. UST, which calculates the amount
of genetic variance in a data set attributable to between-
population differences (Excoffier et al. 1992), is a good
benchmark for the performance of a statistic because it is

commonly used and its behavior is well understood. SA,
although less widely applied by population geneticists, is
similar in concept to SAShA and is more often used for
landscape genetics with continuous sampling schemes
(Manel et al. 2003). It is included here as an allele statistic
comparable with SAShA. We finally included a comparison
of SAShA with AAIA because the 2 are philosophically
similar, both measuring the geographic extent of identi-
cally alleles. However, the 2 methods differ in their
accounting of that spatial extent: whereas AAIA uses only
the nearest-neighbor distance, SAShA encompasses the
distribution of all pairs of identical alleles.

We compared the performance of the statistics by
reporting the proportion of data sets in which significant
genetic subdivision is detected. At the lowest migration level
(m 5 10$4), essentially all data sets were subdivided; those
in which no structure is detected are understood to be false
negatives (type II errors). Conversely, data sets at the
highest migration rate (m & 1) were panmictic, having
equally probable migration between any 2 populations, and
thus reflect the false-positive rate (type I error) for each
statistic.

Over all parameter sets, the results for all statistics had
qualitatively similar sigmoidal shapes, detecting significant
structure in the vast majority of data sets with low
migration rates (m 5 10$4, 10$3) and identifying structure
less often as migration increases toward panmixia
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Figure 1. The proportion of data sets in which significant genetic structure was detected by SA, U, AAIA, and SAShA’s OM for
40 000 simulated data sets with varying levels of diversity, shown over the proportion of migrants among demes in a linear
stepping-stone model with a Gaussian dispersal kernel.
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(Figure 1). SA (9 equally spaced distance bins, correspond-
ing to the 9 sampled simulated populations) detected
structure substantially less often than the other 2 methods
at low migration, yet maintained strikingly high false-
positive and false-negative rates (Figures 1 and 2). This
behavior may be due to the discrete sampling scheme
employed here: we aimed to simulate how population
genetics is often performed in the field, sampling multiple
individuals at discrete spatial intervals rather than sampling
one or few individuals over a continuous landscape.
A thorough examination of the behavior of SA under various
sampling regimes is outside the scope of this paper.

SAShA’s OM and AAIA show similar results across
a broad swath of parameter space; however, AAIA is subject
to a high false-negative rate (Figures 1 and 2A,B). This is
most likely due to AAIA’s use of nearest-neighbor distance
to measure the spatial extent of alleles: when sampling is
high and migration is low, identical alleles tend to co-occur
in the same sampling location, creating a common nearest-
neighbor distance of zero. When zero-distance occurrences
are very common, they likely swamp out the geographic
signal from the other shared alleles across the simulated
geography.

This is particularly problematic when allelic richness is
low, which makes repeated sampling of the same allele more
likely. In data sets with low diversities (hp5 1, 3) and high
sample sizes (25 samples per locality), AAIA fails to detect
significant structure in 11.9% of simulations compared with
SAShA and UST’s rates of 2.7% and 0.04% for the same
data sets (Figure 2A). As SAShA is calculated using the
entire distribution of distances between identical alleles, it
avoids this pitfall, returning false-negative rates at or below
5% under all conditions (Figure 2).

Regardless of sampling intensity, SAShA consistently
performed better in data sets with greater amounts of genetic
diversity (Figure 3). At intermediate to high levels of gene flow
(m 5 10$3, 10$2), SAShA detected structure significantly
more often in higher diversity data sets (hp 5 5, 10) than
in those with lower diversities (hp 5 1, 3; 2-tailed v2 test,
P, 0.0001). At high levels of gene flow (m5 10$2) SAShA’s
OM either shows no significant difference from or signifi-
cantly outperforms UST in both higher diversity data sets
(hp5 5, 10) (Figure 3C,D,G,H). The converse is true in lower
diversity data sets (Figure 3A,D,E,F).

Reducing the sample size from 25 per deme to 10 erodes
the efficacy of both statistics (Figure 3A–D vs. Figure 3E–H).
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However, SAShA’s OM statistic is more robust to sparse
sampling than UST, showing a less severe decline in its ability
to detect structure. OM’s relative advantage consequently
increases in sparsely sampled data sets with high allelic
diversity, and its relative disadvantage at low diversity is
substantially reduced (Figure 3E–H).

