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Abstract. We show that for every nonelementary representation of a
surface group into SL(2,C) there is a Riemann surface structure such
that the Higgs bundle associated to the representation lies outside the
discriminant locus of the Hitchin fibration.

1. Introduction

Let Σ be a closed, oriented surface of genus g ≥ 2. In this short note we
answer a special case of the following question posed by Nigel Hitchin:
which representations ρ : π1(Σ) → SL(n,C) correspond to Higgs bundles
which lie outside the discriminant locus of the Hitchin fibration for some
Riemann surface structure on Σ? For example, the Higgs field for a unitary
representation (i.e. one whose image lies in a conjugate of SU(n)) is identically
zero, and a reducible representation (i.e. one whose image preserves a
proper subspace of Cn for the standard action) necessarily has a Higgs
field whose characteristic polynomial is reducible. As a consquence, these
representations always lie in fibers over the discriminant locus for any choice
of Riemann surface structure. The goal of this paper is to show that for
n = 2 these examples present essentially the only restrictions. To state the
result, recall that a representation ρ : π(Σ) → SL(2,C) is called elementary
if it is either unitary, reducible, or maps to the subgroup generated by an
embedding

C∗ ↪→ SL(2,C) : λ 7→
Ç
λ 0
0 λ−1

å
and the element

Ç
0 −1
1 0

å
. We shall prove the following

Theorem 1. A semisimple representation ρ : π1(Σ) → SL(2,C) defines a point
in the fiber of the Hitchin fibration over the discriminant locus for every Riemann
surface structure on Σ if and only if ρ is elementary.

The natural approach to the above statement is to prove that if ρ is
nonelementary, one can find a Riemann surface structure X on Σ so that the
Higgs bundle on X corresponding to ρ defines a point in the fiber of the
Hitchin fibration away from the discriminant locus for X. We shall prove
this by combining the powerful result of Gallo-Kapovich-Marden [GKM00]
with the method of harmonic maps to trees [Wol95], [Wol98].
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Let us first review a bit of the background and terminology for this
problem. Let

X(Σ) = Hom(π1(Σ),SL(2,C))
//

SL(2,C) (1)

denote the SL(2,C)-character variety of Σ parametrizing semisimple repre-
sentations (see [CS83, LM85]). For a (marked) Riemann surface structure
X on Σ, let M(X) denote the moduli space of rank 2 Higgs bundles on
X with fixed trivial determinant (see [Hit87a]). The nonabelian Hodge
theorem asserts the existence of a homeomorphism X(Σ) 'M(X) for each
X. One direction of the homeomorphism is a consequence of the follow-
ing result of Corlette and Donaldson [Cor88, Don87]: given a semisim-
ple representation ρ : π1(Σ) → SL(2,C) and a Fuchsian representation
σ : π1(Σ) ∼−−→ Γ ⊂ PSL(2,R), X = Γ\H2, there exists a smooth harmonic map
v :H2

→H3 that is equivariant for the action of π1(Σ) via σ on the upper half
planeH2

⊂ C and ρ on the hyperbolic 3-spaceH3, on which SL(2,C) acts by
isometries. Moreover, v minimizes the energy among all such equivariant
maps. We shall refer to v as an equivariant harmonic map. If Q(X) denotes the
space of holomorphic quadratic differentials on X, then there is a (singular)
holomorphic fibration h : M(X) → Q(X) which is a smooth fibration of
abelian varieties over the locus of nonzero differentials with simple zeros.
The image by h of a Higgs bundle corresponding to a semisimple represen-
tation is simply the Hopf differential of any equivariant harmonic map, as
described above. The divisor ∆(X) ⊂ Q(X) consisting of those quadratic
differentials having some zero with multiplicity is called the discriminant
locus. Points in M(X) in the fiber over q ∈ Q(X) \ ∆(X) correspond to certain
line bundles on a branched double cover of X called the spectral curve. The
line bundle and the spectral curve together form the spectral data, which
completely determine the Higgs bundle, and hence via the other direction
of the nonabelian Hodge theorem, the corresponding representation ρ. The
spectral data for points in M(X) lying over the discriminant locus are more
difficult to describe; hence, the interest in the question posed by Hitchin.
For more on this structure, see [Hit87b].

With this understood, Theorem 1 is a direct consequence of the following
equivalent statement.

Theorem 2. Let ρ : π1(Σ)→ SL(2,C) be a semisimple representation. Then there
exists a Riemann surface structure X = Γ\H2 on Σ such that the Hopf differential
of the ρ-equivariant harmonic mapH2

→H3 has only simple zeros if and only if ρ
is nonelementary.