Performance of SAShA with Original Data sets

The hidden difference between the arrangement of shared
haplotypes in T. funebralis and K. tunicata further demon-
strates the utility of SAShA using biological data. These data
sets are typical of the way in which sampling is often done in
the field: the samples are of uneven sizes and taken at
uneven spatial intervals (Table 1). The 2 species have similar
development and larval durations (Strathmann 1987; Moran
1997) and are found in sympatry over much of their ranges.
Tegula exhibits low genetic variance among populations
(UST 5 0.006; nonsignificant), an average pairwise differ-
ence (p) of 2.47 among COI haplotypes, and H 5 0.8893.
Katharina is comparable by these measurements: UST 5
0.0218 (nonsignificant), p 5 2.89, H 5 0.9354 (Table 1).

The SAShA analysis substantiates Tegula’s lack of genetic
structure: the spatial arrangement of COI haplotypes is not
statistically different from the expectation under panmixia
(OM 5 778.19 km, expected 756.9 km, nonsignificant;
Figure 4A and Table 1). By contrast, Katharina’s haplotypes
are significantly underdistributed according to the SAShA
statistics (OM5 615 km, expected 920 km; P value5 0.001;
Figure 3B and Table 1), revealing a level of population
genetic structure that was otherwise undetected.

Note that although both Tegula and Katharina have
significant Mantel correlations, only the latter has a signif-
icant OM. On closer inspection, Katharina’s Mantel plot
shows a continuous and gradual increase of genetic distance
with geographic distance. Tegula’s Mantel result is driven by
a single data point: the most geographically distant
population pair has a positive FST, and removing this
comparison eliminates the correlation and its significance
(data not shown). This provides a fortuitous test for
SASHA: whereas the exceptional population pair drives
Tegula’s Mantel result, it appears that SAShA is robust to this
outlier.
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The haplotype-by-haplotype analysis (Figure A1) makes
the differences between the 2 species clearer. Whereas
Tegula’s haplotypes are all nearly uniformly distributed,
Katharina’s haplotypes are nearly all underdistributed
(number 3 significantly so; P 5 0.001), driving the pattern
seen in the overall OM value. Both species show minor
discord among rare haplotypes; in general this is expect-
ed—alleles with few instances will not be uniformly
distributed by definition—and rare alleles tend to be
nonsignificant for this reason. Jackknife SAShA analyses
(Table 2) indicate the robustness of the overall results,
which remain qualitatively the same when any one haplotype
is removed.

Discussion

We find that the SAShA method consistently reveals genetic
structure that is missed by existing genetic analyses, although
avoiding the high false-negative rates exhibited by a concep-
tually similar allele-based statistic. In particular, the approach
is effective when diversity is moderate to high (hp 5 5, 10),
as is characteristic of many population genetics data sets.
The method is effective at relatively high levels of migration,
consistent with our expectation that co-occurrences of
alleles in space are informative when migration occurs much
faster than mutation and drift. Moreover, SAShA returns the
calculated geographic distance by which alleles are over- or
underdispersed relative to the expectation under panmixia,
information that is immediately useful in determining the

spatial scales over which gene flow is observed. Finally, we
note that SAShA’s relative advantage over UST is maximized
at small sample sizes; such suboptimal sampling is often all
that is possible in studies of rare or endangered species,
ancient DNA, or difficult-to-obtain individuals from the
field.

By using allelic identities rather calculated values of
relatedness among pairs of individuals (as reviewed in
Vekemans and Hardy 2004), SAShA is subject to the valid
criticism that it uses only a subset of the available
information in a genetic data set. However, the results
above suggest that focusing on the most informative
fraction of the available data (i.e., identical alleles) can yield
a simple but powerful statistic. This increase in power may
be due to minimizing the ‘‘noise’’ introduced into other
genetic analyses by estimates of relatedness, by large and
variable genetic distances among individuals, and by reliance
on an underlying model of gene flow. Alleles identical in
state but not by descent (i.e., homoplasy), as discussed
further below, diminish SAShA’s power but do not
introduce systematic bias to the analysis.

Simulated Data Sets

The results of the SAShA analysis on the simulated data sets
demonstrate the advantageous behavior of allele-based
statistics in the ‘‘Waples zone’’ of high migration and
concomitantly weak structure (see Waples 1998). When
migration is low, (Phi)ST, AAIA, and SAShA indicate
significant structure in the vast majority of data sets.
As migration increases, a shrinking proportion of data sets
is significant. This proportion decreases at a different rate for
each statistic, depending on the allelic diversity and the
sampling intensity. At m5 10$3 and 10$2, SAShA’s OM and
AAIA detect significantly more structure than UST when
diversity is high (hp5 5, 10) and sampling is sparse (n5 10 per
deme).We note that this is an intermediate value formigration
in our simulated data sets, but it represents high migration
relative to what can be detected confidently with genetic
methods in wild populations (Waples 1998; Palumbi 2003).

Both OM and AAIA perform well when diversity is high.
However, because AAIA relies on nearest-neighbor distance
between identical alleles, when diversity is low and/or when
sampling intensity in each locality is high, AAIA dramatically
loses power and fails to detect significant structure over
10% of the time (Figure 2A). Note that as AAIA’s false
positive rate therefore increases as more data are gathered.
By employing the distributions of distances between all
identical alleles, not a single nearest-neighbor distance,
SAShA’s OM avoids this pitfall, returning low false-negative
rates (Figure 2).

We note that, in simulating deme sizes of 105, we have
assumed robust effective population sizes, perhaps larger than
might occur in some natural species (especially imperiled
species). In general, smaller deme sizes lead to lower diversity
and more drift and require higher migration rates (though
a smaller absolute number of migrants) to homogenize the
demes. Because SAShA’s comparative advantage is at high

Table 1 Traditional population genetics statistics for Katharina
tunicata and Tegula funebralis based on mtDNA COI data

K. tunicata T. funebralis

No. of locations 9 17
Average no./location 10.56 17.53
No. of individuals sampled 104 298
No. of alleles 39 84
Haplotypic diversity (H) 0.9354 0.8893
Maximum geographic

Distance sampled (km)
3324 2312

Traditional population genetics results

UST (P value) 0.0218 (0.12) 0.00599 (0.19)
p 2.47 2.89
hS 3.02 2.56
Tajima’s D $1.25 $0.08
Mantel correlation
(P value)

0.719 (0) 0.279 (0.01)

Exact test P value 1 1

SAShA results

Overall OM 615.49 km 778.19 km
Overall expected mean 920.63 km 756.9 km
OM P value 0.001 0.4

The 2 species appear similar in every respect according to traditional

population genetics statistics, with nonsignificant UST values and exact tests,

and significant Mantel correlations. However, the SAShA statistics reveal

clear differences between the species: whereas Tegula’s haplotypes are not

distributed significantly differently from the expectation under panmixia,

Katharina’s haplotypes are significantly underdistributed.
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Figure 4. Analysis of Tegula funebralis (A) and Katharina tunicata (B) COI mtDNA data sets using SAShA. The 2 species have
similar within-species patterns of variation by traditional population genetics analysis, however, SAShA reveals that Katharina’s
haplotypes are significantly underdistributed.
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diversity, its performance may suffer relative to UST with
smaller deme sizes. However, genetic subdivision is likely
easier to detect at smaller population sizes, so we do not
anticipate that this difference between estimators is apprecia-
ble in practice. Demes that are small due to a recent bottleneck
(and not yet equilibrated, such as might be expected in
a conservation context) are likely to be disproportionately
diverse. Because SAShA excels with small, highly diverse
demes, its relative advantage would be at a peak in that case.

In sum, UST is an extremely effective statistic in studies
with well-sampled, site-based collection designs, but it is
much less sensitive with lower density landscape sampling.

Conversely, AAIA shines with sparse landscape sampling
when gene flow is high but fails in the more thorough
location-based sampling typical of traditional population
genetics. SAShA’s OM statistic retains the landscape
benefits of AAIA while addressing that statistic’s high
false-negative rate, making SAShA effective for the vast
majority of real-world sampling schemes.