Remark 3. (i) A unitary representation fixes a point in H3, and so
the constant map is equivariant and clearly energy minimizing.
Hence, the Hopf differential vanishes. A semisimple elementary
representation that is not unitary fixes a geodesic inH3, which then
necessarily coincides with the image of any equivariant harmonic
map. The Hopf differential is therefore the square of an abelian
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differential. In particular, since we assume g ≥ 2, the differential has
zeros with multiplicity. Therefore, the “only if” parts of Theorems 1
and 2 are clear.

(ii) We shall actually prove a slightly stronger statement; namely, for
nonelementary representations we can find a Riemann surface
structure such that the vertical foliation of the Hopf differential has
no saddle connections.

(iii) Note that there are obviously sections of the bundle of holomorphic
quadratic differentials over Teichmüller space Teich(Σ) which at
every point have zeros with multiplicity; one class of examples are
the squares of abelian differentials just mentioned. Hence, Theorem
2 does not seem to follow from a simple dimension count.

(iv) As pointed out by Hitchin, there will be other obstructions in any
generalization of Theorem 1 for n ≥ 3. In particular, some of these
will come from other real forms of SL(n,C). Representations to
SU(p, q), p , q, for example, will always lie in the discriminant locus
(cf. [Sch12]). Finding a suitable replacement in higher rank for the
result of Gallo-Kapovich-Marden remains a challenge.
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ducing us to the problem, and Shinpei Baba for discussions about projective
structures which led to the formulation of Lemma 6. The authors were
supported by National Science Foundation grants DMS-1406513 and DMS-
1007383, respectively. Both authors are grateful to the Mathematical Sciences
Research Institute at Berkeley, where some of this research was conducted,
to the Institute for Mathematical Sciences at the National University of Singa-
pore where the work was begun and to NSF grants DMS-1107452, 1107263,
1107367 “RNMS: GEometric structures And Representation varieties"(the
GEAR Network) which supported collaborative travel for the authors.

2. Trees, measured foliations, and harmonic maps

In this section, we prove a lemma that motivates the strategy of the proof
of Theorem 2. The basic constructions in the statement of the lemma below
were first exploited in [Wol98]. Namely, we will find the desired Riemann
surface structure as a critical point for an energy function on Teichmüller
space. To define this energy function, first choose a measured foliation,
say (F, λ) on the differentiable surface Σ, lift that measured foliation to a
π1(Σ)-equivariant measured foliation on the universal cover Σ̃, and then
project the transverse measure λ along the leaves to obtain an R-tree T = Tλ
with an isometric action (relative to the metric defined by the projected
measure) of π1(Σ). For concreteness, we will express the isometric action of
the fundamental group on T by a representation ρT : π1(Σ) → Iso(T). For
any γ ∈ π1(Σ) whose free homotopy class is represented by a simple closed
curve, the intersection i(γ, λ) with the foliation is equal to the translation
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length γ as it acts on T:

i(γ, λ) = |ρT(γ)|T := min
x∈T

dT(x, γx) . (2)

Recall that actions on trees are always semisimple (cf. [CM87]).
We focus initially on two features of this construction. First, by the

theory of harmonic maps to R-trees ([Wol95], and for the general setting of
nonpositively curved metric spaces [KS93, Jos94]), given anR-tree T with an
isometric action ρT : π1(Σ)→ Iso(T), then for each Fuchsian representation
σ : π1(Σ) ∼−−→ Γ ⊂ PSL(2,R), X = Γ\H2, we can define the ρT-energy EρT (X)
of X to be the infimum of the energies of locally finite energy mapsH2

→ T
that are π1(Σ)-equivariant with respect to σ acting on the domain and ρT
and on the target. We recall that the energy density for such maps is a locally
integrable form onH2 that is invariant with respect to the action of π1(Σ). It
therefore descends to X, and its integral gives a well defined (finite) energy.
Moreover, the energy minimizer u :H2

→ T is realized as follows:
• there is a nonzero holomorphic quadratic differential Φ ∈ Q(X) the

leaf space of whose vertical measured foliation defines a tree TΦ

with an isometric action ofπ1(Σ) induced from that on the transverse
measure;
• there is a π1(Σ)-equivariant map ψ : TΦ → T which is a folding; in

case T = Tλ is dual to a measured foliation (the only case we will
consider here), then ψ is an isometry;
• then u = ψ◦π, where π :H2

→ TΦ is the projection onto the vertical
leaf space of Φ;

(see [HM79, Wol95, Wol96, DDW00]). Moreover, the energy of u is given by

EρT (X) := E(u) = 2
∫

X
|Φ| . (3)

The energy only depends on the marked isomorphism class of X. Hence,
EρT (X) is a well-defined function EρT : Teich(Σ)→ R≥0.

Second, some features of the (Hopf) quadratic differential Φ are reflected
in the tree: in particular, if each vertex of the tree has valence three, then
Φ can have only simple zeros, as any higher order zeros – or indeed any
collection of zeros connected by subarcs of a leaf – would create higher
order branching of the leaf space, which is the tree T in this setting. As it is
a generic condition that the zeros of a holomorphic quadratic differential
should be simple with no connecting leaves between them, we see that the
generic tree dual to a measured foliation should have all vertices of valence
three.

Next, fix a semisimple representationρ : π1(Σ)→ SL(2,C). The hyperbolic
3-ball H3 = SL(2,C)/SU(2) then has an action of SL(2,C) by isometries.
Given a Riemann surface structure X = Γ\H2 on Σ, then by the theorem of
Corlette-Donaldson mentioned in the introduction, there is a harmonic map
v : H2

→ H3 that is equivariant with respect to ρ, and this map is unique
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if and only if ρ is irreducible. Thus, in analogy with what we did with the
target tree T in defining the ρT-energy, we may define the ρ-energy Eρ(X) of
a Riemann surface to be the energy E(v) of v. As before, the function Eρ is
well-defined on the Teichmüller space Teich(Σ).

Finally, consider the nonpositively curved metric space N = T ×H3 with
product metric dN and the diagonal isometric action π1(Σ)→ Iso(N) given
by ρN(γ) = (ρT(γ), ρ(γ)). Then the energy of equivariant mapsH2

→ N is
the sum of the energies of the maps to T andH3. This defines our setting
well enough to state

Lemma 4. Let T = Tλ be a tree which is both dual to a measured foliation on the
surface Σ and has all vertices of valence three, and let ρ : π1(Σ) → SL(2,C) be
irreducible. Suppose that the function EρN = EρT + Eρ is proper on Teich(Σ). Then
there exists a Riemann surface structure on Σ such that the Hopf differential of the
ρ-equivariant harmonic mapH2

→H3 has only simple zeros.

Remark 5. By our comments above on the generic nature of such trees, we
see that the first sentence is not a vacuous condition.

Proof. By a classical result (see [SY79, SU82], and for the case of general
nonpositively curved metric target spaces, [Wen07, Corollary 3]), the energy
function EρT + Eρ : Teich(Σ)→ R is differentiable on Teich(Σ), and so, being
proper, achieves its minimum at a point X = Γ\H2; moreover, the gradient
of that energy function vanishes at X. On the other hand, the gradient is a
multiple of the Hopf differential of the ρN-equivariant harmonic map from
H2 to T ×H3, and so the Hopf differential of that harmonic map vanishes.
Because the target metric is a product, we may express the harmonic map
f :H2

→ T×H3 as a product f = (u, v), where u is the unique ρT-equivariant
harmonic mapH2

→ T, and v is the unique ρ-equivariant harmonic map
H2
→H3. The Hopf differential of f is the sum of the Hopf differentials Φu

and Φv of u and v, respectively; and since it vanishes, we have Φv = −Φu.
However, as explained in the opening of this section, the vertical measured
foliation of Φu has leaf space which projects to a tree TΦu that is equivariantly
isometric to T. In particular, since T has all vertices of valence three, the
differential Φu has simple zeros. The same is therefore true of Φv = −Φu. �

3. Complex projective structures and bending laminations

Let us introduce some more notation. For a hyperbolic surface S and
simple closed curve γ ⊂ S, let `S(γ) denote the length of the geodesic in
the free homotopy class of γ as measured on S. For g ∈ Iso(H3), define the
translation length |g|H3 as in eq. (2):

|g|H3 := inf
x∈H3

dH3(g · x, x) .