Real-World Data Sets

The 2 real-world data sets, Tegula and Katharina, illustrate the
practical utility of the SAShA approach. These 2 marine
species are similar in terms of life history, and the overall
within-species patterns of genetic variation appear similar in
the 2 using traditional genetic analysis. Yet the haplotypes of
Katharina are significantly underdistributed, suggesting
a limitation to gene flow that was not apparent otherwise.
Compared with Tegula, Katharina may experience greater drift
and local selection in the face of considerable gene flow
over space. Recent work has shown that, contrary to
a common assumption, species with shared reproductive
and developmental characteristics can have quite different
within-species population genetics patterns (Marko 2004;
Kelly and Eernisse 2007). As a result, the differences SAShA
reveals between the 2 mollusk species may be generally
illustrative of hidden variation in spatial genetic patterns
among superficially similar species.

Strengths and Weaknesses of SAShA

SAShA is more likely than UST to detect the low levels of
genetic subdivision that can exist when gene flow is relatively
high (Nm & 100 when m 5 10$3 and N 5 105). This is
a result of analyzing the distribution of individual alleles
rather than population-level averages and of simultaneously
incorporating geographic and genetic data into a combined
analysis. SAShA does not require user-defined populations,
making it robust to a wide variety of sampling schemes and
eliminating the uncertainty associated with estimating the
extent of natural populations, required for most other
analyses.

The ability to analyze alleles individually is another
strength of our approach. A significant UST may be due to
multiple scenarios (e.g., large pairwise differences between
alleles in the data set, nonrandom distribution of similar
haplotypes, or a very large number of alleles), whereas the
allele-by-allele SAShA makes clear which alleles drive the
overall statistics, as well as the amount of discord among
alleles in the data set. This method can reveal nonrandom
distributions of rarer alleles, which may be more useful
indicators of recent gene flow patterns than common,
widespread alleles (Slatkin 1985). Using the allele-by-allele
analysis, a researcher may discover individual alleles that
behave differently from the rest of the data set, perhaps
focusing on these for further scrutiny (e.g., to test for
selection or for further collection efforts).

Whereas FST and other statistics do not differentiate
metapopulation dynamics from stepping-stone migration or
rare long-distance dispersal events, an allele-by-allele SAShA

Table 2 SAShA jackknife results for Tegula and Katharina

Allele
jacknifed

%
of
data OM EM P

%
Change
in OM

Tegula funebralis
0 — 778.199 756.99 0.389 0
1 32.67 744.73 756.99 0.733 $4.3008
2 8.67 775.162 756.99 0.488 $0.3902
3 8 782.284 756.99 0.333 0.525
4 4.67 780.053 756.99 0.358 0.2382
5 4 778.656 756.99 0.389 0.0587
6 2.67 778.699 756.99 0.414 0.0643
7 2.67 778.906 756.99 0.371 0.0909
8 2.33 777.9 756.99 0.405 $0.0384
9 1.33 777.994 756.99 0.416 $0.0263
10 1.33 778.34 756.99 0.411 0.0181
11 1.33 778.589 756.99 0.395 0.0501
12 1 778.339 756.99 0.413 0.018
13 1 778.556 756.99 0.384 0.0459
14 1 778.056 756.99 0.413 $0.0183
15 1 778.285 756.99 0.404 0.0111
16 0.67 778.046 756.99 0.419 $0.0197
17 0.67 778.299 756.99 0.374 0.0129
18 0.67 778.337 756.99 0.431 0.0178
19 0.67 778.173 756.99 0.38 $0.0033
20 0.67 778.173 756.99 0.389 $0.0034
21 0.67 778.202 756.99 0.382 0.0005
22 0.67 778.093 756.99 0.411 $0.0137
23 0.67 778.299 756.99 0.385 0.0128
24 0.67 778.264 756.99 0.393 0.0084
25 0.67 778.337 756.99 0.402 0.0178