The goal now is to find a tree for which the hypotheses of Lemma 4
are satisfied. To that end, let ρ : π1(Σ) → SL(2,C) be nonelementary. The
foundational result in [GKM00] then implies that ρ is the holonomy of a
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complex projective structure, say (X, ℘), and hence is the holonomy of a
developing map devρ : Σ̃→ CP1. (The reader may find it useful to keep in
mind that this complex projective structure is not necessarily unique, and
in general, the developing map, while a local homeomorphism, is neither
injective nor a covering.) We exploit the rich synthetic hyperbolic geometry
of complex projective structures in the following lemma; in that setting,
because of hyperbolic geometric constructions, it is more convenient to
replace measured foliations with measured laminations in the discussion.
As there is a natural homeomorphism between the space of measured
foliations and measured laminations which respects the passage to dual
trees, there is no loss of content in this change of perspective. For more
background on properties of geodesic laminations used below, see [Bon86].

Lemma 6. Let (X, ℘) be a complex projective structure on Σ with holonomy ρ.
Then there is a hyperbolic structure S on Σ, a maximal measured geodesic lamination
λ on S, and constants ε1,A > 0, depending only on (S, λ), such that the following
hold:

(i) if γ is a simple closed curve on Σ with intersection number i(γ, λ) < ε1,
then |ρ(γ)|H3 ≥ A`S(γ);

(ii) more generally, for any constant I > 0, there is L > 0 so that if γ is a simple
closed curve on Σ with i(γ, λ) < I and `S(γ) > L, then |ρ(γ)|H3 ≥ A`S(γ).

Proof. We begin by recalling the key property of complex projective structures
we will need. Good references for this material, due almost entirely to
Thurston, are [KT92, Section 2] and [KP94, Theorem 8.6]. Given a complex
projective structure (X, ℘) on Σ with holonomy ρ, there is a hyperbolic
surface structure S on Σ, a measured geodesic lamination λ0 and a (pleated
surface) map F : S̃→H3 from the universal cover S̃ toH3, which has image
a surface F(S̃) ⊂H3 and for which F

∣∣
λ̃0

is an isometry. Here, λ̃0 is the lift to S̃
of the lamination λ0 ⊂ S.

Choose a point p ∈ λ0 and a small neighborhood U ⊂ S containing p.
Some of the leaves, say αi, of λ0 that meet U later recur to U, and the images
of those arcs αi determine F-images, say F(Ûi) = Vi ⊂H

3, of lifts Ûi of U that
are separated by isometric images of the arcs αi. In particular, the images Vi
of those lifts are at some minimum distance A from each other, depending
only on the geometry of S and λ0 ⊂ S.

Note that if γ is a closed curve which lies C1-close to a lamination, then
we can choose such a neighborhood U so that γ meets U a number k of
times before closing up. Thus, if a lift q̃ of a point q ∈ γ ∩ U would lie in
a neighborhood V0 ⊂ H3, then the image ρ(γ)(q̃) by the isometry ρ(γ) of
that lift q̃ of q would lie in some lift Vk ⊂H

3, with a single lift γ̂ connecting
the neighborhoods V0 and Vk and meeting other lifts V1, ...,Vk−1 along its
path. We conclude that such an isometry ρ(γ) has translation length |ρ(γ)|H3

comparable to that of its length `S(γ) on S: the construction shows that this
comparability constant |ρ(γ)|H3/`S(γ) may be taken to depend only on λ0
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and S, but to be independent of γ, as long as γ is sufficiently close in C1 to
λ0.

Thus, if λ0 is also a maximal lamination, then we set λ = λ0 and our
construction of λ is complete. It is of course possible that the lamination
λ0 is not maximal. (For example, the lamination λ0 might consist only
of a single simple closed curve, so that the complement in Σ of λ0 could
be a surface of large Euler characteristic.) In that case, we then perturb
λ0 into a maximal lamination λ (i.e. a measured lamination all of whose
complementary regions are ideal triangles): measured laminations which
are maximal in this sense are dense, for example by using [HM79] and the
density of holomorphic quadratic differentials on a Riemann surface with
corresponding properties or the theory of train tracks [PH92].

This new measured lamination λ will meet the old lamination λ0 at a
maximum angle of δ > 0, which we may choose to be as small as we wish.
In particular, this perturbation of λ0 to λ has only a mild effect on our
constructions and estimates: by choosing δ small enough, and restricting
ourselves to curves γ which are both very long and very close in C1 to
leaves in λ, we find that since λ is close to λ0 in C1, we have already
focused on curves which are sufficiently close to λ0 in C1 for the previous
estimates to hold: for curve classes γ whose S-geodesic representatives are
sufficiently close to the S-measured geodesic lamination λ, we have that
|ρ(γ)|H3 ≥ A`S(γ).

With these observations in mind, we see that for part (ii) of the lemma, it
suffices to show that for any chosen bound I, there is a bound L so that if γ
is a simple closed essential curve on Σ with intersection number i(γ, λ) < I
and `S(γ) > L, then the S-geodesic representative of γ lies C1-close to the
S-geodesic measured lamination λ. To see this, suppose that it is not true, i.e.
that there is some I and a sequence of curves γk for which i(γk, λ) < I, while
`S(γk) → ∞ and the C1-distance between γk and λ is bounded away from
zero. Then consider the measured geodesic laminations µk whose measure
is given, for a transverse arc C, by µk(C) = i(C, γk)/`S(γk), i.e. normalized
counting measure. Of course, as k→∞, the intersection numbers satisfy

i(µk, λ) = i(γk/`S(γk), λ) <
I

`S(γk)
→ 0 .

Allowing µ to be an accumulation point of µk, we see first that i(µ, λ) = 0,
and second that µ is non-trivial (for example, a subsequence µk can all be
carried on a single train track, but then one of the finitely many branches
of that track admits an intersection number with a transverse arc that is
bounded away from zero). But as λ is maximal and i(µ, λ) = 0, we have that
µ is a sublamination of λ, hence the support of µk – that is, the curve γk –
may be taken to approximate λ in the Hausdorff sense. This in turn implies,
by the geometry of nearby hyperbolic geodesics, that γ lies arbitrarily closely
to λ in C1, contradicting the assumption.
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Similarly, for part (i), if no such constants ε1,A exist, we may find γk for
which i(γk, λ)→ 0 and |ρ(γk)|H3/`S(γk)→ 0, and we derive a contradiction
as above. This completes the proof of the lemma. �

4. Proof of the main result

Let ρ : π1(Σ) → SL(2,C) be irreducible. Then the theorem of Gallo-
Kapovich-Marden guarantees that ρ is the holonomy of a complex projective
structure (X, ℘) on Σ. Let T = Tλ be the dual tree to the measured lamination,
and S the hyperbolic structure on Σ, obtained in Lemma 6. Let N = T ×H3

and ρN be as in Section 2. We will need a preliminary result about N: by
Lemma 6 (i) and eq. (2), we immediately have

Lemma 7. There exists ε2 > 0, depending only on ρ, S, and λ, such that for all
1 , γ ∈ π1(Σ), the translation length |ρN(γ)|N ≥ ε2.

We can now give the

Proof of Theorem 2. By Lemma 4, it suffices to show that the energy function
EρN = EρT + Eρ is proper on Teich(Σ). Let us remark that in case ρ is quasi-
Fuchsian, it was shown in [GW07, Section 5] (see also [Wol98, Prop. 3.6])
that Eρ is proper, and therefore so is EρN for any choice of T. For general ρ,
however, properties of the lamination λ and the associated tree T = Tλ play
a key role, and the argument is necessarily different from the one used in
[GW07, Section 5]. With the intent of arriving at a contradiction, we therefore
suppose to the contrary that EρN is not proper. Under the assumption we can
find a sequence σi : π1(Σ) ∼−−→ Γi ⊂ PSL(2,R) of Fuchsian representations
such that the set of isomorphism classes of marked Riemann surfaces {Xi}i∈N,
Xi = Γi\H

2, contains no limit points in Teich(Σ). We suppose furthermore
that we have a constant K and unique harmonic maps

ui :H2
−→ T , vi :H2

→H3

that are equivariant with respect to the action of π1(Σ), via σi on the left, and
ρT and ρ on the right, with E(ui) + E(vi) ≤ K.
Step 1. By a standard argument (see [SY79, SU82]), the energy bound
plus Lemma 7 imply that there is a uniform positive lower bound on the
lengths of the shortest geodesics for the hyperbolic surfaces Xi. By the
Mumford-Mahler compactness theorem, it follows that we can find quasi-
conformal homeomorphisms gi :H2

→H2 and a Fuchsian representation
σ∞ : π1(S) ∼−−→ Γ∞, such that gi ◦ Γi ◦ g−1

i = Γi, and (after passing to a
subsequence) σ̂i = gi ◦ σi ◦ g−1

i → σ∞, in the Chabauty topology. Introduce
the following notation: for any γ ∈ π1(Σ), define

γ̂i := σ−1
i ◦ σ̂i(γ) . (4)

Step 2. Let us first focus on the maps ui to the tree. By [KS93] and the
convergence of the σ̂i, the maps ui are uniformly Lipschitz with a constant
proportional to