Katharina tunicata
0 — 615.491 920.63 0.004 0
1 14.42 686.295 920.63 0.033 11.5035
2 13.46 581.286 920.63 0.001 $5.5574
3 11.54 716.354 920.63 0.12 16.3873
4 8.65 526.19 920.63 0 $14.5089
5 6.73 587.68 920.63 0.011 $4.5186
6 5.77 615.471 920.63 0.001 $0.0033
7 3.85 615.782 920.63 0 0.0473
8 2.88 620.076 920.63 0 0.7448
9 1.92 608.09 920.63 0 $1.2025
10 1.92 616.687 920.63 0 0.1943
11 1.92 617.275 920.63 0.003 0.2899

Each row represents the results of an analysis done by removing haplotypes

sequentially. Note that Tegula is never significantly different from panmixia,

whereas Katharina remains significant after removing any haplotype but the

third. This third haplotype is the most important driver of the overall result in

the Katharina data set, as its removal yields the greatest percent change in OM.
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may aid in distinguishing between models of gene flow.
Consistently-underdistributed alleles in a data set suggest
a stepping-stone model of gene flow, in which alleles arise
via mutation and spread gradually with limited migration.
A data set with consistently overdistributed alleles suggests
either routine long-distance dispersal among stable pop-
ulations or a metapopulation in which patches may be
colonized from distant source populations. Data sets
containing a mixture of random, over-, and underdistributed
alleles may be indicative of more complex population
genetics or biogeographic histories.

A final advantage of our method is the ability to analyze
a variety of data types. Because SAShA makes use of shared
alleles among populations, the input data can come from
any number of sources (e.g., DNA sequence data, micro-
satellites, random amplification of polymorphic DNA,
restriction fragment length polymorphism, single nucleotide
polymorphism [SNPs]). Multilocus data can be accommo-
dated simply by concatenating vertically the input table of
haplotypes-by-populations for each locus. However, the test
assumes that each row in the input table (i.e., haplotype,
allele, etc.) is independent; as such, phase must be known in
order to accommodate diploid heterozygote data. Micro-
satellites, because of their high mutation rate, may be subject
to size homoplasy (Estoup et al. 1995), and should therefore
be used with caution (see below). Similarly, SNP data with
only 2 alleles may violate SAShA’s underlying assumption
that identical alleles are identical-by-descent when the
mutation rate is high: the same allele may arise multiple
times. Therefore, SAShA is probably appropriate for SNP
data when the mutation rate is low or when the SNPs can be
mapped confidently onto a phylogenetic tree and homoplasy
avoided.

Our approach is model-free, but is most appropriate
when 2 conditions are met: 1) that alleles identical in state
are identical by descent and 2) that migration occurs much
faster than the combined effects of mutation and drift.
Violating either of these conditions is likely to erode
SAShA’s effectiveness. Applying the analysis to data sets
that have high levels of homoplasy, in which alleles are
identical in state but not by descent, will produce
unpredictable results. If homoplastic alleles are located in
the geographic vicinity of one another, there will appear to
be more geographic structure in the data set than is actually
present; conversely, geographically distant homoplastic
alleles will make structure appear artificially low.

The probability of identical alleles arising independently
in DNA sequence fragments of any length is exceedingly
low, and decreases geometrically as fragment length
increases, making homoplasy unlikely to be a problem for
the use of sequence data with SAShA. For microsatellite
data, high migration rates and recent coalescent times
among demes reduce the effect of size homoplasy on the
estimation of population differentiation (Rousset 1996;
Estoup et al. 2002), thereby minimizing the potential for
homoplastic alleles to affect SAShA when geographic
genetic differentiation is subtle. If a particular microsatellite
locus is known to have a high level of size homoplasy,

however, it may lead to misleading results in any spatial
genetics analysis including SAShA. Finally, because any
mutational events leading to homoplasy are expected to
occur independent of geography, they are not likely to bias
the results of the method.

Species with very low gene flow, in which the second
condition is violated and effects of drift and mutation
outweigh those of migration, may appear to have slightly
less geographic structure than they actually do. In practice,
data sets with very low gene flow will be obviously
structured; it is simply the calculation of the spatial scale
over which alleles are shared that will be slightly affected by
these local mutants. SAShA’s statistics therefore represent
a conservative assessment of the amount of geographic
structure among homologous alleles.

Conservation Implications

SAShA’s results indicate the scales over which genetic
information is shared. Many conservation applications, such
as the design of marine reserves, require precisely this kind
of information in order to efficiently size and space reserves
for maximal protection of genetic diversity. For example, if
a continuously distributed species has an OM distance of
500 km between pairs of shared alleles, reserves spaced
200 km apart are likely to be more than sufficient for
protecting many of that particular species’ alleles, whereas
reserves 2000 km apart would be insufficient, probably
failing to encompass even some common alleles. Reserve
spacing and conservation goals can be quickly evaluated
in this way by looking at the geographic distribution of
species’ individual alleles. Knowing how these alleles are
distributed in space also makes possible more sophisticated
probabilistic analyses; one could, for example, determine the
likelihood of encompassing 95% of a species’ alleles given
reserves spaced at 300 km. Time series data for a species,
such as those being collected annually for Balanus glandula
along the Oregon coast by the Palumbi laboratory, would
make such a calculation much more dynamic, incorporating
temporal stochasticity along with the geographic patchiness
inherent in population genetics.

Finally, because SAShA is more sensitive than existing
statistical methods in many high migration rate species, it
will be advantageous in identifying subtle, but real, distinct
population segments under the US Endangered Species Act
(ESA). Presently, many such claims are undermined by
insufficient statistical power: type II error regularly goes
undiagnosed in the scientific literature and in turn the
relevant federal agencies use the lack of evidence for species’
genetic subdivision as evidence of its absence (see, e.g.,
Brosi and Biber 2009). SAShA is a partial remedy to this
problem, if only because it is more likely to detect subtle
genetic structure in many real-world sampling scenarios.

To be a discrete population segment (DPS), worthy
of protection under the ESA, a biological entity must be
1) discrete, 2) significant, and 3) endangered/threatened.
SAShA provides another tool for evaluating the degree to
and/or significant. Whereas ‘‘discrete’’ is a more biological
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concept, ‘‘significant’’ is a more policy-driven concept—
looking at the underlying distribution of alleles gives
interested parties more information on which to make
their decision as to whether an entity is a DPS. The
National Marine Fisheries Service and the U.S. Fish and
Wildlife Service, the 2 federal agencies charged with
applying the ESA, most often use genetic differentiation at
neutral loci to inform the ‘‘discreteness’’ prong of the DPS
test. Such differentiation can also imply local adaptive
divergence elsewhere in the genome, potentially speaking
to the ‘‘significance’’ of a proposed DPS as well, because
genetic adaptations contribute to the ‘‘evolutionary legacy’’
of a species (see Waples 2006). SAShA is useful in
identifying particular alleles that may be selected for or
against, in addition to looking at overall patterns of spatial
structure.

Conclusion

Slight genetic structuring in wild species can be ecologi-
cally important but often cannot be detected by conven-
tional methods. Identifying cases of subtle genetic
differentiation in the face of gene flow is particularly
crucial in species needing management or conservation
plans (Waples 1998; Palumbi 2003). We have shown that
SAShA is useful for detecting structure in species with
relatively high migration rates and small sample sizes,
complementing traditional approaches to population
genetic analyses. The method is designed to account for
diverse sampling schemes, can incorporate a variety of data
types, and returns results that are easily interpreted in
a geographically explicit context. Finally, analysis of
individual alleles provides for a nuanced understanding
of the processes underlying the trends observed in the
data set. The SAShA MATLAB source code and
a downloadable Windows executable program are available
at http://sasha.stanford.edu.

Appendix 1
The SAShA Algorithm

The algorithm for the calculation of OM and their
significance values is as follows:

(1)First, render (m) alleles from (n) locations into an (m # n)
allele by location matrix (H), the elements of which
represent the number (h) of a given allele (i) in a given
location (j):

H 5½ h11 h12 . . . h1n
h21 h22 . . . h2n
. . . . . . . . . . . .
. . . . . . . . . . . .
hm1 hm2 . . . hmn

(:
(2)Produce an (n # n) pair-wise geographic distance matrix

(G) representing the geographic distance (g) between
each pair of populations (i and j). All diagonal entries,

where i 5 j, will be zero, and the matrix will be
symmetrical along the diagonal (gji 5 gij).