√
E(ui). In particular, since the energy is uniformly bounded,
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so is the Lipschitz constant. Therefore, we may assume the Hopf differentials
Φi of ui, regarded as Γi-automorphic holomorphic quadratic differentials on
H2, converge Φi → Φ∞ uniformly to a holomorphic differential Φ∞. It is
possible that Φ∞ ≡ 0; we will deal with this contingency in Step 6 below. In
the intervening steps below, assume Φ∞ . 0.
Step 3. As discussed previously, the leaf space TΦi of the vertical measured
foliation of Φi has the structure of anR-tree with an isometric action of π1(Σ)
(via σ̂i) that is π1(Σ)-equivariantly isometric to T. Denote this isometry by
ψi : TΦi −→ T. If we let πi : H2

→ TΦi be the projection onto the leaf space
of the vertical foliation, then as in Section 2 we have that ui is given by
ui = ψi ◦ πi.

Step 4. Fix γ ∈ π1(Σ). We choose a representative curve α∞ in H2 from
0 to σ∞(γ) · 0 that is quasitransverse to the vertical measured foliation of
Φ∞. Let αi : [0, 1]→H2 be a path from 0 to σ̂i(γ) · 0, that is quasitransverse
to the vertical foliation of Φi. Then since the σ̂i and Φi converge, αi may
furthermore be chosen ε-close to α∞ for i sufficiently large.
Step 5. By Step 4, it follows that there is I (depending on γ) such that for i
sufficiently large,

dTΦi
(πiαi(1), πiαi(0)) < I .

On the other hand,

dTΦi
(πiαi(1), πiαi(0)) = dT

(
ψi ◦ πiαi(1), ψi ◦ πiαi(0)

)
= dT

(
ui(σ̂i(γ)αi(0)),ui(αi(0))

)
= dT

(
ui(σi(γ̂i)αi(0)),ui(αi(0))

)
= dT(ρT(γ̂i)ui(αi(0)),ui(αi(0)) ,

where γ̂i is defined by (4). Hence, in particular,

i(γ̂i, λ) = |ρT(γ̂i)|T < I , (5)

for i sufficiently large.
Step 6. In the case where Φ∞ ≡ 0, it follows from (3) that E(ui)→ 0. Hence,
by the assertion in Step 2, the Lipschitz constants for ui also tend to zero
uniformly. Therefore, for any given γ ∈ π1(Σ), since σ̂i(γ) · 0 → σ∞(γ) · 0
remains bounded,

|ρT(γ̂i)|T ≤ dT(ρT(γ̂i)ui(0),ui(0))
= dT(ui(σi(γ̂i) · 0),ui(0))
= dT(ui(σ̂i(γ) · 0),ui(0))
< I ,

for i sufficiently large. In particular, (5) holds in this case as well.
Step 7. We apply a similar argument to the sequence of harmonic maps vi.
Since the energy E(vi) is uniformly bounded, and the groups gi ◦ Γi ◦ g−1

i
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converge, the vi are uniformly Lipschitz. In particular, for any γ ∈ π1(Σ)
there is B (depending on γ), such that

dH3(vi(σ̂i(γ) · 0), vi(0)) ≤ B .

But then,

dH3(vi(σ̂i(γ) · 0), vi(0)) = dH3(vi(σi(γ̂i) · 0), vi(0))
= dH3(ρ(γ̂i)vi(0), vi(0))

=⇒ |ρ(γ̂i)|H3 ≤ B . (6)

Of course, in this last term, the quantity B still depends on γ but is bounded
independently of the index i.
Step 8. We now relate the estimates of the previous three steps to arrive at
the following crucial conclusion. Combining eqs. (5) and (6) with Lemma 6,
we find that the lengths `S(γ̂i) must be uniformly bounded in i. This implies
that there are only finitely many homotopy classes among the γ̂i. Hence,
after passing to a subsequence we may assume there exists a fixed γ̂ such
that γ̂i = γ̂, for all i.
Step 9. Now apply the argument in Steps 4-8 to a set of generators
γ(1), . . . , γ(2g) of π1(Σ). We conclude that along some subsequence,

γ̂( j) = σ−1
i ◦ σ̂i(γ( j)) , j = 1, . . . , 2g

(see (4)). But then the automorphisms σ−1
i ◦ σ̂i are constant on all of π1(Σ).

Since σ̂i converges, so does σi, contradicting the hypothesis of no limit points
for the Xi’s. This contradiction completes the proof. �
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