G 5½ g11 g12 . . . g1n
g21 g22 . . . g2n
. . . . . . . . . . . .
. . . . . . . . . . . .
gn1 hn2 . . . hnn

(:
(3)Produce an observed distance distribution, (ODD) that

consists of a list of geographic distances between all
pairs of occurrences of each allele, including those with
zero distance (i.e. pairs of the same allele within a given
population).
For the kth allele where k 5 1 . . . m, and
the ith and jth populations, where i5 1 . . . n and j5 i . . . n

if i 6¼ j (i.e., the pair of allele occurrences does not occur
in the same population)

ODD contains H(k,i) * H(k,j) instances of G(i,j)
if i 5 j (i.e., the pair of allele occurrences occurs within

a population)
ODD contains (H(k,i) * (H(k,i)-1)) / 2 instances of
G(i,i)

(4)Produce an expected distance distribution, (EDD) that
consists of a list of geographic distances between all
possible pairs of samples in the dataset regardless of
allele. This serves as our null expectation under random
migration.
For the kth allele where k 5 1 . . . m, and
the ith and jth populations, where i5 1 . . . n and j5 i . . . n

if i 6¼ j (i.e., the pair of allele occurrences does not occur
in the same population)

EDD contains !k H(k,i) * !k H(k,j) instances of
G(i,j)

if i 5 j (i.e., the pair of allele occurrences occurs within
a population)
EDD contains (!k H(k,i) * (!k H(k,i)-1)) / 2
instances of G(i,i)

(5)From these two distributions (ODD & EDD), one can
calculate both the observed and expected mean distances
(OM and EM, respectively) between shared alleles.
To calculate the means of the observed distance
distribution and the expected distance distribution, one
simply takes the arithmetic mean of each distribution.
The difference between these means (OM-EM) expresses
the geographic distance by which the alleles in the dataset
are over- or underdistributed. Overdistributed datasets
result in a difference greater than zero; for under-
distributed datasets the difference is less than zero. The
limits of the difference are determined by the dataset; the
statistic may vary between the positive and negative values
of the largest geographic distance in a given dataset.

(6)To assess the significance of both the differences between
OM and EM, randomly permute the observed allele by
location matrix (H) Np times, maintaining row and column
sums constant (for the simulations presented above,
Np 5 1000; larger numbers of permutations result in more
precise estimates of significance). Recalculate both statistics
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(OM-EM) for each of the Np permuted datasets. Note that
because row and column sums are held constant, the null
expectation for each permuted dataset remains unchanged.
After Np permutations, compare the original observed
statistics to their respective distributions generated by
permutation. The proportion of permuted statistics more
extreme than the observed statistic serves as the p-value for
a significance test.

The above calculations yield a difference statistic (OM-EM)
and its respective significance value for the overall
dataset. In addition, we extend the analysis in two ways:
(a) by applying the algorithm to each allele individually and
(b) by jackknifing—repeatedly assessing the overall dataset
while sequentially removing each allele in turn. These
subsequent analyses provide greater detail and make clear

which alleles drive the geographic pattern in the overall
dataset. These extensions are calculated as follows:

(7)To analyze each allele in the dataset independently (e.g., the
haplotype-by-haplotype analysis presented in Figure A1),
carry out steps 3–6 as above, using only the focal allele to
calculate ODD (step 3) but retaining the entire dataset to
calculate the EDD (step 4). The way in which the statistics
(OM-EM) are calculated remains unchanged (step 5),
however their significance is calculated based on the
statistical distribution calculated for only the focal
haplotype out of each permuted dataset (step 6).

(8)To analyze the relative importance of each allele by
removing one at a time from the dataset (jackknifemethod),
first apply the algorithm to the overall dataset as above (steps
1–6) to yield OM-EM and its associated significance value.

Figure A1. Haplotype-by-haplotype analysis of Tegula funebralis (A) and Katharina tunicata (B) data sets. The number of
occurrences of each haplotype is given (n) as well as the haplotype-specific SAShA statistics. Haplotype number, in order of
decreasing frequency, is on the y-axis for each plot. The expected distributions are represented by gray open circles, and observed
distributions by dark open triangles.
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Then, remove one allele from the input data matrix, H, to
create H#. Perform all calculations on H#, and calculate the
percentage change for OM-EM for the H# data matrix
relative to that for H. Repeat this procedure for each allele.
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